1 Supplementary Material

2 Supplementary Figure 1: Food intake.

- 3 (A, B, C) Food intake of Lipistase- or vehicle-treated LDLrKO, LDLrKO-PPARaKO, and
- 4 APOEKO mice monitored over a period of 8 months.
- 5

6	Supplementary Figure 2: Effect of Lipistase on 3T3-L1 cell differentiation.
7	(A) Quantification of oil red O assay of 3T3L1 differentiated cells (day 5) treated with the PPAR γ
8	ligand Rosiglitazone (Rosi, 1 μ M), the PPAR α ligand WY-14 643 (WY, 1 μ M) and Lipistase (Lip,
9	160 pg/mL). * $p < 0.05$. (B) Lipistase effect on mRNA expression levels of genes encoding
10	adipose-secreted proteins (Leptin, Adiponectin, Resistin and Adipsin), a lipogenic transcription
11	factor (SREBP-1c) and lipogenic markers (ACC1, FAS and ADFP) during the differentiation of
12	3T3-L1 cells at the indicated days.
13	
14	Supplementary Figure 3: Effect of Lipistase on the levels of hepatic total cholesterol,
15	cholesterol esters, and triglycerides.
16	The levels of the abovementioned lipids were measured in LDLrKO and LDLrKO-PPAR α KO
17	after a 10 month-treatment with Lipistase.
18	
19	Supplementary Figure 4: Comparative mRNA expression levels of genes involved in fatty acid
20	uptake, fatty acid catabolism and lipogenesis in muscle, adipose tissue, and liver.
21	mRNA expression levels of markers for fatty acid uptake, fatty acid catabolism, and lipogenesis
22	measured in LDLrKO and LDLrKO-PPAR α KO after a 10 month treatment with Lipistase.
23	
24	Supplementary Figure 5: Lipistase increases oxygen consumption in APOEKO mice.

Oxygen consumption measured after a 10 month-treatment with Lipistase (*p < 0.05; nAPOEKO =
 4 per group).

3

4 Supplementary Figure 6. Athero-protective effects of Lipistase in APOEKO mice. 5 (A) Oil red O staining of aortic roots from mice treated with Lipistase or vehicle (Control) starting 6 at 3 weeks of age for 3 months (left panel). (B) Oil red O stained aortic roots dissected from 7 offspring of Lipistase- or vehicle- (Control) treated mice. These offsprings were also treated after 8 weaning for 3 months. The representative images (left panels) show plaque area in aortic roots. 9 10 Supplementary Figure 7: Lipistase reduced postprandial hypertriglyceridemia. 11 Progression of plasma triglyceride levels within 5 hours after administration of 300 µL of soy oil by 12 gavage (Time 0) to mice fasted for 12 hours after a 3 month Lipistase or vehicle (Control) 13 treatment. 14 15 Supplementary Figure 8: Fertility and viability. 16 (A & B) Number of alive or dead pups at 3 months post-weaning after Lipistase or vehicle 17 (Control) treated parent mice before conception, mothers during gestation and lactation, and 18 pups after weaning.

19 Supplementary Table 1: Kown beneficial effects of Lipistase components on lipid metabolism.

20

Lipistase components	Proven actions on lipid metabolism	
zinc	antioxidant activity ¹ , vascular protection ²	
iron	tissue oxygenation 3 , cardiac protection 4	
selenium enriched yeast	anti-atherosclerosis ^{3, 5}	
vitamin B3	oxidative metabolism ⁶	
vitamins B9, B6,	anti-atherosclerosis ⁶	
B12, E and F		
magnesium	anti-atherosclerosis ⁷	

