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1 Discriminative Motif Finding Methods  

In contrast to traditional motif finding methods, discriminative motif finding methods requires a 

negative set of sequences to be supplied and compared against. Several discriminative motif 

finding methods have been developed. Below we provide a detailed description of the methods 

that we compared in this work, highlighting the similarities and differences between DECOD 

and these methods when possible. 

1.1 DME (discriminative matrix enumerator) 

Assuming that each k-mer in the sequences is either motif or background, DME (Smith et al., 

2005) uses a likelihood model to score for motif overrepresentation in the positive sequences 

relative to background sequences. It aims to maximize a target function that represents a 

modified version of the log ratio of the likelihood of the motif and background models given the 

positive set to that of the motif and background models given the negative set. And DME uses 

exhaustive search to find the motif model that maximizes this target function. To improve search 

efficiency, DME first only searches over a very sparse discrete PWM space in which the 

columns of the PWMs are only of several representative types. Then DME uses a refinement step 

to extend the search by including matrices in the neighborhood of the matrix found in the global 

search. Moreover, instead of using the original log likelihood ratio as the target function, DME 

uses a modified version which can be calculated very fast with the assumptions that the base 

frequencies in the positive and negative sequences are close, and that the motif occurrences in 

the positive sequences are not dense. Our method is similar to DME in that both assumes that 

each k-mer comes from either a motif or a 0
th

-order background model, and that both employs 

global and local searches to improve search speed. However, our method explicitly assumes the 

probability of the motif and background models being used while DME does not model these. 

Moreover, our target function is not based on likelihood models but instead based on the 

expected number of times that the PWM is used in generating the sequences. Furthermore, our 

method does not make the assumption as made by DME that the base frequencies are similar in 

the positive and negative sequences, and our method uses deconvolution to take into account the 

k-mer contexts that DME ignores. Also our method does not search over the PWM space directly 

but instead searches over the k-mers from which the PWM model is constructed. 

 

1.2 DEME (discriminatively enhanced motif elicitation) 

DEME (Redhead and Bailey, 2007) also uses a probabilistic approach to model the sequences. 

Given labeled sequences, DEME aims to find a set of parameters for the data model, including 

the motif model, the background model, the probability of a positive sequence containing a motif 

and the prior probability of a sequence being labeled positive, that maximizes a target function 

describing the conditional log likelihood of the sequence labels given the sequences themselves 

and the above parameters. DEME also uses a combination of global and local searches in the 

optimization process. In global search, DEME performs substring search and branch search to 

find strings from positive sequences, allowing mutations, whose corresponding motif model has 

the best objective function score. It then uses conjugate gradient to perform local search to 

further refine the model parameters. One unique feature of DEME is that it is able to work on 

protein sequences, and it can incorporate prior knowledge about protein residue characteristics 

by using a Bayesian prior on motif columns. DECOD is similar to DEME in that both uses 0
th

 

order background model, and both involves global and local searches in the optimization of the 
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target function. DECOD takes the probability of motif occurrence in positive sequences as a 

user-input parameter (by default assuming it to be once per positive sequence), while DEME 

tries to learn it automatically. Notably, DEME can only find one discriminative motif from an 

input dataset, whereas DECOD is able to probabilistically remove the signals of a previously 

found discriminative motif in order to find the next one. 

 

1.3 DIPS (discriminatve PWM search) 

DIPS (Sinha, 2006) assumes that sequences are generated by a 0
th

 order HMM, and it uses a 

probabilistic score (w-score) to count the occurrences of a PWM in each sequence, which 

accounts for both the number and strengths of motif occurrences.  The w-score of a PWM in a 

sequence is the sum of the number of times that the PWM is used in all possible parses of the 

sequence in the HMM model, weighted by the probability of each parse. DIPS then uses the 

difference in the average w-score of a PWM between sets of positive and negative sequences as 

the target function. DIPS employs heuristic hill climbing to search for a PWM that maximizes 

the target function. Our method is very similar to DIPS since both model the sequences by 0
th

 

order HMMs, and both aim to maximize the differences in the expected number of times that a 

PWM is used in generating the positive and negative sequences respectively. Also the search 

strategy that we used is inspired by DIPS. However, the actual target functions used by the two 

methods are different. Our method does not calculate the w-scores of a PWM by working on the 

sequences and calculating the probability of each possible parse according to the HMM model. 

Instead we work on the k-mers extracted from the sequences directly (Equation (5) in the main 

text). This makes DECOD much faster than DIPS. Moreover, in the search process we both 

reduce the search space and reduce the amount of computation involved in calculating the target 

function score in order to speed up the optimization process particularly for longer motifs, while 

DIPS did not make these attempts. 

 

1.4 CMF (contrast motif finder) 

CMF (Mason et al., 2010) is a word-enumeration based method for discriminative motif finding. 

Given sets of positive and negative sequences, CMF first calculates a z-score of all k-mers to 

find the k-mers and its neighborhood that are most enriched in the positive compared to the 

negative set. It then uses the k-mers found to create two count matrices in the positive and 

negative sequences (representing false positives) respectively to be used as seed, and a PWM is 

generated by taking their differences. After that, CMF scans k-mers in all sequences in the 

positive and negative set using the PWM and a 1
st
-order Markov background model, and 

calculate a likelihood ratio score for each k-mer. It then applies a threshold on the likelihood 

ratios by controlling FDR, and all k-mers that pass the threshold are used to create a new PWM. 

The process is iterated until convergence. 

 

1.5 ALSE (all sequences) 

ALSE (Leung and Chin, 2006) aims to find a motif model that maximizes a target function that 

represents the likelihood of the motif being the true one given the input positive and negative 

sequences. The target function is calculated based on hypergeometric distribution. ALSE first 
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finds a set of seed matrices using a Voting algorithm, and then iteratively refines the matrices in 

EM-like iterations until no further improvement can be made in the likelihood function.  

 

1.6 Seeder  

Seeder (Fauteux et al., 2008) is a word-enumeration based method that starts by enumerating all 

k-mers of a given seed length. For each k-mer, the Hamming distance between the k-mer and its 

best matching subsequence (called „substring minimal distance‟, SMD) in the positive and 

negative sets are then calculated respectively. The latter is used to calculate a word-specific 

background probability distribution, which is in turn used to evaluate the significance of the 

enrichment of each k-mer in the positive sequences based on the sum of its SMDs to positive 

sequences. Seed PWMs are generated from matches to the most enriched k-mers in each positive 

sequence, and the seeds are iteratively extended to form new PWMs of the desired motif width, 

and then the seeds are updated. The entire process is repeated until convergence. 

