Appendix S1: Dimensional analysis

Independent parameters

The starting point of our scaling analysis is the continuous equivalent

Her = // dx dy [g (AD)? + Ver(D)

of the discrete effective conformational energy (6). Here, A = (9%/92%) +
(0%/0y?) is the Laplace operator. The elastic energy depends on the bending
rigidity x, and the effective potential V. depends on the depths Ut and US' as
well as the width [, and separation [, of the two wells (see fig. 1). To reduce

the numbers of parameters, we introduce the dimensionless coordinates z, y and [
defined by
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With these coordinates, we obtain
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The three dimensionless, independent parameters thus turn out to be

with
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Line tension scaling

We consider now a one-dimensional interface, or line, I' and its energy
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with line tension A. The integration is performed along the contour I' that lies in
the x-y plane. In analogy to the previous section, we introduce the dimensionless
coordinate s defined by
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The line energy is then
E\ = kgT / ds \
with the dimensionless line tension
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In general, \is a function of the three dimensionless parameters u1, uz and lp, /lye.
But for the symmetric double-well potential with u; = 1y = u, the dimensionless
line tension \ depends only on the two parameters u and I, /l.. The Monte Carlo
results shown in fig. 6 indicate that \ is proportional to © — u,. in the vicinity of
the critical point u.. Close to the critical point, the dimensionless line tension thus
can be written in the form
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with an unknown function g. From this equation, we now obtain the scaling form
(23) of the line tension .