fish oil	plasma lipid lowering via lipid catabolism promotion ⁸ ,	
	anti-atherosclerosis ⁹⁻¹¹	
evening primrose oil	anti-inflammatory activity ¹² , vascular protection ¹³	
rapeseed oil	plasma lipid lowering ¹⁴	
	via lipid catabolism promotion in liver ^{15, 16}	
olive oil	antioxidant activity ¹⁷	
grapeseed oil	activation of mitochondrial oxidation in skeletal muscle ¹⁸	
Fucus vesiculosus	anti-obesity ¹⁹⁻²¹ , anti-inflammatory activity ^{22, 23} ,	
	plasma lipid lowering via lipid absorption inhibition ²⁴ ,	
	antioxidant activity ²⁵⁻²⁷	
Chondrus crispus,	antioxidant activity ²⁸⁻³¹	
Palmaria palmata,		
Crithmum maritimum		
Vitis vinifera	anti-atherosclerosis ³²⁻³⁷ ,	
	antioxidant activity ³⁸⁻⁴² ,	
	plasma lipid lowering via lipid absorption inhibition ^{43, 44}	
Allium sativum	plasma lipid lowering ⁴⁵⁻⁴⁷ ,	
	via hepatic lipogenesis inhibition ^{48, 49} ,	
	antioxidant activity ⁵⁰ , anti-atherosclerosis ⁵¹⁻⁵³	

1

2 1. Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol 3

Med 1990;8:281-291.

2. 4 Pearce LL, Wasserloos K, St Croix CM, Gandley R, Levitan ES, Pitt BR. Metallothionein, 5 nitric oxide and zinc homeostasis in vascular endothelial cells. J Nutr 2000;130:1467S-6 1470S.

7 3. Reilly C. The Nutritional Trace Metals. Blackwell Publishing Ltd, 2004.

8 4. Lauffer RB. Iron stores and the international variation in mortality from coronary artery

9 disease. Med Hypotheses 1991;35:96-102.

- 10 5. Cinemre H, Bilir C, Gokosmanoglu F, Kadakal F. Anti-Saccharomyces cerevisiae
- 11 antibodies in acute myocardial infarction. J Investig Med 2007;55:444-449.

1	6.	McDowell LR. Vitamins in Animal and Human Nutrition. Iowa State University Press,
2		2000.
3	7.	Ashmead. Intestinal absorption of metal ions. Thomas Publisher, 1985.
4	8.	Rustan AC, Christiansen EN, Drevon CA. Serum lipids, hepatic glycerolipid metabolism
5		and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids. Biochem
6		J 1992; 283 (Pt 2) :333-339.
7	9.	Connor WE, DeFrancesco CA, Connor SL. N-3 fatty acids from fish oil. Effects on plasma
8		lipoproteins and hypertriglyceridemic patients. Ann NY Acad Sci 1993;683:16-34.
9	10.	Lopez D, Moller M, Denicola A, Casos K, Rubbo H, Ruiz-Sanz JI et al. Long-chain n-3
10		polyunsaturated fatty acid from fish oil modulates aortic nitric oxide and tocopherol status
11		in the rat. Br J Nutr 2008;100:767-775.
12	11.	Margioris AN. Fatty acids and postprandial inflammation. Curr Opin Clin Nutr Metab Care
13		2009; 12 :129-137.
14	12.	Yoshimoto-Furuie K, Yoshimoto K, Tanaka T, Saima S, Kikuchi Y, Shay J et al. Effects of
15		oral supplementation with evening primrose oil for six weeks on plasma essential fatty acids
16		and uremic skin symptoms in hemodialysis patients. Nephron 1999;81:151-159.
17	13.	Jack AM, Keegan A, Cotter MA, Cameron NE. Effects of diabetes and evening primrose oil
18		treatment on responses of aorta, corpus cavernosum and mesenteric vasculature in rats. Life
19		<i>Sci</i> 2002; 71 :1863-1877.
20	14.	Gulesserian T, Widhalm K. Effect of a rapeseed oil substituting diet on serum lipids and
21		lipoproteins in children and adolescents with familial hypercholesterolemia. J Am Coll Nutr
22		2002; 21 :103-108.
23	15.	Christiansen RZ, Christiansen EN, Bremer J. The stimulation of erucate metabolism in
24		isolated rat hepatocytes by rapeseed oil and hydrogenated marine oil-containing diets.