 

2  Supplementary Methods 

2.1  Searching for the discriminative PWM that optimizes the target function  

In order to optimize F(θ), we adopt a discretized hill climbing approach very similar to DIPS 

(Sinha, 2006). The search space for θ is restricted to empirical PWMs of the form θ(T), where T 

is a subset of m k-mers in S called site set (Sinha, 2006). The subset size m is a parameter called 

motif cardinality (Sinha, 2006). 

    Heuristic hill climbing is used to find a local subset T that maximizes F(θ(T)). Each hill 

climbing step is composed of (i) delete: remove one k-mer from T that contributes the least to the 

score, and (ii) add: add one k-mer from TS \ to T that contributes the most to the score. In the 

delete step, every possible Tt is tested to find the ti that maximizes F(θ(T\ti)). Then T is 

updated by setting itTT \ . This step is fast since the size of the PWM set is small (usually 

20). In the add step, every k-mer TSs \  is considered for being added to T. This step is slow 

since it requires us to loop over all k-mers. To make the calculations faster, partial derivatives are 

used to estimate ))(( sTF   as follows: 

   ))(())(())(( TFTFsTF       (9) 

where )()( TsT    . Detailed derivation of the partial derivatives is provided below. 

Choices of s are sorted according to their estimated values of ))(( sTF  . Then  ))(( sTF   is 

computed exactly for each choice of s in sorted order, until an s is found that satisfies 

))(())(( TFsTF   and T is updated by setting sTT  . In practice, we terminate the hill 

climbing search if the top 500 k-mers on the ranked list do not lead to an improvement to the 

discriminative score.  

 

2.2  Computation of partial derivatives  

For a simple motif component Z , partial derivatives of F can be written succinctly: 
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For a convolved motif component Z , partial derivative can be written as a sum of 2k-1 terms 

which are similar to the above. Details are in the Appendix. 

 

2.3  Speeding up the optimization process 

Although the running time of DECOD does not depend on the size of the input dataset, it grows 

exponentially with k, the length of the motif, since the target function (Equation (8), main text)  

includes a summation over all possible k-mers. Moreover, the search space for the k-mers from 

which a motif is constructed also grows exponentially with k. In the software implementation, 

the followings are implemented as an option to speed up the optimization process.  

 

To speed up the calculation of the target function particularly for larger ks, we alternatively first 

calculate the frequencies of all k-mers in the positive and negative sets, and then the summation 

in Equation (8) (main text) is calculated only over those k-mers whose frequency differences are 

more than 2 (if k<10) or 3 (if k ≥10) standard deviations (sd) away (both sides) from the mean of 

all k-mers, with the underlying assumption that those k-mers whose frequency differences are 

small are likely to contribute little to the calculation of the target function.  

 

To speed up the search process, we also limit the initial search space to those k-mers whose 

frequency differences are more than 1 sd away from the mean. Moreover, we perform two 

rounds of searches in each iteration. The first round is crude search in which we only use the 

partial derivatives in (9) to estimate the change brought about by adding a k-mer to or removing 

a k-mer from the motif without doing exact calculation of the target function at all. After a set of 

m k-mers (m is the motif cardinality) are obtained from the crude search that leads to a motif θ 

with the maximum target function score at this stage, we expand this set by including all other k-

mers that are similar to θ (i.e. in the "neighborhood" of θ). Specifically, the probability of each k-

mer given θ is calculated and all k-mers whose probabilities are higher than 
2/2/ 1.05.0 kk   are 

added to this set. Then a second round of refined search is performed according the optimization 

process for exact calculations as described in Section 2.4.1, using this set as the new search 

space. The final motif found by this second round of search is reported.  

 

 

2.4  Identifying multiple PWMs representing combinatorial regulation 

Our hill climbing algorithm assumes (an estimate of) the plant probability p is given. Initially p 

is estimated by assuming that the motif occurs once per sequence in the positive sequences. In 

many cases we are interested in finding multiple PWMs in one dataset. For this we need to 

remove the first PWM identified. To accurately remove a PWM signal from the data, we need to 

re-estimate p for the estimated mixture component )ˆ(Z . Following Equation (1) in the main 

text we have: 

 ))ˆ(( BZpBX           (11) 
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(with convergence as n , if ̂  is a consistent estimator) since we assume the difference 

between the observed k-mer counts and the background model results from the PWM. Given our 

current estimate of ̂ we can recover p from the above equation.  To increase signal, we only use 

the top 500 k-mers predicted by )ˆ(Z  for this computation. Once estimates ̂  and p̂  are 

determined we assign new values to the number of observed k-mers in the positive and negative 

sets by setting )ˆ(' pZXX   and then all entries are rescaled to sum to 1. 

 

2.5  Simulated data and comparison 

For each simulated study, 100 simulated datasets were generated and results were averaged. In 

each dataset, two groups of positive and negative sequences of length 400bp each were first 

generated using a multinomial background distribution with equal probabilities for A, C, G and T 

respectively. Then, in the positive set, palindrome motif(s) of the specified width were planted at 

randomly chosen positions. The information content of a column (column IC) in the PWM is 

defined as 

 



i i

i
i

b

f
fIC 2log         (12) 

in which Σ={A, C, G, T}, fi is the base frequency of nucleotide i in that column of the motif, and 

bi is the base frequency of nucleotide i in the background which is always 0.25 in our case. We 

compared our method with other popular software specifically designed for discriminative motif 

finding including: ALSE (v1.07, Leung and Chin, 2006), Seeder (v0.01, Fauteux et al., 2008), 

DME (v2 beta 2008.08.30, Smith et al., 2005), DEME (v1.0, Redhead and Bailey, 2007), DIPS 

(v1.1, Sinha, 2006) and CMF (Mason et al., 2010), in terms of the accuracy of the recovered 

motif and the running time needed. For all cases, the accuracy was measured by the average 

