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Abstract

Direct binding by a transcription factor (TF) to the proximal promoter of a gene is strong evidence that the
TF regulates the gene. Assaying the genome-wide binding of every TF in every cell type and condition is
currently impractical. Histone modifications correlate with tissue/cell/condition-specific (“tissue-specific”)
TF binding, so histone ChIP-seq data can be combined with traditional position-weight matrix (PWM)
methods to make tissue-specific predictions of TF-promoter interactions.

Results:

We use supervised learning to train a naive Bayes predictor of TF-promoter binding. The predictor’s
features are the histone modification levels and a PWM-based score for the promoter. Training and testing
uses sets of promoters labeled using TF ChlIP-seq data, and we use cross-validation on 23 such datasets to
measure accuracy. A PWM-+histone naive Bayes predictor using a single histone modification (H3K4me3)
is substantially more accurate than a PWM score or a conservation-based score (phylogenetic motif model).
The naive Bayes predictor is more accurate (on average) at all sensitivity levels, and makes only half as
many false positive predictions at sensitivity levels from 10% to 80%. On average, it correctly predicts 80%
of bound promoters at a false positive rate of 20%. Accuracy does not diminish when we test the predictor
in a different cell type (and species) from training. Accuracy is barely diminished even when we train the
predictor without using TF ChIP-seq data.

Availability:

Our tissue-specific predictor of promoters bound by a TF is called DR GENE and is available at http:
//bioinformatics.org.au/drgene.

Contact:

t.bailey@imb.uq.edu.au
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1 Supplementary Methods

1.1 Training the naive Bayes classifier

We train our naive Bayes classifier using a training set of labeled examples of the form (X, B) where B is the

class (bound or unbound) and X is the vector (see main methods for full definition):

X = <]\[f(p)* Hl,t(p)7 e 7Hn,t(p)>7

where Mj(p) is the PWM score (see Eqn. 1 in main paper), and H; .(p) is the histone score (see Eqn. 2,
main paper). We define each set of labeled examples in the results in the main paper.

We use the R package e1071 [2] to implement the naive Bayes classifier. The classifier is trained using the
naiveBayes function. To predict bound genes, we use the predict function (also available in the el071 package)

to calculate the probability that each test feature vector (X) is bound (see Equn. 3, main paper).

1.2 Phylogenetic Motif Model Scores

We use two sequence conservation-based score functions based on the Monkey [8] algorithm, which we call
“Monkey” and “Monkey+" scores, respectively. We selected Monkey as it was found to be most accurate in a
recent comparison of phylogenetic motif model scanners [4]. To score a promoter, we run Monkey twice. First
We run Monkey on a multiple alignment of of mouse (mm8) and human (hgl8) promoters twice, once with the
settings, monkey [motif] [multiple alignment] -tree [treefile] -m HB -freq [background] -cut O,
using the same background described previously for PWM scanning, and once with the —cut -1e6 parameter.
The former -cut parameter produces species-specific predictions, only scoring bases with a strong match in
the species of interest, but will not score all bases or promoters. We use the best score from species-specific
Monkey results, if available, otherwise we use the best non-species-specific score from Monkey using the -cut
-1e6 parameter. We use the multiz30way alignment and tree from the UCSC Genome Browser [6], only using
mouse (mm9) and human (hgl8) from this alignment, as we find that this performs better than using a larger

tree.

1.3 Monkey+ scores

The above approach, however, still assigns no score to many promoters and bases due to multiple alignment
gaps. We therefore integrate Monkey’s species-specific scores with PWM scanning. We term this “Monkey+”
(Monkey+PWM). We run Monkey with the —cut 0 parameter (to produce a species-specific score). We then

use the best score from both the Monkey and a PWM scan results for each promoter.
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2 Supplementary Results

