
Appendix
Notation
The notation used in summarized in Table 1.

Table 1: Notation.

Indexes i = 1, . . . , I index over samples
g = 1, . . . , G index over genes
s = 1, . . . , S index over gene sets

Sample level Ni number of events in sample i
N = [Ni]1≤1≤I

Gene level Xgi a statistic for gene g in sample i (binary)
X = [Xgi]1≤g≤G,1≤i≤I

pgi probability of gene g being altered in sample i if gene g were a passenger gene
(also called passenger probability)

p = [pgi]1≤g≤G,1≤i≤I

gene set level mgs indicator of whether gene g is in gene set s

m+s =
∑G

g=1 mgs number of genes in gene set s

M = [mgs]1≤g≤G,1≤s≤S

Zsi = 1−
∏

mgs=1(1−Xgi) score for gene set s in sample i

Ts =
∑I

i=1 asiZsi score for gene set s (where asi are known positive constants)

We consider Xgi, Ni,N,Ts and Zsi to be random variables, and denote their observed values by xgi, ni,n, ts
and zsi, respectively. We assume that all the I samples are independent of each other. We also assume that
all the G genes are independent of each other.

Preliminaries
Result We note that we can calculate both E(Ts) and Cov(Ts1, Ts2) in terms of the means of Xgi.

Proof. We primarily use the assumption of independence of genes and samples.

E(Zsi) = E{1−
∏

mgs=1

(1−Xgi)} = 1−
∏

mgs=1

{1− E(Xgi)}

=> E(Ts) =

I∑
i=1

asiE(Zsi) =

I∑
i=1

asi −
I∑

i=1

asi
∏

mgs=1

{1− E(Xgi)}

Denote the intersection of the gene sets s1 and s2 by r. Denote by c1 the difference between s1 and r and
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by c2 the difference between s2 and r.

Zs1,iZs2,i = {1−
∏

mgs1
=1

(1−Xgi)}{1−
∏

mgs2
=1

(1−Xgi)}

= {1−
∏

mgr=1

(1−Xgi)
∏

mgc1
=1

(1−Xgi)}{1−
∏

mgr=1

(1−Xgi)
∏

mgc2
=1

(1−Xgi)}

= 1−
∏

mgs1
=1

(1−Xgi)−
∏

mgs2
=1

(1−Xgi)

+
∏

mgr=1

(1−Xgi)
2
∏

mgc1
=1

(1−Xgi)
∏

mgc2
=1

(1−Xgi)

= 1−
∏

mgs1
=1

(1−Xgi)−
∏

mgs2
=1

(1−Xgi)

+
∏

mgr=1

(1−Xgi)
∏

mgc1
=1

(1−Xgi)
∏

mgc2
=1

(1−Xgi)

=> E(Zs1,iZs2,i) = 1−
∏

mgs1
=1

{1− E(Xgi)} −
∏

mgs2
=1

{1− E(Xgi)}

+
∏

mgr=1

{1− E(Xgi)}
∏

mgc1
=1

{1− E(Xgi)}
∏

mgc2
=1

{1− E(Xgi)}

E(Zs1,i)E(Zs2,i) = {1−
∏

mgs1
=1

{1− E(Xgi)}}{1−
∏

mgs2
=1

{1− E(Xgi)}}

= 1−
∏

mgs1
=1

{1− E(Xgi)} −
∏

mgs2
=1

{1− E(Xgi)}

+
∏

mgr=1

{1− E(Xgi)}2
∏

mgc1
=1

{1− E(Xgi)}
∏

mgc2
=1

{1− E(Xgi)}

=> Cov(Zs1,i, Zs2,i) = E{Zs1,iZs1,i} − E{Zs1,i}E{Zs1,i}

= {1−
∏

mgr=1

{1− E(Xgi)}}∏
mgr=1

{1− E(Xgi)}
∏

mgc1=1

{1− E(Xgi)}
∏

mgc2=1

{1− E(Xgi)}

=> Cov(Ts1 , Ts2) =

I∑
i=1

as1,ias2,iCov(Zs1,i, Zs2,i)

In particular, we note that Cov(Zs1,i, Zs2,i) ≥ 0, so Cov(Ts1 , Ts2) ≥ 0.