Kullback-Leibler (K-L) divergence per column (AKLD) between the recovered motif and the 

known planted motif defined as 

 
 


k

i j

ijijijij MMMM
k

d
1

2' )'/(log)(
1

     (13) 

in which k is the motif length, Σ={A, C, G, T}, and Mij and Mij' are the corresponding positions 

in the two motifs being compared (Smith et al., 2005). One position shifting was allowed in 

calculating AKLD, i.e. when comparing two motifs A and B of length k, three AKLDs were 

calculated over (i) the full length, (ii) the first k-1 columns of A with the last k-1 columns of B 

and (iii) the last k-1 columns of A with the first k-1 columns of B. The lowest among the three 

was reported. All methods were run on both strands of the input sequences. For DECOD, on 

each dataset, both exact and speedup calculations (referred to as "DECOD-exact" and "DECOD-

speedup") were run for 50 iterations (the default value) respectively, and the motif with the best 

discriminative score was reported. The motif cardinality was set to 20 and the probability of 

motif occurrence was set to once per positive sequence (the default values) for all analyses, 

unless otherwise noted. For DME, an '-n 200' option was used to allow the program to return 

many motifs as suggested in its documentation, and for finding bimodal motifs an '-i 0.5' option 

was used to allow the program to search for column types with information content as low as 0.5. 

For ALSE, an '-b' option was used to specify the number of motifs to be 1 or 2 accordingly for 
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each comparison. For CMF, an '-d 1' option was used to set the motif enrichment to be only in 

the positive sequences and an '-w 6 -l 6 -u 6 ' option was used to set the length of the motif to be 

6. For Seeder, the seed width was set to be 6. For DIPS, we compared running it for both 5 

iterations (by default) and 20 iterations (by using '-niter 20') (referred to as "DIPS-5iters" and 

"DIPS-20iters"). Default values were used for the other parameters for all methods. Running 

times were measured on a computer cluster with 2x Intel Xeon E5620 CPUs at 2.40Ghz and 

24GB RAM. 

Detailed descriptions about the motifs planted in generating each simulated dataset as discussed 

in the main text is given below. 

 

2.5.1 Single unimodal motifs 

One motif with a dominating nucleotide at each position was planted. To more closely mimic 

real cases, noise was added to each position of the motif so that the information contents (IC) of 

each column of the motif ranges from 2 bits (corresponding to a completely deterministic motif) 

to 0.64 bits (corresponding to a probability of 0.70 for the dominating nucleotide and 0.10 for 

each of the other three nucleotides).  

 

2.5.2 Single bimodal motifs 

In this case, the IC for the unimodal positions in the planted motif was 1.15, and the IC for the 

bimodal positions was 0.53 (the dominating two nucleotides had a probability of 0.45 each and 

the other two nucleotides had a probability of 0.05 each). We generated 1,000 positive and 

negative sequences respectively, and one instance of the motif was planted in each positive 

sequence. 

 

2.5.3 Two motifs 

Two different motifs having from 0 to 6 bimodal positions (column IC 0.53) and the rest 

positions being unimodal (column IC 1.15) were planted in each of the positive sequences at 

different positions. When carrying out the comparisons, each method was set to report the top 2 

motifs. The AKLDs of both recovered motifs to the two planted motifs were calculated, and the 

recovered motif that had the smallest AKLD to either of the planted motifs was reported as Motif 

1 (Figure 4 in the main text, upward), and the other was reported as Motif 2 (Figure 4 in the main 

text, downward). 

 

2.6  Motif discovery on the yeast dataset 

For this analysis, probe sequences experimentally determined to be bound by each of the 65 

yeast TFs tested in a ChIP-chip assay (Harbison et al., 2004) were downloaded from 

http://fraenkel.mit.edu/Harbison/release_v24/final_set/Final_Motifs/ and used as the positive 

dataset for each TF. The numbers of bound sequences for each TF range from 14 to 195 with a 

median of 56. A consensus motif for each of the 65 TFs was inferred systematically in (Harbison 

et al., 2004) and they were used as a gold standard to compare against in our analysis. The 

widths of these motifs range from 6 to 18 with a median of 9. Note that not all bound sequences 

contained the motif for the corresponding TF (Supplementary Table 2). The probes with highest 

http://fraenkel.mit.edu/Harbison/release_v24/final_set/Final_Motifs/
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binding p-values for each TF as reported in (Harbison et al., 2004) were collected and used as a 

negative dataset. The number of probe sequences in the negative set is twice the number of those 

in the positive set for each TF. Then each method studied was run on both strands of the input 

sequences to search for one motif of the known width for each dataset.  

 

2.7  Motif discovery on eukaryotic benchmark dataset  

For this analysis, a benchmark dataset (Tompa et al., 2005) was downloaded which contains 

binding sites for 52 TFs from yeast, fly, mouse and human as well as negative control sets in 

which no true TFBSs exist (Matys et al., 2006). We did not include the yeast data in this dataset 

in our study since we already performed the comparison on Harbison's dataset. For each TF, the 

sequences containing the motif within the original genomic context (the “real” background type) 

were used as the positive sequences, and twice as many randomly selected sequences from the 

other TFs in the same species were used as negative sequences.  

 

The motif width given as input to each motif finding method was specified to be the minimum 

width of the true binding sites of that TF, as this should be the most informative part of the motif. 

All methods were set to search for motifs on both strands of the input sequences. For DECOD, 

only speedup calculation was used. After a motif was found, it was converted to a log-odd 

scoring matrix using the background frequencies from the positive sequences, and then used to 

scan both strands of each positive sequence. To allow for flexibility, all k-mers with a score 

higher than 70% of the maximum possible score for the log-odd scoring matrix were reported to 

be motif instances (Harbison et al., 2004). For the other methods, motif instances reported in 

their output files were used directly. The prediction results for all methods were formatted as 

required and submitted to the server at http://bio.cs.washington.edu/assessment/ for evaluation. 

We focused on two metrics: the nucleotide level sensitivity (nSn) and the nucleotide level 

positive prediction (nPPV). They are defined as follows: 

 

 nSn = nTP/(nTP+nFN)         (14) 

 nPPV = nTP / (nTP + nFP)      (15) 

 

in which nTP is the number of true positive predictions, nFN is the number of false negative 

predictions and nFP is the number of false positive predictions (all at nucleotide level). See 

(Tompa et al., 2005) for detailed explanations. 