2.1 Sensitivity at 1% False positive rate

Scoring Method Tissue Type Mean Sensitivity
GM12878 (5 TFs) | K562 (10 TFs) | mES (8 TFs) For All Tissues
Naive Bayes PWM{ H3kdme2 0.19 (0.03) 0.28 (0.06) 0.13 (0.03) 0.20 (0.05)
Naive Bayes PWM+H3k4me2, H3k4me3 0.22 (0.05) 0.27 (0.05) 0.12 (0.02) 0.20 (0.04)
Naive Bayes PWM 4+ H3kdme3 0.21 (0.04) 0.28 (0.06) 0.13 (0.02) 0.21 (0.04)
Naive Bayes PWM-+H3k9ac 0.22 (0.05) 0.28 (0.06) - 0.25 (0.03)
Naive Bayes PWM-+H3k27ac 0.22 (0.05) 0.28 (0.06) - 0.25 (0.03)
Naive Bayes PWM+H3k9ac, H3k27ac 0.22 (0.06) 0.26 (0.05) - 0.24 (0.02)
Naive Bayes PWM+H3k4me2, H3k4me3, H3k9ac, H3k27ac 0.22 (0.06) 0.25 (0.05) - 0.23 (0.02)
Naive Bayes Monkey-++H3k4me3 - - 0.15 (0.03) 0.15
PWM 0.09 (0.04) 0.17 (0.05) 0.14 (0.04) 0.13 (0.02)
H3K4me3 0.01 (0.00) 0.03 (0.00) 0.05 (0.01) 0.03 (0.01)
Monkey+ - - 0.13 (0.04) 0.13
BBLS - - 0.11 (0.04) 0.11

Table 1: Sensitivity at FPR=0.01 of TF-promoter binding predictions. The table shows the sensitivity
at 1% false positive rate of different methods for scoring promoters. Results are shown for predictions in three
different tissues. The number of TF ChIP-seq binding datasets used in each tissue is indicated. Results for
nalve Bayes scores are the average sensitivity in a “hold-one-TF-out” experiment. Results for the other scoring
methods are the mean of the sensitivity values for each of the TFs used in the given tissue. All results are
rounded to two decimal places. Standard errors are given in parentheses. Highest accuracies for a given tissue
and overall are in bold font. Missing data for mES is due to lack of availability of histone acetylation data.

Monkey+ and BBLS were only tested in mES cells.
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2.2 Detailed accuracy results for predicting bound promoters

[ TF [ Tissue [ SameTissue | DirrTissue | SAMETF [ SLNB [[ PWM [ H3K4me3 [ Monkey+ | BBLS |

Gatal K562 0.882 0.876 0.875 0.686 0.814
Gata2 K562 0.888 0.882 0.878 0.699 0.813
Yyl K562 0.889 0.887 0.828 0.646 0.862
c-Myc K562 0.875 0.875 0.882 0.860 0.702 0.874

mES 0.875 0.858 0.858 0.888 0.810 0.903 0.801 0.802
CTCF GM12878 0.830 0.827 0.847 0.817 0.767 0.737
K562 0.830 0.819 0.865 0.799 0.808 0.713

mES 0.831 0.856 0.896 0.763 0.896 0.721 0.873 0.880
Egrl GM12878 0.825 0.835 0.824 0.822 0.718 0.798
K562 0.918 0.919 0.877 0.898 0.893 0.769

Esrrb mES 0.856 0.858 0.780 0.719 0.801 0.685 0.708
Jund GM12878 0.887 0.866 0.861 0.755 0.771 0.694
K562 0.950 0.947 0.930 0.954 0.889 0.843

KIf4 mES 0.901 0.892 0.892 0.835 0.871 0.817 0.843

n-Myc mES 0.888 0.876 0.896 0.832 0.899 0.825 0.810
Nfyb K562 0.930 0.936 0.916 0.903 0.786
Srf GM12878 0.787 0.810 0.838 0.794 0.522 0.800
K562 0.855 0.841 0.844 0.865 0.597 0.830

STAT3 mES 0.896 0.888 0.898 0.765 0.832 0.721 0.700

Tcfcp2ll mES 0.881 0.879 0.834 0.823 0.819 0.782 0.766
Usfl GM12878 0.958 0.949 0.955 0.921 0.909 0.780
K562 0.929 0.930 0.930 0.921 0.879 0.790

