
Appendix S1: Dimensional analysis

Independent parameters

The starting point of our scaling analysis is the continuous equivalent

Hef =

∫∫
dx dy

[κ
2

(∆l)2 + Vef(l)
]

of the discrete effective conformational energy (6). Here, ∆ = (∂2/∂x2) +
(∂2/∂y2) is the Laplace operator. The elastic energy depends on the bending
rigidity κ, and the effective potential Vef depends on the depths U ef

1 and U ef
2 as

well as the width lwe and separation lba of the two wells (see fig. 1). To reduce
the numbers of parameters, we introduce the dimensionless coordinates x̃, ỹ and l̃
defined by

x = x̃ lwe

√
κ

kBT
, y = ỹ lwe

√
κ

kBT
, l = l̃ lwe

With these coordinates, we obtain

Hef/kBT =

∫∫
dx̃ dỹ

[
1

2

(
∆̃l̃
)2

+ Ṽef(l̃)

]
with

∆̃l̃ = ∆l
κlwe

kBT
and Ṽef(l̃) =

κl2we

(kBT )2
Vef(l)

The three dimensionless, independent parameters thus turn out to be

u1 =
U ef

1 κl
2
we

(kBT )2
, u2 =

U ef
2 κl

2
we

(kBT )2
,

lba

lwe

Line tension scaling

We consider now a one-dimensional interface, or line, Γ and its energy

Eλ =

∫
Γ

ds λ

1



with line tension λ. The integration is performed along the contour Γ that lies in
the x-y plane. In analogy to the previous section, we introduce the dimensionless
coordinate s̃ defined by

s = s̃ lwe

√
κ

kBT

The line energy is then

Eλ = kBT

∫
ds̃ λ̃

with the dimensionless line tension

λ̃ =
λlweκ

1/2

(kBT )3/2

In general, λ̃ is a function of the three dimensionless parameters u1, u2 and lba/lwe.
But for the symmetric double-well potential with u1 = u2 = u, the dimensionless
line tension λ̃ depends only on the two parameters u and lba/lwe. The Monte Carlo
results shown in fig. 6 indicate that λ is proportional to u − uc in the vicinity of
the critical point uc. Close to the critical point, the dimensionless line tension thus
can be written in the form

λ̃ ≈ g(lba/lwe)(u− uc)

with an unknown function g. From this equation, we now obtain the scaling form
(23) of the line tension λ.
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