 

2.8  ChIP-chip experiment of the p53 binding targets 

2.8.1 P53 array design 

The p53-focused array was designed as previously described (Shaked et al., 2008). The array 

includes 540 p53-PET sites, 62 additional previously described p53 target regions and 846 

randomly chosen promoter regions. Each spot contains PCR product of the designated region 

with an average length of ~800 bps. 

 

2.8.2 Cell growth and treatments 

http://bio.cs.washington.edu/assessment/
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H1299 tet-off inducible cell lines were created as previously described(Chen et al., 1996). The 

cells were grown in DME-M (Sigma) supplemented with 10% FCS, 2.5ug/ml tetracycline 

(Teva), 300 ug/ml G418(Mercury). The wild-type p53 expressing cells had 2 ug/ml puromycin in 

the culture medium and the 6KQ/6KR cells were cultured with 100 ug/ml hygromycin (Roche) 

in the medium. p53 induction was achieved by omitting tetracycline from the medium for 24 

hours followed by three washes with PBS and either incubation of (6KQ) cells for  24 hours with 

2.5 ng/ml tetracycline or wild-type and 6KR cells with 5 ng/ml tetracycline. The levels of p53 in 

these three clones were similar to each other as determined by Western blotting (see below) and 

were also similar to the amount of p53 in HCT116 cells treated with 375 uM 5-fluorouracil for 6 

hours.  

 

2.8.3 Western analysis 

The cellular lysates were separated on 10% polyacrylamide gel, with equal protein amounts 

loaded on the gel for each sample, then transferred to a nitrocellulose membrane and incubated 

with mouse anti-p53 (DO-I; Santa Cruz), goat anti-β-actin (I-19; Santa Cruz) antibodies and 

horseradish peroxidase-conjugated secondary antibodies. The signal was visualized via enhanced 

chemiluminescence reaction and exposure to film. See Supplementary Figure 1 for details. 

 

2.8.4 Chromatin immunoprecipitation-on-chip  

Chromatin immunoprecipitation (ChIP)-on-chip analysis was performed essentially, as 

previously described (Lee et al., 2006), using 10 μg anti-p53 antibody DO-1 (Santa Cruz). 

Approximately 5 × 10
7
 cells were used. The array was scanned and analyzed with GenePix Pro 

software, and the fluorescence intensity in both channels was obtained for each spot. As the array 

is spotted four times, median Cy3 and Cy5 intensities were calculated for each spot. The two 

channels were normalized according to the median intensity of the random human promoter 

spots, and the Cy5/Cy3 ratio of each spot was calculated. The experiment was performed in 

duplicate, and the average binding ratio for each spot was calculated. The significance of the 

enrichment observed in each spot was determined by calculating the deviation of each ratio from 

the mean of the random promoters control spots (Z score). Only ∼1% of the random promoters 

obtained Z of >2.5; thus, this cutoff is equivalent to an FDR of 0.01. For gene-specific validation 

(data not shown), the ChIP assay was performed as described above and the nonamplified 

immunoprecipitation and input fractions were subjected to 36 cycles of semiquantitative PCR.  

For each comparison, sequences identified to be bound by both factors are only put into the 

negative set. In the WTP53-6KR comparison, there are 81 sequences in the positive set and 255 

in the negative set. In the 6KR-6KQ comparison, there are 110 sequences in the positive set and 

158 in the negative set. In the 6KQ-control comparison, 147 sequences in the positive set and 36 

in the negative set. For motif finding, both strands of the repeat-masked sequences were 

searched. 
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3  Supplementary Results 

 

3.1  Robustness of DECOD to parameters 

To investigate whether DECOD is sensitive to the choice of the motif occurrence probability (p) 

and cardinality (C) parameters, we ran DECOD on simulated data using a range of different 

values for these parameters. We also tested the ability of DECOD to predict motifs longer than 6 

(k > 6). Similar as before, 1,000 simulated positive and negative sequences, length 400bp each, 

were generated. One motif with column IC 1.15 was planted once in each positive sequence. 

DECOD was able to successfully recover the planted motif starting with a p as low as 0.25 or as 

high as 5 times per positive sequences (Supplementary Table 1A). In reality, some motifs may be 

more likely to occur more than once in a positive sequence. The insensitivity of DECOD to the 

value of p suggests that DECOD has the advantage of still being able to correctly recover the 

motif in such cases. We suggest assuming one occurrence per positive sequence as a starting 

point. Second, motif cardinality might affect the resolution of the recovered motif. However, for 

strong motifs as used in our experiments, DECOD works well for C ranging between 5 and 100 

(Supplementary Table 1B). Increasing it to 100 does not affect the result much, though it does 

increase the run time (not shown) since the search process will necessarily take longer time to 

converge. On the other hand, with a small C the method is more likely to be stuck in a local 

optima due to the reduced resolution. Therefore we used C = 20 in all further analyses which is 

also the default choice of Sinha in DIPS (Sinha, 2006). In the command-line version of the 

program (downloadable from the Supplementary Website), both of the above parameters (the 

probability of motif occurrence and motif cardinality) can be user-specified. 

 

DECOD also works well with longer motifs (Supplementary Table 1C, see also the Result 

section on yeast data in the main text, Section 3.2 in Supplementary Results on simulated data 

and Section 3.5 in Supplementary Results on ChIP-seq data). Since the exact calculation includes 

a summation over all k-mers, the running time using exact calculation increases exponentially 

with k, and therefore when k is too large (e.g. longer than 10), exact calculation is impractical. 

However, the speedup calculation does not suffer from this since it only makes use of those k-

mers that show the most frequency difference between the positive and negative set 

(Supplementary Methods and Supplementary Table 1C), and the accuracy of the speedup 

calculation is comparable in almost all cases to the results from exact calculations 

(Supplementary Table 1C, Results in the main text and Supplementary Results.) 