Zfx mES 0.880 0.870 0.884 0.839 0.883 0.833 0.835

Mean: [ 0.880 0.877 0.877 | 0.858 [ 0.779 | 0.810 0.792 0.793

#Wins c¢f. PWM 22/23F 22/23F 12.5/137 | 20/237 - 0/8 0/8 1/8

#Wins cf. all non-NB 18/237 19/237 11.5/137 14/23 10/23 13/23 0/8 0/8

#Wins cf. SAMETISSUE - 7.5/23 6/13 7/23 0.5/23 4/23 0/8 0/8

#Wins cf. all NB 7/23 5/23 6/13 6/23 0.5/23 2/23 0/8 0/8

Table 2: Classifier Performance (AUC) by Method, TF, and Tissue. The AUC for each method on each
TF-tissue combination. Bold AUCs are the best achieved for each TF-tissue combination. Blank cells in the
“NB: SAMETF” column are due to training data being unavailable; for conservation-based methods (Monkey
and Monkey+), only mES TFs were used. When counting wins, a draw between methods is counted as one-half
each. “#Wins ¢f. all...” do not include the current column when comparing to other methods. Methods
annotated with § have p-value < 0.001 for the binomial test with the hypothesis that the method has higher
performance. For f, p-value is < 0.05. Note that Jund in GM12878 cells requires the use of a different PWM
to that used in K562 cells. We discuss this in Sec. 2.3.
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2.3 JunD displays divergent binding preferences across tissues

Unlike the other TF's included in our reference sets, the motif used for JunD is that of the AP1 transcription
initiation complex, of which JunD is a member. Fig. 1(a) & 1(b) show that although the AP1/JunD PWM
performs well in GM12878 cells, it is not correlated with TF binding in K562 cells. Given the surprising
difference in PWM performance for JunD between these two tissues, we first investigate the JunD binding sites
contained within the defined promoters in each tissue.

We apply MEME-ChIP [7] to GM12878 peaks. Of 96 peak regions, 46 contain the tgaCtga AP1 motif
previously used for PWM scanning (see supp. Tab. 2). We find a second motif in 14 of 96 sequences with a
consensus sequence of tgaCGtca. The PWM used for scanning, however, will not score perfect matches of this
latter motif highly. Both the tgaCtca (TRE) and tgaCGtga (CRE) binding site motifs have been reported as
binding sites for JunD’s bZip domain [3, 5]. We then apply MEME-ChIP [7] to the K562 promoter peak set.
Unlike the GM 12878 peaks, we find only one AP1 motif, (CRE — tgaCGtga) in 318 of 464 sequences. It cannot
be readily detected by by the PWM used (see supp. Tab. 2), explaining the random performance (AUC= 0.45)
of the PWM method in Figure 1(b).

We rescan promoters using the CRE PWM, and use this as test data to our hold-one-TF out predictor, .
Figure 1(c) shows the resulting ROC curve. The naive Bayes predictor’s accuracy improves from an AUC of
0.82 to 0.95, while the PWM increases from an AUC of 0.45 to 0.89. Clearly, the key problem in predicting

JunD-bound promoters is not our naive Bayes predictor, but rather the correct choice of PWM.
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Figure 1: ROC of predicting JunD-bound promoters using the AP1 TRE or CRE PWM. Each
panel shows ROC curves for predicting JunD binding using the naive Bayes predictor (trained on other TFs
from the same tissue), sorting by H3K4me3 tag count, and PWM scanning. In panels (a) and (b), we use the
TRE PWM for the naive Bayes predictor and PWM scanning in GM12878 and K562 cells respectively. Panel
(c) shows the effectiveness of using the CRE PWM in K562 cells.
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2.4 Classifier Parameters for each TF-tissue combination