25 Biochim Biophys Acta 1979;**573**:417-429.

4

CVR-2010-1346R1 version reçue de NC le 2 mai à 12 heures

1	16.	Murata M, Ide T, Hara K. Reciprocal responses to dietary diacylglycerol of hepatic enzymes
2		of fatty acid synthesis and oxidation in the rat. Br J Nutr 1997;77:107-121.
3	17.	Visioli F, Bellomo G, Montedoro G, Galli C. Low density lipoprotein oxidation is inhibited
4		in vitro by olive oil constituents. Atherosclerosis 1995;117:25-32.
5	18.	Chainier F, Roussel D, Georges B, Meister R, Rouanet JL, Duchamp C et al. Cold
6		acclimation or grapeseed oil feeding affects phospholipid composition and mitochondrial
7		function in duckling skeletal muscle. Lipids 2000;35:1099-1106.
8	19.	Bocanegra A, Bastida S, Benedi J, Rodenas S, Sanchez-Muniz FJ. Characteristics and
9		nutritional and cardiovascular-health properties of seaweeds. J Med Food 2009;12:236-258.
10	20.	Maeda H, Tsukui T, Sashima T, Hosokawa M, Miyashita K. Seaweed carotenoid,
11		fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr 2008;17 Suppl 1:196-199.
12	21.	Moro CO, Basile G. Obesity and medicinal plants. <i>Fitoterapia</i> 2000;71 Suppl 1:S73-82.
13	22.	Cardoso ML, Xavier CA, Bezerra MB, Paiva AO, Carvalho MF, Benevides NM et al.
14		Assessment of Zymosan-Induced Leukocyte Influx in a Rat Model using Sulfated
15		Polysaccharides. Planta Med 2009.
16	23.	Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF. A revised structure for
17		fucoidan may explain some of its biological activities. J Biol Chem 1993;268:21770-21776.
18	24.	Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL. Inhibition of cholesterol absorption
19		in rats by plant sterols. J Lipid Res 1988;29:1573-1582.
20	25.	Lee S, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the
21		marine algae Pelvetia siliquosa. Arch Pharm Res 2003;26:719-722.
22	26.	Ruperez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated polysaccharides
23		from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem
24		2002; 50 :840-845.

CVR-2010-1346R1 version reçue de NC le 2 mai à 12 heures

1	27.	Zaragoza MC, Lopez D, M PS, Poquet M, Perez J, Puig-Parellada P et al. Toxicity and
2		antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J Agric Food
3		<i>Chem</i> 2008; 56 :7773-7780.
4	28.	Matsuhiro B, Urzua CC. Heterogeneity of carrageenans from Chondrus crispus.
5		<i>Phytochemistry</i> 1992; 31 :531-534.
6	29.	Meot-Duros L, Magne C. Antioxidant activity and phenol content of Crithmum maritimum
7		L. leaves. Plant Physiol Biochem 2009;47:37-41.
8	30.	Yuan H, Song J, Zhang W, Li X, Li N, Gao X. Antioxidant activity and cytoprotective
9		effect of kappa-carrageenan oligosaccharides and their different derivatives. Bioorg Med
10		<i>Chem Lett</i> 2006; 16 :1329-1334.
11	31.	Yuan YV, Carrington MF, Walsh NA. Extracts from dulse (Palmaria palmata) are effective
12		antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 2005;43:1073-
13		1081.
14	32.	Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R.
15		Nitric oxide production and endothelium-dependent vasorelaxation induced by wine
16		polyphenols in rat aorta. Br J Pharmacol 1997;120:1053-1058.
17	33.	Diebolt M, Bucher B, Andriantsitohaina R. Wine polyphenols decrease blood pressure,
18		improve NO vasodilatation, and induce gene expression. <i>Hypertension</i> 2001; 38 :159-165.
19	34.	Ekshyyan VP, Hebert VY, Khandelwal A, Dugas TR. Resveratrol inhibits rat aortic vascular
20		smooth muscle cell proliferation via estrogen receptor dependent nitric oxide production. J
21		Cardiovasc Pharmacol 2007;50:83-93.
22	35.	Lee B, Moon SK. Resveratrol inhibits TNF-alpha-induced proliferation and matrix
23		metalloproteinase expression in human vascular smooth muscle cells. J Nutr
24		2005; 135 :2767-2773.