 

 

3.2 Performance comparison on simulated dataset with longer motifs and recovering motif 

locations 

 

In order to better evaluate the ability of DECOD to find longer motifs, we further generated 

simulated datasets in which a palindrome motif of length 8 is planted in some (not all) of the 

positive sequences. There are 100 positive and negative sequences in each dataset, and a known 

motif of width 8 with column IC 1.15 (the dominating nucleotide had a probability of 0.85 and 

the rest 0.05) was planted in some (percentage q, ranging from 50% to 90%) of the 100 positive 

sequences. This setting is basically the same as described in the last paragraph of Section 3.1.1 in 

the main text except that the motif width is 8 instead of 6. We compared DECOD with the other 

methods including DME, DEME, CMF, ALSE and Seeder on these datasets. For DECOD since 
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the motif width is 8, we only tested the performance of DECOD-speedup.  All methods were set 

to search for motifs of width 8 (unless otherwise noted) on both strands of the input sequences. 

In addition the following parameters were used: For DME, “-n 200 -w 8” was used to allow it to 

report many motifs of width 8 as suggested in the documentation. For CMF, “-w 7 -l 7 -u 8 -d 1” 

was used to set the seed length to be 7 and allow the program to find motifs of lengths either 7 or 

8; also the motifs were specified to be enriched only in the positive set. For Seeder, the seed 

width was set to 6 and motif width was set to 8. For ALSE, “-b 1” was used to specify the 

number of motifs to be 1. Default values were used for other parameters for all methods. We did 

not include DIPS in this comparison due to its excessive running time (>2hrs for each run). 100 

simulated datasets were generated and results were averaged.  

 

We compared the top 1 motif recovered by each method in terms of the AKLD to the known 

motif (see Equation (13) in Section 2.5 for definition) and each method‟s running time. As 

shown in Supplementary Figure 4A, in all ranges of q tested, the ALKD of the motif that DEME 

recovered is slightly better than DECOD, which is in turn slightly better than DME. All the 

above three methods perform much better than the other methods we tested. However, in terms 

of running time, DEME took about 6 times longer than DECOD (Supplementary Figure 4B).   

 

Moreover, we also compared the ability of each method to recover the known motif locations. 

For DECOD the motif locations were determined in the way described in Section 2.7. For the 

other methods we used their predicted list directly. For each q (from 50% to 90%), we looked at 

the top 100*q motif occurrences (since 100 is the number of positive sequences, this is the true 

number of motif instances planted) predicted by each method, and in accordance with (Tompa et 

al., 2005) we computed the site-level sensitivities (Sn), positive prediction value (PPV) and the 

average site performance (ASP) as below: 

 

sSn = sTP / (sTP + sFN)      (16) 

sPPV = sTP / (sTP + sFP)      (17) 

sASP = (sSn + sPPV) / 2      (18) 

 

in which sTP is the site-level true positive, sFN is the site-level false negative and sFP is the site-

level false positive. In calculating the above measures, one position shift compared with the true 

location in either direction is allowed. The result is shown in Supplementary Figure 5. Although 

DECOD has lower sensitivities than DEME and Seeder (when q is high) (Supplementary Figure 

5A), it (together with DME) always outperformed the other methods in terms of specificitiy 

(Supplementary Figure 5B), and its average site performance (ASP) is comparable with DME 

and DEME (Supplementary Figure 5C). In conclusion, DECOD works well with longer motifs 

even when the motif does not exist in all positive sequences, and it is able to accurately recover 

the correct motif as well as find the occurrences of the motif in the positive sequences very fast. 

 

 

3.3  Performance comparison on benchmark dataset from higher eukaryotes 

 

To further examine the ability of DECOD to discover motifs in more complex organisms, we 

tested its performance and compared with the other methods using another benchmark dataset 

(Tompa et al., 2005). This dataset contains the binding sites for 52 TFs from yeast, fly, mouse 
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and human as well as negative control sets in which no true TFBSs exist. This is a challenging 

dataset due to the small number of sequences for each TF. Since we already performed a 

comprehensive comparison on yeast, we only used the 46 TFs from the other three species in this 

comparison. For consistency with previous analysis of this data, and because unlike the previous 

data we used in this case the input data contain motif occurrence information,  we evaluate the 

results for each method in terms of the metrics used by (Tompa et al., 2005), particularly the 

sensitivity(nSn) and positive prediction values (nPPV), at the nucleotide level (Section 2.7 in 

Supplementary Methods). 

 

Although the performance for all methods was not great for this subset of the data, at the 

nucleotide level, DECOD performs better than most of the other methods including DEME, 

DME and CMF (Supplementary Figure 6).  Moreover, the sensitivity (nSn) of DECOD was 

slightly higher than DEME, DME and Seeder (Supplementary Figure 6). Therefore, DECOD is 

also competitive with the other methods on recovering TFBS in higher eukaryotes from this 

dataset. Interestingly, although ALSE performed poorly on the simulated and yeast dataset, it 

outperforms the other methods on this dataset. Notice that here the nSn and nPPV values we 

obtained for all methods were generally lower than the results reported in (Tompa et al., 2005) 

for general (not discriminative) motif finders. This is because in (Tompa et al., 2005)  the dataset 

was sent to the authors of each motif finder software, and many authors performed additional 

filtering steps, many including inspection by eyes, to improve their predictions. In our scenario 

we did not attempt to do these because our purpose was only to perform a fair comparison of the 

methods being evaluated using a consistent standard. We expect that after performing careful 

post-processing of the motifs reported by each software, the results can be further improved.  

 

3.4 Results from the other discriminative motif finding methods on the P53 dataset 

We also run DME and CMF on the P53 dataset and checked whether they could recover the 

interesting motifs that DECOD found. Each method was set to search for 10 motifs of width 8 in 

each comparison, and all methods were run on both strands of the repeat-masked input sequences 

(same as used for DECOD). The results were compared to known motifs in TRANSFAC (Matys 

et al., 2006) using STAMP (Mahony and Benos, 2007) in the same way we did for DECOD. We 

did not test DEME and DIPS due to their excessive running time and the fact that DEME is able 

to find only one discriminative motif. Also ALSE and Seeder were not included since they could 

not work properly with repeat-masked sequences as in our input dataset. 