H3kjme3 PWM
Bound Unbound Bound Unbound

TF Tissue P(Bound|TF) i G il G il G il G

CTCF mES 0.034 0.694 | 0.597 | -0.024 | 1.003 | 1.750 | 1.035 | -0.061 | 0.942
Esrrb mES 0.027 0.912 | 0.385 | -0.025 | 1.000 | 0.963 | 1.322 | -0.026 | 0.977
Klf4 mES 0.067 1.040 | 0.280 | -0.074 | 0.991 | 1.078 | 0.636 | -0.077 | 0.977
c-Myc mES 0.034 1.128 | 0.273 | -0.040 | 0.993 | 1.026 | 0.637 | -0.036 | 0.991
n-Myc mES 0.074 1.093 | 0.236 | -0.087 | 0.986 | 1.053 | 0.577 | -0.084 | 0.979
STAT3 mES 0.006 1.011 | 0.248 | -0.006 | 1.000 | 1.174 | 1.235 | -0.007 | 0.994
Tcfep2ll | mES 0.048 0.935 | 0.421 | -0.047 | 0.998 | 1.099 | 0.759 | -0.055 | 0.979
Zfx mES 0.061 1.070 | 0.275 | -0.070 | 0.990 | 1.065 | 0.521 | -0.070 | 0.984
CTCF K564 0.090 0.673 | 0.539 | -0.066 | 1.010 | 1.037 | 1.201 | -0.102 | 0.916
Egrl K564 0.009 0.882 | 0.202 | -0.008 | 1.001 | 0.763 | 0.822 | -0.007 | 0.999
Gatal K564 0.012 0.969 | 0.373 | -0.012 | 0.999 | 0.680 | 1.047 | -0.008 | 0.997
Gata2 K564 0.016 0.956 | 0.376 | -0.015 | 0.999 | 0.705 | 1.009 | -0.011 | 0.996
Jund K564 0.002 0.653 | 0.354 | -0.002 | 1.001 | 1.067 | 0.969 | -0.003 | 0.999
c-Myc K564 0.217 0.913 | 0.366 | -0.253 | 0.972 | 0.544 | 0.665 | -0.151 | 1.025
Nfyb K562 0.094 0.816 | 0.454 | -0.085 | 1.003 | 1.492 | 0.827 | -0.155 | 0.882
Srf K564 0.006 0.886 | 0.218 | -0.006 | 1.001 | 0.276 | 1.471 | -0.002 | 0.996
Usfl K564 0.036 0.830 | 0.265 | -0.031 | 1.004 | 1.494 | 0.609 | -0.056 | 0.968
Yyl K564 0.075 1.028 | 0.287 | -0.083 | 0.991 | 0.337 | 0.654 | -0.027 | 1.018
CTCF GM12878 0.074 0.633 | 0.611 | -0.051 | 1.008 | 1.232 | 1.177 | -0.099 | 0.915
Egrl GM12878 0.035 0.832 | 0.327 | -0.030 | 1.003 | 1.381 | 0.621 | -0.049 | 0.975
Jund GM12878 0.014 1.045 | 0.348 | -0.015 | 0.998 | 2.305 | 1.370 | -0.033 | 0.954
Srf GM12878 0.005 1.004 | 0.297 | -0.005 | 1.000 | 0.652 | 1.590 | -0.003 | 0.995
Usf1 GM12878 0.050 0.863 | 0.408 | -0.045 | 1.001 | 1.353 | 0.750 | -0.071 | 0.960

Table 3: Naive Bayes scoring parameters for each TF-tissue combination. We calculate the sample
mean (f) and standard deviation (6) for the PWM and H3K4me3 features for both bound and unbound
promoter for each TF-tissue combination. We also calculate the prior probability that a promoter is bound by
a given TF in each tissue.
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2.5 Maximum PWM Score and Normality
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Figure 2: Q-Q Normal Plot of Esrrb PWM Scores. We demonstrate the normality of the distribution
of values of log-transformed PWM scores for Esrrb. The data plotted is log(M(p)) from Eqn. 1, for all mES
promoters.
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3 Supplementary Data
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