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SI Results
Specificity of Spike-Triggered Averages. In Fig. 3 in the main text,
we showed that spike-triggered averages (STAs)—and hence the
feature selectivity—become more diverse at the level of as-
cending neurons. The decoding approach (Fig. 4 in the main
text) led us to conclude that ascending neurons are optimally
read out as a labeled line, indicating that each ascending neuron
signals a specific aspect of the stimulus.
The second and third processing layers each consist of several

cell types. To further support our findings, we also looked at the
similarity of each cell type’s STA across different individuals/re-
cordings by computing Pearson’s correlation coefficient between
the average STA of a cell type and the STA of each individual
cell of that type. In order for the STA (feature) to be specific for
the cell type, this “intratype” similarity should be larger than the
similarity across different cell types of that layer (“intertype”
similarity).
As we considered each receptor a different type, inter- and

intratype similarities for receptors are identical (Fig. S3, blue box
plots). For local neurons (Fig. S3, red box plots), both the STAs
of the same cell type and of different cell types are highly similar
(intratype similarity 0.95 ± 0.04, mean ± SD; intertype similarity
0.81 ± 0.10). Whereas individual STAs of the same type are
significantly more similar than those of different types (P =
0.019, rank-sum test), overall similarity at the level of local
neurons is high. In ascending neurons, however, STAs of the
same cell type are much more similar than those of different
types (intratype similarity 0.85 ± 0.17, intertype similarity 0.22 ±
0.55; P= 0.002, rank-sum test). This cell specificity of STA filters
further supports our hypothesis that each type of ascending
neuron encodes a specific aspect of the stimulus.

Information Gain Relative to the Population Average. In the main
text, we quantified the information gain by relating the in-
formation of a four-cell population (the larger value of those
obtained with the summed-population and the labeled-line de-
coder) with that of the best cell in that population. Alternatively,
we also considered the gain with respect to the average in-
formation of all four cells comprising that population (Fig. S5A).
Clearly, this measure of information gain yields higher values:
Receptors exhibit an average gain of 1.99, local neurons 1.49,
and ascending neurons 2.49. Thus, the gain relative to the av-
erage information in the population is 1.4- to 1.7-fold greater
than the gain relative to the best cell. This is due to an upward
bias in this alternative measure: The more cells one includes in
a population, the more likely it is to “hit” a highly informative
one. The receptors with their high spread of single-neuron in-
formation values (Fig. 2D in the main text) are especially sus-
ceptible to this bias. We hence decided to quantify information
gain relative to the best cell in each population as a more con-
servative and less biased measure.

SI Materials and Methods
Decoding. We quantified information in neural responses using
a decoding approach (1). Although we thereby underestimate the
full information in the statistical sense, we probably come closer
to what a concrete, biologically plausible system can read out
from the spike trains we study here.
Single-neuron metric. The spike-train dissimilarity of single neurons
was quantified using the van Rossum metric (2). Spike trains were
binned with a resolution of 0.05 ms and filtered with an α func-
tion: α(t) = Θ(t) t exp(− t/τ), where Θ(t) is Heaviside’s function.

The parameter τ governs the temporal resolution of the metric.
The Euclidean distance between all pairs of responses (eight
repetitions of eight song segments of different males, duration
200 ms each) yields a distance matrix that forms the base for the
classification algorithm outlined below.
Multineuronmetric.Population data were combined from single-cell
recordings of four individual cells. This was justified, as neural
activity in the network is entirely stimulus-driven. Hence, neurons
are conditionally independent: There are no “noise” correlations
between neurons, only signal correlations (3). Because we were
interested in how the population code changed between pro-
cessing stages, we created three different classes of four-cell
populations, combining different types of either receptors or
local or ascending neurons. Thus, each population was charac-
terized by a unique combination of four different cell types of
a single layer. So as not to overrepresent those populations that
consist of cell types we have recorded more often, we averaged
information rates and gains for each kind of population (i.e.,
combination of cell types) for plotting and statistics.
For a formal derivation of the multineuron metric, see ref. 4.