Both DME and CMF were able to find the motif matching IRF-1 in the 6KR-6KQ comparison 

(for DME, E-value = 2.59e-6; for CMF, E-value = 1.46e-7; Supplementary Table 3). However, 

DME was not able to recover the known p53 motif from the 6KQ-control comparison. Although 

CMF was able to find a motif similar to that for p53 in the 6KQ-control comparison, the match 

was very weak (E-value = 1.30e-4, Supplementary Table 3) compared with the one recovered by 

DECOD (E-value = 1.09e-11, Figure 5D in main text). Neither methods were able to find the 

motif matching Sox4 that DECOD identified from the WTP53-6KR comparison. The full list of 

all motifs identified by each method and their matches to known motifs using STAMP is 

available on the Supplementary Website.  
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3.5 Using DECOD to find motifs from ChIP-seq dataset 

The running time of DECOD does not depend on the size of the input sequences, therefore 

DECOD is particularly suited for motif finding from data generated by large scale sequencing 

efforts such as ChIP-seq experiments. Here we demonstrate the ability of DECOD to recover 

known motifs for transcription factors from several published ChIP-seq dataset from the 

ENCODE project (Birney et al., 2007). Genomic sequences (peaks) determined to be bound in 

ChIP-seq studies by the following five TFs that have known motifs in JASPAR (Bryne et al., 

2008) were downloaded and used as the positive set for each TF: c-Jun (K562 cells), c-Myc 

(K562 cells), Max (K562 cells), Egr-1 (K562 cells) and NFkB (GM12878 cells). Each set 

contains tens of thousands of sequences, and the lengths of the peak regions are typically a few 

hundreds (see Supplementary Table 4 for details). For negative sequences, we used both the 

upstream and downstream sequences flanking the peak regions, and the length of each flanking 

sequence was chosen to be the same as the corresponding peak region. Thus the negative set 

contains twice as many sequences as the corresponding positive set for each TF. We used 

DECOD to search for motifs of about the width of the known motif (see details in 

Supplementary Table 4) on both strands of the input sequences. As shown in Supplementary 

Table 4, DECOD was able to correctly recover all 5 motifs even for relatively longer and more 

complex motifs like CTCF. For 4 of the 5 motifs (c-Jun, Max, CTCF and NFkB), the correct 

motif that DEOCD recovered was also the first one reported. For c-Myc, the correct motif was 

the second motif that DECOD recovered. Therefore, DECOD works well on finding motifs from 

ChIP-seq datasets in which the number of input sequences can be too big for other motif finding 

software to handle. 

 

4  Supplementary Website 

Software implementation of DECOD and detailed results for each comparison on the p53 dataset 

is available online at http://www.sb.cs.cmu.edu/DECOD 
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Supplementary Table 1 Robustness of DECOD to various parameters. 

A. Robustness to p (probability of motif occurrence) 
Assumed motif occurrence per 

positive sequence 
DECOD-exact DECOD-speedup 

0.25 0.484±0.000 0.484±0.000 

0.5 0.484±0.000 0.484±0.000 

1 (truth) 0.484±0.000 0.484±0.000 

2 0.472±0.019 0.470±0.023 

5 0.382±0.031 0.391±0.041 

 

B. Robustness to C (cardinality, the number of k-mers in the site-set from which the PWM is 

constructed) 
Cardinality (C) DECOD-exact DECOD-speedup 

5 0.484±0.000 0.484±0.000 

10 0.483±0.004 0.481±0.008 

20 0.484±0.000 0.484±0.000 

50 0.484±0.000 0.484±0.000 

100 0.484±0.000 0.484±0.000 

 

C. Robustness to w, the width of the motif 

Motif width (w) 
DECOD-exact DECOD-speedup 

AKLD Time(s) AKLD Time(s) 

6 0.484±0.000 113.078±6.896 0.484±0.000 33.259±6.442 

7 0.474±0.023 785.812±184.128 0.469±0.016 31.597±2.986 

8 0.206±0.019 8909.048±1180.864 0.306±0.026 268.254±64.414 
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Supplementary Table 2  Detailed results of each method on the yeast dataset (Harbison et al., 

2004).  