Binary Gene Statistic
The scenario we consider is where:

Xgi =

{
1 if gene g is altered in sample i

0 if gene g is not altered in sample i

Given that we are considering somatic mutations, we note that it is extremely rare to have more than
one event per gene, so this definition is nearly equivalent to:

Xgi =

{
1 if gene g has one event in sample i

0 else
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We note that in this case, Zsi is an indicator of whether gene set s is altered in sample i. Thus, by
definition, both Xgi and Zsi are Bernoulli random variables.

We denote the null hypothesis for gene set s by Hs0, and the distributions of Zsi and Ts under the
null by Z0

si and T 0
s . We note that there are a number of null hypotheses to choose from. We consider the

“permutation” null and the “passenger rate” null, defined below.

Statement of Permutation Null

Hs0 : The probability distribution of the number of samples gene set s is mutated in (Ts) is the same as
it would be if we randomly chose I samples which had the same number of events as the samples under
consideration (Ni = ni for i = 1, . . . , I, or, equivalently, N = n), i.e., if we permuted the number of events
within samples.

We take the “repeated draws of the I random samples” to be permutations of the events in the existing
samples among the G genes. Since we assume that each gene can have at most one event per tumor sample,
to get T 0

s , we choose ni genes out of G genes to have 1 event each, for each of the I tumor samples.

Statement of Passenger Rate Null

Hs0 : The probability distribution of the number of samples gene set s is mutated in (Ts) is the same as
it would be if we randomly chose I samples which had the same passenger mutation rates as the samples
under consideration.

Results under Permutation Null

We assume that under the permutation null, every gene has at most one mutational event per sample.

Theorem Z0
si ∼ Bernoulli(qsi), where qsi = 1−

(G−ni
m+s

)

( G
m+s

)
.

Proof. We get:

qsi = E(Z0
si) = P (Z0

si = 1) = 1− P (Z0
si = 0) = 1− P (gene set s is not altered in sample i|sample i has ni events)

= 1− P (select m+s genes with 0 events in sample i out of G genes | sample i has ni events)

= 1−

(
ni

0

)(
G−ni

m+s−0

)(
G

m+s

) = 1−

(
G−ni

m+s

)(
G

m+s

)

Note We can also use approximations of the hypergeometric distribution, such as 1 −
{

G−ni

G

}m+s
or 1 −{

G−m+s

G

}ni

, given that both m+s and ni are generally much smaller than G. The results will be nearly

identical in all of the three cases.
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Corollary Under the assumptions that under the permutation null, every gene has at most one mutational
event and that all the events are independent of each other, T 0

s is a weighted sum of independent Bernoulli
random variables. We give exact results for E(T 0

s ), Cov(T 0
s1, T

0
s2), and V ar(T 0

s ).

Proof. Using the theorem above, Z0
si are independent Bernoulli random variables.

E(T 0
s ) =

I∑
i=1

asiZ
0
si =

I∑
i=1

asi −
I∑

i=1

asi

(
G−ni

m+s

)(
G

m+s

)
Cov(Z0

s1,i, Z
0
s2,i) = {1−

∏
mgr=1

{1− E(Xgi|Ni = ni)}}∏
mgr=1

{1− E(Xgi|Ni = ni)}∏
mgc1

=1

{1− E(Xgi|Ni = ni)}
∏

mgc2
=1

{1− E(Xgi|Ni = ni)}

=

{
1−

(
G−ni

m+r

)(
G

m+r

) }{( G−ni

m+s1+m+s2−m+r

)(
G

m+s1
+m+s2

−m+r

)}

=

(
G−ni

m+s1+m+s2−m+r

)(
G

m+s1+m+s2−m+r

) − (G−ni

m+r

)(
G

m+r

) ( G−ni

m+s1+m+s2−m+r

)(
G

m+s1+m+s2−m+r

)
=> Cov(T 0

s1 , T
0
s2) =

I∑
i=1

as1,ias2,iCov(Z0
s1,i, Z

0
s2,i)