Application of this metric amounts to filtering the spike trains
with an α function, embedding the spike trains from multiple
cells into a vector space, and then taking the Euclidean distance
between different spike trains. The resulting distance matrix for
each population is then used to quantify stimulus discriminability
through the classification algorithm. Thus, the only difference
from the single-cell metric is that the spike trains of the cells
comprising a population are embedded in a vector space.
Themultineuronmetric allows for different kinds of embedding,

which is controlled by the “independence” parameter θ—the
“angle between cells.” This parameter allows interpolating be-
tween two versions of a population code: a summed-population
code and a labeled-line code. At θ= 0°, the metric corresponds to
a summed-population code, where responses of different cells are
embedded colinearly. Information about which cell fired which
spike is lost. This is optimal only if differences in the firing pattern
between cells in a population are not relevant for the decoding
tasks or if cells in a population are similarly tuned—this applies in
our case to receptors and local neurons. In contrast, information
about each spike’s origin is fully retained in a labeled-line code,
which is implemented at θ = 90° (orthogonal embedding). This is
desirable, if cells are tuned differently and represent different
aspects of a stimulus, like the ascending neurons.
To illustrate that the labeled-line decoder incorporates in-

formation about which neuron fired which spikes—the neuronal
identity of spikes—we provide a simplified example of how three
different stimuli can be distinguished with the summed-population
and the label-line decoder, respectively, based on surrogate re-
sponses from two neurons. Fig. S4A shows the surrogate spike
trains of both cells in response to the three different stimuli. To
simplify the argument and without loss of generality, we reduce
these spike trains to spike counts, which corresponds to applying
a filter with a large time constant τ. In response to stimulus 1, cell
A (green) and cell B (blue) fire three spikes each. Stimulus 2
evokes one spike in cell A and five spikes in cell B. The response
pattern for stimulus 3 is inverted: Now cell A fires five spikes and
cell B only one.
The summed-population decoder sums these spike counts

before computing pairwise distances between all stimuli. As the
sum of spikes in cell A and cell B is the same, the population
response to all three stimuli is represented by a 6; they cannot be
distinguished. In contrast, the labeled-line decoder does not pool
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the response of the two cells in the population. Here each re-
sponse is represented by an ordered pair of spike counts, which is
different for each stimulus. This is also reflected in the resulting
distance matrices (Fig. S4B). As the summed-population spike
counts are the same for all three stimuli, the distance matrix has
all zero entries and the summed-population decoder cannot
discriminate between the three stimuli (information 0 bit). The
labeled-line decoder, however, discriminates all three stimuli, as
all off-diagonal entries in the distance matrix exhibit nonzero
entries (information log23 = 1.6 bit). The labeled-line decoder
can distinguish stimulus 1 from both stimuli 2 and 3. In partic-
ular, it can also disambiguate stimuli 2 and 3, which differ only in
neuronal identity of responses (both stimuli evoke one spike in
one cell and five in the other, but in a different order). This or-
dering is the major difference for the summed-population de-
coder, and reflects the role of neuronal identity for the labeled-
line decoder.
Classifier. Responses were classified using a nearest-neighbor
clustering algorithm as in ref. 5. Nearness was given by the single
or multineuron metrics. We randomly selected one template
spike train from each of the eight songs. The remaining spike
trains were then classified as being evoked by the song to which
the nearest template belonged. This was repeated many times,
always with a new, randomly selected set of templates. We or-
ganized the classification results in a confusion matrix H(s,s′),
which shows the frequency with which a spike train being evoked
by song s was classified as being evoked by song s′. The average of
this matrix’s main diagonal denotes the fraction of correctly
decoded spike trains.
Estimation of information. The mutual information of this confusion
matrix I(s,s′) was used as a proxy for the information content of
the neural responses I(s,r) (1). Information is given by Iðs; rÞ
∝ Iðs; s′Þ ¼ ∑

s;s′
pðs; s′Þlog2

pðs; s′Þ
pðsÞpðs′Þ, where p(s,s′) is the entry in

the confusion matrix, pðsÞ ¼ ∑s′pðs; s′Þ ¼ 1=8 is the prior stim-
ulus probability, and pðs′Þ ¼ ∑s pðs; s′Þ is the marginal over the
decoded stimuli (6). Mutual information is 0 bit when the con-
fusion matrix is uniformly distributed, that is, when each entry has
the value 1/64. It is maximal [for eight stimuli log2(8) = 3 bit]
when there is a one-to-one relationship between spike trains and
classes, for example, when all entries are concentrated at the
matrix’s diagonal. As this measure is upwardly biased, we calcu-