 
DECOD DME DEME CMF Seeder ALSE N_BOUND %Contain W Enrichment 

ABF1 + + + + + 
 

178 86.50% 13 99 

CBF1 + + + + 
 

+ 195 68.70% 7 99 

FHL1 + + + + + 
 

131 73.30% 10 99 

RAP1 + + + + 
  

109 74.30% 10 79.92 

REB1 + + + + + 
 

99 86.90% 7 77.93 

UME6 + + + + + 
 

93 68.80% 8 72.32 

RPN4 
      

70 80.00% 9 72.02 

GCN4 + + + + + 
 

143 65.00% 7 64.62 

YAP7 
      

101 80.20% 8 62.65 

MCM1 
 

+ + 
   

77 66.20% 11 55.28 

NRG1 
   

+ 
  

108 59.30% 7 45.42 

MBP1 + + + + + 
 

92 47.80% 7 40 

SKN7 
     

+ 148 37.20% 9 38.79 

CIN5 + 
 

+ + 
  

118 42.40% 8 38.36 

SUM1 + + + 
 

+ 
 

51 88.20% 10 36.47 

SWI6 + + + + + 
 

121 51.20% 7 33.62 

HSF1 + 
     

74 67.60% 13 32.96 

SWI4 + + + + + 
 

130 49.20% 7 31.96 

TYE7 + + + + + + 56 53.60% 8 30.56 

SFP1 
      

37 73.00% 9 26.64 

FKH2 + 
 

+ + + 
 

91 58.20% 7 26.62 

HAP1 
  

+ 
 

+ 
 

116 28.80% 11 24.72 

INO4 + + + + 
 

+ 32 68.80% 8 24.15 

FKH1 + + + + + 
 

104 76.90% 8 23.43 

CAD1 
 

+ + 
   

29 65.50% 10 21.69 

SNT2 + + + 
   

20 70.00% 9 21.64 

SUT1 
  

+ 
 

+ 
 

67 37.30% 10 21.01 

STE12 + 
 

+ 
 

+ 
 

142 88.00% 7 20.86 

NDD1 
      

94 28.70% 11 20.74 

LEU3 
 

+ + 
   

32 40.60% 10 20.45 

HAP4 + + + + 
  

54 50.00% 7 20.32 

AFT2 
      

76 63.20% 6 19.4 

MSN2 
      

74 40.50% 9 18.81 

PHD1 
   

+ 
  

103 57.30% 8 17.93 

YDR026c + + + + 
 

+ 15 86.70% 9 17.26 

YAP1 
 

+ + 
   

37 51.40% 9 15.55 

THI2 
      

49 28.60% 12 15.38 

INO2 + + + + 
  

35 71.40% 7 14.97 

SPT2 + 
     

36 63.90% 11 14.4 
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SIP4 
      

24 37.50% 13 14.36 

SIG1 
  

+ 
   

16 87.50% 12 13.48 

STB5 
 

+ + + 
  

44 40.90% 9 13.44 

GAL4 
      

37 32.40% 18 13.42 

RDS1 
     

+ 49 24.50% 6 12.65 

ZAP1 
      

18 27.80% 14 12.35 

SOK2 + 
     

73 64.40% 6 12.28 

MET4 
 

+ 
    

37 21.60% 15 12.26 

STB1 + + + + 
 

+ 23 47.80% 9 11.95 

GLN3 
      

79 55.70% 7 11.65 

RFX1 
  

+ 
 

+ 
 

25 28.00% 13 11.48 

AZF1 
  

+ 
   

24 54.20% 18 10.85 

RCS1 
 

+ 
    

41 46.30% 7 10.44 

PHO2 
      

14 50.00% 11 10.2 

IME1 
      

36 61.10% 11 9.92 

RLR1 + + 
    

25 64.00% 12 9.76 

PDR1 
 

+ 
    

68 22.10% 11 9.21 

PHO4 
      

24 45.80% 7 9.17 

DIG1 
      

66 54.50% 7 8.74 

TEC1 + + + + 
 

+ 37 78.40% 7 6.4 

BAS1 + + + + 
 

+ 17 52.90% 6 4.99 

SPT23 
      

45 91.10% 8 4.79 

ACE2 
 

+ 
  

+ 
 

71 28.20% 7 4.78 

STB4 
      

28 21.40% 9 3.69 

DAL82 
      

62 41.90% 6 3.33 

GAT1 
      

49 36.70% 6 2.25 

           
Total(Top) 15 13 15 14 11 3 

    
Total(All) 28 31 34 24 17 9 

    
 

N_BOUND: Number of probes bound by the TF in the ChIP-chip experiment  

%Contain: The percentage of the bound probes containing the motif of the TF 

W: The width of the motif 

Enrichment: The enrichment score of the motif (Harbison et al., 2004) 
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 Supplementary Table 3 Motifs recovered by DECOD and CMF on the P53 dataset (see 

Supplementary Website for full list) 

Method Comparison Motif recovered by the method 
Known motifs in 

TRANSFAC 

Match  

E-value  

DME 6KR-6KQ 
 

(10th motif) 
 

IRF1_M00747 

2.59e-6 

CMF 6KR-6KQ 
 

(1st motif) 
 

IRF1_M00747 

1.46e-7 

CMF 
6KQ-

control  
(4th motif) 

 
P53_M00272 

1.30e-4 
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Supplementary Table 4  Using DECOD to find motifs from ChIP-seq datasets 

TF #Seqs
1
 

Median 

length 
Known motif (JASPAR) Recovered motif (DECOD) 

c-Myc 

(K562) 
15479 599 

 
MA0059.1 

 
(Search for width 8, 2

nd
) 

c-Jun 

(K562) 
26920 384 

 
MA0099.2 

 
(Searching for width 7, 1

st
) 

Max 

(K562) 
10480 395 

 
MA0058.1 

 
(Searching for width 8, 1

st
) 

CTCF 

(K562) 
64387 151 

 
MA0139.1 

 
(Searching for width 12, 1

st
) 

NFkB 

(GM12878) 
38559 493 

 
MA0105.1 

 
(Searching for width 11, 1

st
) 

1 ChIP-seq peak regions were downloaded from the following URLs: 

c-Myc: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562Cmyc

V2.narrowPeak.gz 

c-Jun: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562CjunV

2.narrowPeak.gz 

Max: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562MaxV2

.narrowPeak.gz 

CTCF: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeUwChIPSeq/wgEncodeUwChIPSeqPeaksRep1K562Ctc

f.narrowPeak.gz 

NFkB: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksGm12878Nf

kbTnfa.narrowPeak.gz 

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562CmycV2.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562CmycV2.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562CjunV2.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562CjunV2.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562MaxV2.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksK562MaxV2.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeUwChIPSeq/wgEncodeUwChIPSeqPeaksRep1K562Ctcf.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeUwChIPSeq/wgEncodeUwChIPSeqPeaksRep1K562Ctcf.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksGm12878NfkbTnfa.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeYaleChIPseq/wgEncodeYaleChIPseqPeaksGm12878NfkbTnfa.narrowPeak.gz
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Supplementary Figure 1: H1299 cells with inducible wild type and mutant p53. Western 

analysis of p53 and beta actin protein levels in WT p53, 6KR p53 and 6KQ p53 H1299 cell 

clones induced with different concentrations of tetracycline (0-5 ng/ml tet). Cells treated with 

high amounts of tetracycline (2500ng/ml) to shut off p53 expressions are designated by a plus 

sign. The final concentration of tet used for induction of p53 in the ChIP analysis is 5 ng/ml for 

wt and 6KR mutant containing H1299 cells and 2.5 ng/ml for 6KQ mutant containing cells. 

HCT116 cells without treatment (NT), or treatment with 5-uorouracil (5FU) are shown for 

comparison of p53 protein levels.
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Supplementary Figure 2 Performance comparison on the simulated data planting one motif 

in each of the 1000 positive sequences. (A) Accuracy as measured by AKLD (B) Actual 

running time (seconds) 
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Supplementary Figure 3 Performance comparison on recovering bimodal motifs. A motif 

containing bimodal positions is planted in each of the 1000 positive sequences (see details in 

Supplementary Methods) 
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Supplementary Figure 4 Performance comparison on simulated dataset in which a motif of 

width 8 was planted in some (percentage q, ranging from 50% to 90%) of the 100 positive 

sequences. (A) Accuracy as measured by AKLD (B) Actual running time (seconds) 
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Supplementary Figure 5 Comparison of the (A) site-level sensitivity, (B) PPV and (C) ASP 

of all methods on identifying the true locations of the planted motifs in the same simulated 

study as Supplementary Figure 4.
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Supplementary Figure 6 Sensitivity (nSn) and positive prediction value (nPPV) at the 

nucleotide level for each method on the fly, mouse and human TFBS benchmark dataset 

(Tompa et al., 2005) 

 

 