=

I∑
i=1

as1,ias2,i

(
G−ni

m+s1
+m+s2

−m+r

)(
G

m+s1+m+s2−m+r

)
−

I∑
i=1

as1,ias2,i

(
G−ni

m+r

)(
G

m+r

) ( G−ni

m+s1
+m+s2

−m+r

)(
G

m+s1
+m+s2

−m+r

)
In particular:

V ar(T 0
s ) =

I∑
i=1

a2si

(
G−ni

m+s

)(
G

m+s

) − I∑
i=1

a2si

[(G−ni

m+s

)(
G

m+s

) ]2

Results under Passenger Rate Null

Theorem Z0
si ∼ Bernoulli(qsi), where:

qsi = 1−
∏

mgs=1

(1− pgi).

Proof.

qsi = E(Z0
si)

= 1−
∏

mgs=1

{1− P (Xgi = 1|p)}

= 1−
∏

mgs=1

(1− pgi)
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Corollary We can similarly derive exact results for E(T 0
s ), Cov(T 0

s1, T
0
s2), and V ar(T 0

s ) in this case.

Calculation of P-values

For the case where asi = 1 for all 1 ≤ i ≤ I; 1 ≤ s ≤ S, we use the algorithm described in [24] to calculate
the p-values. For the case where asi = 1 does not always hold, we provide the theorem below.

Theorem We provide a recursive method for calculating the cdf of T 0
s .

Proof. We model this proof on the proof in Section 1.7 of [25].
We define the following random variables and consider their cdfs:

T 0,j
s =

j∑
i=1

asiZ
0
si for 1 ≤ j ≤ I,

F 0,j
s (x) := Pr(T 0,j

s ≤ x).

We can calculate F 0,j
s recursively, beginning with j = 1:

F 0,1
s (x) = 0 for x < 0,

F 0,1
s (x) = Pr(as1Z

0
s1 ≤ x) = Pr(Zs1 = 0) = 1− qs1 for 0 ≤ x < as1,

F 0,1
s (x) = Pr(as1Z

0
s1 ≤ x) = Pr(Zs1 = 0 or Zs2 = 1) = 1 for x ≥ as1,

since asi > 0 for all 1 ≤ i ≤ I.
For j > 1, F 0,j

s can easily be calculated in terms of F 0,j−1
s :

F 0,j
s (x) = Pr(

j∑
i=1

asiZsi ≤ x)

= Pr(

j∑
i=1

asiZsi ≤ x|Zsj = 1)P (Zsj = 1) + Pr(

j∑
i=1

asiZsi ≤ x|Zsj = 0)P (Zsj = 0)

= Pr(

j∑
i=1

asiZsi ≤ x− asj)P (Zsj = 1) + Pr(

j∑
i=1

asiZsi ≤ x)P (Zsj = 0)

= qsjF
0,j−1
s (x− asj) + (1− qsj)F

0,j−1
s (x)

In particular, for j = I, F 0,I
s is the cdf of T 0

s .

Corollary We can use the theorem above to calculate the p-value, which is equal to P (T 0
s ≥ ts), where ts

is the observed value of Ts, since P (T 0
s ≥ ts) = 1− P (T 0

s < ts) = 1− F 0,I
s (ts−).

Tumor Heterogeneity

One may choose whether or not to incorporate tumor heterogeneity into the analysis. This can be reflected in
the sample-specific constants asi. If no tumor heterogeneity is assumed, then asi = 1. If tumor heterogeneity
is incorporated, a variety of options are available. We take asi = 1

qsi
in this case, so that, for each gene

set, tumors which have a higher probability of being altered in the respective set under the null, get down-
weighted. Thus, we consider 4 different methods: permutation null without heterogeneity, permutation null
with heterogeneity, passenger null without heterogeneity, and passenger null with heterogeneity.
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