lated the same quantity 10 times for random assignments between
responses and stimulus classes and subtracted this bias from the
naive estimator I(s,s′) (7). We expressed information either as
a rate in bit/s by dividing the information by the stimulus length
(maximal information rate being thereby 8/0.2 s = 15 bit/s) or as
information per spike (bit per spike) by normalizing the in-
formation rate by the cell’s firing rate. Firing rate was quantified
as the spike count divided by the length of the spike train segment
(200 ms).
Optimization of the metric’s parameters. Classification performance is
a function of the metric’s temporal resolution τ. We optimized
information with a grid search for τ ranging from 0.25 to 64 ms
(nine values, spaced linearly on a logarithmic scale). The τ used
for decoding are shown in Fig. S6. Receptors exhibited an in-
termediate range of τ between 4 and 8 ms with two outliers at 16
and 32 ms. The τ of local neurons were significantly smaller (P =
0.01), spanning a range of 3–4.2 ms. Ascending neurons had the
highest τ between 6.7 and 42 ms, being significantly greater than
those of local neurons (P= 0.003). For population decoding with
the multineuron metric, we used a single optimal τ for all cells in
a population.
In the main text, we consider only the information rates

obtained for two “extreme-value decoders” at θ = 0° (summed-
population) and at θ = 90° (labeled-line) for each population.
We have also determined information at the optimal θ for each
population by a grid search in the interval [0°, 90°]. As either of
the two decoders at 0° or 90° yielded near-optimal performance
for any population (median information loss 2%), we decided to
consider only those two for all analyses.

Statistics.All plots and statistics were based on average values for
each cell type or type of population, that is, over all recordings of a
cell type for the analysis of single cells and over unique, unordered
4-tuples for populations of cells. Tests—if not stated otherwise—
were either parametric (t test) or nonparametric (two-sided
Wilcoxon’s rank-sum test), depending on the outcome of a Jarque–
Bera test for normality with a significance level α = 0.05. No
correction for multiple comparisons was performed to avoid false
negatives, as we were interested in the outcome of each individual
pairwise comparison, not in the general detection of statistical
differences between groups.
All analysis was done in MATLAB (The MathWorks).
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Fig. S2. Two measures of decoder performance are highly correlated. In our dataset, both the mutual information and the percentage of correct classification
yield highly similar results for decoding of single cells as well as of populations (r2 = 0.97).
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Fig. S1. Kurtosis of the firing-rate distribution as an alternative measure of lifetime sparseness. Receptors 1.9 ± 0.7, local neurons 4.8 ± 2.7, ascending neurons
6.2 ± 3.6; receptors versus local neurons P = 0.008, receptors versus ascending neurons P = 2.1 × 10−4, local neurons versus ascending neurons P = 0.5. n.s.,
nonsignificant. P > 0.05, **P > 0.01, ***P < 0.001, rank-sum test.
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Fig. S3. Cell-type specificity of STA filters. Shown is the similarity of the STA filters of different specimens of the same cell type (intratype) and the similarity of
the STA filters of different cell types (intertype; same as Fig. 3C in the main text). n.s., nonsignificant. P > 0.05, *P < 0.05, **P < 0.01, rank-sum test.
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Fig. S4. Illustration of the summed-population and the labeled-line decoder. (A) Artificially generated responses of two cells (A and B) to three arbitrary
stimuli (Left). (Right) A representation of the spike counts by the summed-population and labeled-line decoder is shown. (B) Resulting distance matrices and
information values.
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Fig. S5. Information of the population decoder. (A) Information gain of the population with respect to the average information obtained by decoding them
individually. Receptors 2.0 ± 0.2, local neurons 1.5 ± 0.1, ascending neurons 2.5 ± 0.2; all P < 6 × 10−7, rank-sum test. Horizontal line at 1.0 indicates no gain.
***P < 0.001, rank-sum test. (B) Information of the summed-population versus that of the labeled-line decoder. Results for decoder performance in terms of %
correct look similar (Inset in Fig. 4B in the main text). Blue, receptors (n = 100 four-cell populations); red, local neurons (n = 160 four-cell populations, 5 different
combinations of cell types); green, ascending neurons (n = 910 four-cell populations, 35 different combinations of cell types).
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Fig. S6. Optimal timescales for decoding. Box plots show the τs that maximized the mutual information for each cell type. These determine the width of the α
functions with which spike trains were convolved in the decoding procedure and indicate the timescale at which the decoder operated.
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