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Summary of Literature Sources Used in This Study. The datasets
analyzed in this study were assembled through field work by the
author, use of existing collections at the Academy of Natural
Sciences, Florida Museum of Natural History, National Museum
of Natural History, and Paleontological Research Institution, and
literature compilation. These sources are the literature sources
used for these analyses. Further reading is coded as follows: [A]
denotes references that provided abundance data, [B] denotes
references that provided body size data and/or plates from which
measurements were made, and [O] denotes references that pro-
vided occurrence data.
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Fig. S1. A clade-independent structural equation model of direct and indirect effects fit to the pooled data for all bivalve species. Variables are abundance
(A), body size (B), geographic range size (G), and species duration (D). Values presented are model coefficients. Line thickness indicates effect size, and line type
denotes statistical significance; solid lines are significant at α = 0.05, and dashed lines are hypothesized effects that are nonsignificant at α = 0.05. Arrows
indicate positive effects, and the filled circle indicates negative effects.

Fig. S2. Map illustrating the distribution of fossil occurrences over the Paleogene of the Gulf and Atlantic Coastal Plains of the eastern United States. Points
are the centroids of each county containing one or more fossil occurrences in the database.
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Table S2. Multigroup structural equation models that differ in the extent to which coefficients vary among bivalve superfamilies
(denoted with an X) or are assumed to be equal

Model rank

Paths vary among clades

Direct Indirect Model selection Goodness of fit

A B G A B AIC ΔAIC AW χ2 df P

1 X X 53.073 0 0.377 11.073 9 0.271
2 X 53.192 0.119 0.355 15.192 11 0.174
3 X X X 55.629 2.556 0.105 9.629 7 0.211
4 X X X 56.404 3.331 0.071 10.404 7 0.167
5 57.356 4.283 0.044 23.356 13 0.038
6 X X X X 58.959 5.886 0.020 8.959 5 0.111
7 X X X 59.575 6.502 0.015 13.575 7 0.059
8 X X 60.568 7.495 0.009 18.568 9 0.029
9 X X X X X 62.787 9.714 0.003 8.787 3 0.032

10 X X 63.640 10.567 0.002 21.640 9 0.010

Paths linked directly to duration are direct effects. Paths linked to duration by geographic range are indirect effects. A, abundance; B, body size; G,
geographic range size; D, duration. Models were ranked using Akaike’s information criterion (AIC), with the relative support for each model summarized
by the Akaike weights (AW); ΔAIC is the AIC difference between each model and the best model. The model χ2 provides a measure of goodness of fit.
Multigroup models in which the direct effects of body size vary among superfamilies have the greatest support.

Table S1. Nonparametric Spearman rank order correlation tests
of the associations between biological factors and species
duration

Spearman ρ

Abundance vs. duration 0.27
Body size vs. duration 0.09
Geographic range vs. duration 0.39

Significance at α < 0.05 is indicated by bold type. When examined sepa-
rately, both abundance and geographic range size are significantly corre-
lated with duration.

Table S3. Direct effects of geographic range on duration when geographic extent is measured
relative to the maximum distance between fossiliferous localities over the Paleogene
(Paleogene) or over the individual durations of species (Duration)

Coefficient P

Extent (Paleogene) 2.16 <0.001
Extent (Duration) 1.28 <0.001

Both measures of geographic extent have a significant effect on species duration, but uncorrected measures
(Paleogene) show a stronger association because of the pooling of species from intervals characterized by
differing degrees of sampling.

Table S4. Direct effects of geographic range on duration when either extent or occupancy is
used to estimate species geographic range size

Coefficient AIC AW

Extent 1.28 565.33 0.82
A + B + E E, 1.21 568.34 0.18
Occupancy 0.57* 578.00 <<0.01
A + B + O O, 0.33 579.74 <<0.01

A, abundance; B, body size; E, geographic extent; O, occupancy. Significance at α < 0.05 is indicated by bold
type. Model selection was assessed using Akaike’s information criterion (AIC). The relative support for each
model is summarized using the Akaike weights (AW).
*P values between 0.05 and 0.1.

Harnik www.pnas.org/cgi/content/short/1100572108 3 of 4

www.pnas.org/cgi/content/short/1100572108


Table S5. Direct effects of biological factors on duration when taxa with narrow geographic distributions or estimated abundances
are either included or excluded from the dataset

Coefficients when single county and
museum-only species with estimated

abundances are included
Coefficients when single

county species are excluded

Coefficients when museum-only
species with estimated abundances

are excluded

Abundance 0.70 0.49 0.67*
Body size 0.17 0.05 0.09
Geographic range 1.28 1.09 1.15
A + B + G G, 1.21 G, 1.06 G, 1.08

Significance at α < 0.05 is indicated by bold type. Model results indicate that geographic range has a significant direct effect on species duration, regardless
of whether single county or rare species with estimated abundances are included or excluded. The apparent direct effect of abundance on duration weakens
when single county or rare species with estimated abundances are excluded from the dataset.
*P values between 0.05 and 0.1.

Other Supporting Information Files

Dataset S1 (PDF)

Harnik www.pnas.org/cgi/content/short/1100572108 4 of 4

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1100572108/-/DCSupplemental/sd01.pdf
www.pnas.org/cgi/content/short/1100572108