- Leifert WR, Abeywardena MY. Cardioprotective actions of grape polyphenols. *Nutr Res* 2008;28:729-737.
- 3 37. Perez-Jimenez J, Saura-Calixto F. Grape products and cardiovascular disease risk factors.
 Nutr Res Rev 2008;21:158-173.
- 5 38. Cestaro B, Simonetti P, Cervato G, Brusamolino A, Gatti P, Testolin G. Red wine effects on
- 6 peroxidation indexes of rat plasma and erythrocytes. *Int J Food Sci Nutr* 1996;**47**:181-189.
- 7 39. Goni I, Brenes A, Centeno C, Viveros A, Saura-Calixto F, Rebole A et al. Effect of dietary
- 8 grape pomace and vitamin E on growth performance, nutrient digestibility, and
- 9 susceptibility to meat lipid oxidation in chickens. *Poult Sci* 2007;**86**:508-516.
- 40. Rodrigo R, Rivera G, Orellana M, Araya J, Bosco C. Rat kidney antioxidant response to
 long-term exposure to flavonol rich red wine. *Life Sci* 2002;71:2881-2895.
- 12 41. Roig R, Cascon E, Arola L, Blade C, Salvado MJ. Moderate red wine consumption protects
 13 the rat against oxidation in vivo. *Life Sci* 1999;64:1517-1524.
- 14 42. Simonetti P, Ciappellano S, Gardana C, Bramati L, Pietta P. Procyanidins from Vitis
- 15 vinifera seeds: in vivo effects on oxidative stress. *J Agric Food Chem* 2002;**50**:6217-6221.
- 16 43. Pal S, Naissides M, Mamo J. Polyphenolics and fat absorption. *Int J Obes Relat Metab*17 *Disord* 2004;**28**:324-326.
- 18 44. Tebib K, Besancon P, Rouanet JM. Dietary grape seed tannins affect lipoproteins,
- 19 lipoprotein lipases and tissue lipids in rats fed hypercholesterolemic diets. J Nutr
- 20 1994;**124**:2451-2457.
- 45. Kojuri J, Vosoughi AR, Akrami M. Effects of anethum graveolens and garlic on lipid
 profile in hyperlipidemic patients. *Lipids Health Dis* 2007;6:5.
- 23 46. Sobenin IA, Andrianova IV, Demidova ON, Gorchakova T, Orekhov AN. Lipid-lowering
- 24 effects of time-released garlic powder tablets in double-blinded placebo-controlled
- 25 randomized study. *J Atheroscler Thromb* 2008;**15**:334-338.

CVR-2010-1346R1 version reçue de NC le 2 mai à 12 heures

1	47.	Yeh YY, Lin, R. I., Yeh, S. M. & Evens, S. Garlic reduces plasma cholesterol in
2		hypercholesterolemic men maintaining habitual diets. In: T. OHOTTJWST, ed. Food
3		Factors for Cancer Prevention. Tokyo: Springer, 1997:226-230.
4	48.	Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds:
5		human and animal studies. J Nutr 2001;131:989S-993S.
6	49.	Yeh YY, Yeh SM. Garlic reduces plasma lipids by inhibiting hepatic cholesterol and
7		triacylglycerol synthesis. Lipids 1994;29:189-193.
8	50.	Ide N, Lau BH. Garlic compounds minimize intracellular oxidative stress and inhibit
9		nuclear factor-kappa b activation. J Nutr 2001;131:1020S-1026S.
10	51.	Campbell JH, Efendy JL, Smith NJ, Campbell GR. Molecular basis by which garlic
11		suppresses atherosclerosis. J Nutr 2001;131:1006S-1009S.
12	52.	Lau BH. Suppression of LDL oxidation by garlic. J Nutr 2001;131:985S-988S.
13	53.	Slowing K, Ganado P, Sanz M, Ruiz E, Tejerina T. Study of garlic extracts and fractions on
14		cholesterol plasma levels and vascular reactivity in cholesterol-fed rats. J Nutr
15		2001; 131 :994S-999S.
16		
17		