Appendix: Calculating the derivative for the
deconvolved mixture component

1. The definition of F (θ) in the convolved mixture model is

F (θ) =
∑
a∈Σk

c(a)
pA

pA+ [1− (2k − 1)p]Ba
(1)

=
∑
a∈Σk

c(a)

[
1− [1− (2k − 1)p]Ba

pA+ [1− (2k − 1)p]Ba

]
(2)

in which Σk denotes all possible k-mers, c(a) := X(a)−Y (a) is the frequency difference
of the k-mer a in the positive and negative sequences, p is the probability of the motif
occurrance, k is the motif length, B is the background model, and

A : = θa + ([B1θk−1]a + · · ·+ [Bk−1θ1]a) + ([θ1Bk−1]a + · · ·+ [θk−1B1]a) (3)

: = X + Y + Z (4)

in which θ is a 4× k PWM matrix of the motif with columns sum to 1. We represent
the k-mer a also as a 4× k matrix, each element aij ∈ {0, 1} and the columns sum to
1. [P jQk−j] denote the PWM obtained by taking the last j columns from the PWM
P and the first k − j columns from the PWM Q. We regard the background model B
as a PWM also with all columns equal. We use θa as a shorthand for Pr(a|θ).

2.

∂F (θ)

∂θmn

=
∑
a∈Σk

c(a)
[1− (2k − 1)p]Ba · p

(pA+ [1− (2k − 1)p]Ba)2 ·
∂A

∂θmn

(5)

= p · [1− (2k − 1)p] ·
∑
a∈Σk

c(a)
Ba

(pA+ [1− (2k − 1)p]Ba)2 ·
∂A

∂θmn

(6)

∂A

∂θmn

=
∂X

∂θmn

+
∂Y

∂θmn

+
∂Z

∂θmn

(7)
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3. For X,

X = θa (8)

=
k∏

i=1

(
4∑

j=1

θjiaji

)
(9)

∂X

∂θmn

=
k∏

i=1
i 6=n

(
4∑

j=1

θjiaji

)
· amn (10)

(11)

4. For Y ,

Y = [B1θk−1]a + · · ·+ [Bk−1θ1]a (12)

[B1θk−1]a =
1∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=2

(
4∑

j=1

θj,i−1aji

)
(13)

[B2θk−2]a =
2∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=3

(
4∑

j=1

θj,i−2aji

)
(14)

... (15)

[Bk−1θ1]a =
k−1∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=k

(
4∑

j=1

θj,i−(k−1)aji

)
(16)

There are k − 1 rows above. The last n − 1 rows do not contain θmn so the partial
derivative of them with respect to θmn for these rows will be 0. For the first k−n rows,

∂[B1θk−1]a

∂θmn

=
1∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=2

i 6=n+1

(
4∑

j=1

θj,i−1aji

)
· am,n+1 (17)

∂[B2θk−2]a

∂θmn

=
2∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=3

i 6=n+2

(
4∑

j=1

θj,i−2aji

)
· am,n+2 (18)

... (19)

∂[Bk−nθn]a

∂θmn

=
k−n∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=k−n+1

i 6=k

(
4∑

j=1

θj,i−(k−n)aji

)
· am,k (20)
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Thus,

Y =
k−1∑
l=1

[
l∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1

(
4∑

j=1

θj,i−laji

)]
(21)

(22)

and

∂Y

∂θmn

=
k−n∑
l=1

 l∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1
i 6=l+n

(
4∑

j=1

θj,i−laji

)
· am,l+n

 (23)

5. For Z,

Z = [θ1Bk−1]a + · · ·+ [θk−1B1]a (24)

[θ1Bk−1]a =
1∏

i=1

(
4∑

j=1

θj,k+i−1aji

)
·

k∏
i=2

(
4∑

j=1

bjaji

)
(25)

[θ2Bk−2]a =
2∏

i=1

(
4∑

j=1

θj,k+i−2aji

)
·

k∏
i=3

(
4∑

j=1

bjaji

)
(26)

... (27)

[θk−1B1]a =
k−1∏
i=1

(
4∑

j=1

θj,k+i−(k−1)aji

)
·

k∏
i=k

(
4∑

j=1

bjaji

)
(28)

There are k − 1 rows above. The first k − n rows do not contain θmn so the partial
derivative of them with respect to θmn for these rows will be 0. For the last n−1 rows,

∂[θk−n+1Bn−1]a

∂θmn

=
k∏

i=k−n+2

(
4∑

j=1

bjaji

)
·

k−n+1∏
i=1
i 6=1

(
4∑

j=1

θj,k−(k−n+1)+iaji

)
· am,1 (29)

∂[θk−n+2Bn−2]a

∂θmn

=
k∏

i=k−n+3

(
4∑

j=1

bjaji

)
·

k−n+2∏
i=1
i 6=2

(
4∑

j=1

θj,k−(k−n+2)+iaji

)
· am,2 (30)

... (31)

∂[θk−1B1]a

∂θmn

=
k∏

i=k

(
4∑

j=1

bjaji

)
·

k−1∏
i=1

i 6=n−1

(
4∑

j=1

θj,k−(k−1)+iaji

)
· am,n−1 (32)

Thus,

Z =
k−1∑
l=1

[
k∏

i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

(
4∑

j=1

θj,k−l+iaji

)]
(33)
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and

∂Z

∂θmn

=
k−1∑

l=k−n+1

 k∏
i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

i 6=n−k+l

(
4∑

j=1

θj,k−l+iaji

)
· am,n−k+l

 (34)

6. In summary,

A = X + Y + Z (35)

=
k∏

i=1

(
4∑

j=1

θjiaji

)
+

k−1∑
l=1

[
l∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1

(
r∑

j=1

θj,i−laji

)]
+

k−1∑
l=1

[
k∏

i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

(
4∑

j=1

θj,k−l+iaji

)] (36)

and

∂A

∂θmn

=
k∏

i=1
i 6=n

(
4∑

j=1

θjiaji

)
· amn+

k−n∑
l=1

 l∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1
i 6=l+n

(
4∑

j=1

θj,i−laji

)
· am,l+n

+

k−1∑
l=k−n+1

 k∏
i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

i 6=n−k+l

(
4∑

j=1

θj,k−l+iaji

)
· am,n−k+l


(37)
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