Appendix S2: Free energy of a membrane in a singlewell potential

We start from the partition function

$$\mathcal{Z} = \left[\prod_{i} \int_{0}^{\infty} \mathrm{d}l_{i}\right] e^{-\left(\mathcal{H}_{\mathrm{el}}\left\{l\right\} + a^{2}\sum_{i} V(l_{i})\right)/k_{B}T}$$

of a membrane bound by the single-well potential

$$V(l_i) = -U\theta(l_{we}/2 - |l_i - l_o|)$$

The potential well has the depth U, width l_{we} and is centered at the membrane separation l_o . The derivative of the free energy $\mathcal{F} = -k_B T \ln \mathcal{Z}$ with respect to the depth U of the well can be written as

$$\frac{\partial \mathcal{F}}{\partial U} = -AP_b$$

where $P_b(U, l_{we}) = \langle \theta(l_{we}/2 - |l_i - l_o|) \rangle$ is the average fraction of membrane sites within the potential well, and $A = \sum_i a^2$ is the total membrane area. The free energy difference between two states with potential depths U_1 and U_2 is therefore

$$\Delta \mathcal{F} = -A \int_{U_1}^{U_2} P_b\left(U, l_{\rm we}\right) dU$$

The scaling analysis of appendix A indicates that P_b depends primarily on the rescaled depth

$$u = U l_{\rm we}^2 \kappa / \left(k_B T \right)^2$$

A change of variables now leads to

$$\Delta f = -\frac{(k_B T)^2}{\kappa l_{\rm we}^2} \int_{u_1}^{u_2} P_b(u) du$$

with $\Delta f = \Delta \mathcal{F} / A$.

The function $P_b(u)$ can be determined from Monte Carlo simulations of a membrane bound in a single well (see fig. 2). We find that the Monte Carlo data can be well described by

$$P_b(u) \simeq P_b^{(3)}(u) = \frac{u + c_2 u^2 + c_3 u^3}{c_1 + u + c_2 u^2 + c_3 u^3}$$

with the three fit parameters $c_1 \simeq 0.073$, $c_2 \simeq -0.99$, and $c_3 \simeq 6.44$ for the rescaled width $z_{we} = 0.5$. For $u \lesssim 0.2$, the three-parameter function $P_b^{(3)}(u)$ for the rescaled width $z_{we} = 0.5$ coincides with the function $P_b^{(3)}(u)$ for $z_{we} = 1$ (see full lines in fig. 2), which illustrates that the rescaled well depth u is the dominant parameter in this range. Dimensional analysis indicates that u is the dominant parameter as long as the lateral correlation length of the membrane fluctuations is significantly larger than the discretization length a (see text S1). For strongly bound membranes with values of P_b close to 1, the correlation length is comparable to a, and the precise value of P_b depends also on the rescaled well width z_{we} .