Supplementary Table 2: Primers used for real-time RT-qPCR

Gene	Forward (3'-5')	Reverse (3'-5')
CD36	CAT.NO. QT01058253 (Qiagen quantitect)	
ACOX1	CAT.NO. QT01775851 (Qiagen quantitect)	
BFE	TGTTCTTGGCTTGGGAACG	TCCCCACCCTTGCAAAAG
UCP3	CAT.NO. QT00115339 (Qiagen quantitect)	
ΤΝΓα	CAT.NO. QT00104006 (Qiagen quantitect)	
MCP-1	CAT.NO. QT00167832 (Qiagen quantitect)	
MIP1-α	TTCTCTGTACCATGACACTCTGC	CGTGGAATCTTCCGGCTGTAG
SREBP-1c	CAGCTCAGAGCCGTGGTGA	TTGATAGAAGACCGGTAGCGC
ACC1	ATTGGGCACCCCAGAGCTA	CCCGCTCCTTCAACTTGCT
FAS	CCTCTGATCAGTGGCCTCCTC	GGATTCGGGAATACAAGTGGC
SCD1	AGATCTCCAGTTCTTACACGACCAC	GACGGATGTCTTCTTCCAGGTG
Elov13	CAT.NO. QT00115675 (Qiagen quantitect)	
DGAT1	CGTGGGCGACGGCTACT	GAAACCACTGTCTGAGCTGAACA
DGAT2	GCCCGCAGCGAAAACA	GTCTTGGAGGGCTGAGAGGAT
ADFP	CTACGACGACACCGAT	CATTGCGGAATACGGAG
PPARy2	GCCCACGAACTTCGGAATC	TGCGAGTGGTCTTCCATCAC
CEBPa	GAGCTGAGTGAGGCTCTCATTCT	TGGGAGGCAGACGAAAAAAC
LPL	AGTGGCCGAGAGCGAGAAC	CCACCTCCGTGTAAATCAAGAAG
aP2	CCGCAGACGACAGGAAGG	AGGGCCCCGCCATCT
Leptin	AACCCTCATCAAGACCATTGTCA	CCTCTGCTTGGCGGATACC
Adiponectin	GCACTGGCAAGTTCTACTGCAA	GTAGGTGAAGAGAACGGCCTTGT
Resistin	GCTGCTGCCAAGGCTGAT	TCTCCTTCCACCATGTAGTTTCC
Adipsin	GCCTGATGTCCTGCATCAACT	GCGCAGATTGCAGGTTGTC
Cyclo (housekeeping)	TTTGACTTGCGGGGCATTT	GGACGCTCTCCTGAGCTACAGA
36B4 (housekeeping)	ACCTCCTTCTTCCAGGCTTT	CCCACCTTGTCTCCAGTCTTT

4 CD36: cluster of differentiation 36; ACOX1: peroxisomal acyl-coenzyme A oxidase 1; TNFα:
5 tumor necrosis factor alpha; MCP-1: monocyte chemotactic protein-1; MIP1-α: macrophage
6 inflammatory protein 1-alpha; SREBP-1c: sterol regulatory element-binding protein 1-c; FAS: fatty

CVR-2010-1346R1 version reçue de NC le 2 mai à 12 heures

- acid synthase; SCD1: stearoyl-CoA desaturase 1; Elovl3: elongation of very long chain fatty acids
 3; DGAT1: diglyceride acyltransferase 1; DGAT2: diglyceride acyltransferase 2; ADFP: adipose
 differentiation-related protein; PPARγ2: peroxisome-proliferator activated receptor gamma 2;
 CEBPα: CCAAT/enhancer-binding protein alpha; LPL: lipoprotein lipase; aP2: adipocyte protein
 2; Cyclo: cyclophilin B; 36B4: acidic ribosomal phosphoprotein P0.
- 6

В

----- Rosiglitazone + Lipistase ------- Rosiglitazone

Supplementary Figure 2

Muscle

Lipistase

. Control

CD36

30-

20

10-

0-

10-

5-

0

mRNA relative expression

mRNA relative expression

WAT

Liver

CD36

30

FA catabolism

LDRKO LDRKO-PPARako

nd

Lipogenesis

DGAT2

Control 100µm 200µm 100µm Lipistase 100µm 200µm 100µm

Α

В

Supplementary Figure 7

Supplementary Figure 8