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SI Text

Text S1—Analysis of the Whole HA Protein. In order to further verify
that our approach is capable of identifying functionally important
sites, we conducted a second set of experiments in which the
algorithm was provided with full HA sequences rather than
the receptor-binding domain (RBD) alone. The HA sequences
of the human pandemic and circulating human HINI1 strains
were collected from the National Center for Biotechnology Infor-
mation (NCBI) influenza database (1) following the same meth-
od described for the RBD analysis. The dataset consisted of
821 circulating human HIN1 and 673 pandemic HIN1 (pHIN1)
sequences.

We hypothesized that a significant number of the detected sites
would overlap with the sites selected when analyzing the RBD,
and that in general, most discriminative sites would be in the
RBD, taking into account that it consists of approximately 27%
of the whole HA sequence (the whole HA sequence is approxi-
mately 560 amino acids long). Indeed, for the pHIN1 versus
human seasonal HIN1 strains, 9 of the 18 most highly ranked
positions of the whole HA analysis (i.e., 50%; Table S1) were in
the RBD. Out of 10 highly ranked positions from the RBD ana-
lysis (Table 1), 7 appeared in the highly ranked set from the ana-
lysis of the entire HA. For the swine versus pH1N1 strains, 15 of
the 32 (approximately 47%, Table S2) highly ranked positions in
the full HA analysis were from the RBD sequence. Additionally,
11 out of the 13 (approximately 85%, Table 2) highly ranked
positions from the RBD analysis were ranked highly in the ana-
lysis of the whole HA. These results demonstrate the power of the
approach and its ability to identify the known functional regions
and residues, even when provided with a very large set of features.
Moreover, the analysis reinforces the importance of the highly
ranked residues selected.

Text S2—Experimental Methods. Generation of viruses. The eight
genes of the A/swine/NC/18161/02 (HIN1) virus were cloned into
a dual-promoter plasmid, pHW2000. The HA of A/swine/NC/
18161/02 was mutated with the QuikChange mutagenesis kit
(Stratagene) following the instructions of the manufacturer.
Reverse genetics (rg) viruses were generated by DNA transfec-
tion as described previously (2). Each viral HA segment was
sequenced to confirm the identity of the virus.

Hemagglutination assay. Hemagglutination assays were performed
as previously described (3). Six types of packed erythrocytes
(Rockland) were used in different concentrations: 0.5% for tur-
key, chicken, and goose RBCs; 0.75% for guinea pig and human
(group O) RBCs; and 1% for horse RBCs (4). We added 0.5%
bovine serum albumin (Sigma) to the horse RBCs. Virus titers
were normalized to 10%% egg 50% infective does (eIDsg) per
milliliter prior to the hemagglutination assay. Turkey red blood
cells were used to measure the elDsgs.

Mouse experiments. Six- to 8-wk-old female DBA/2J mice
(Jackson Laboratory) were housed at St. Jude Children’s Re-
search Hospital according to the institution’s Animal Care and
Use Committee guidelines. The experiments were performed
in compliance with relevant institutional policies of the National
Institutes of Health and the Animal Welfare Act. Mice were
sedated with 2,2,2-tribromoethanol (Avertin; Sigma) and intrana-
sally inoculated with 30 puL of virus diluted in phosphate buffer
saline (n = 5 mice per group). The mice were monitored daily for
survival and body weight loss over a period of 14 d. Any mouse
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showing more than 30% of body weight loss was considered to
have reached the experimental end point and was humanely
euthanized. The mouse-lethal dose (MLDs,) was calculated using
the method of Reed and Muench (5).

Text S3—Mutual Information Analysis with AVANA. We applied the
AVANA (Antigenic Variability Analyzer) method (6), a software
program that calculates entropy profiles from multiple sequence
alignments, to the same input datasets used in our study (see
Computational Methods). Specifically, we carried out two analyses
with AVANA, comparing seasonal human HINT1 versus pHIN1,
and swine HIN1 versus pHINI strains. For the human HIN1
versus pHINI1 dataset, AVANA selected 49 positions, which in-
cluded 8 of the 10 highly ranked positions detected in our study
(see Results in the main text and Table S5). When applied to the
pHINT1 and swine HIN1 dataset, AVANA detected 14 positions,
6 of which overlapped with the 13 highly ranked positions from
our approach (see Results in the main text and Table S6). Remark-
ably, position 133,, which was detected as discriminative by our
method and was shown to have a phenotypic effect in vivo (see
Results), was not identified by AVANA, reinforcing the advantage
of our method.

Text S4—Seasonal Human H1N1 Versus Swine HIN1 Strains. Swine and
human seasonal HIN1 sequences were collected from the NCBI
database (1), and a dataset was built as described in Computa-
tional Methods (main text). The resulting dataset consisted of 195
swine HIN1 and 525 human seasonal HIN1 sequences. We ap-
plied our computational approach to this set and obtained an
overall mean test accuracy of 98% (with 50 runs of 10-fold cross-
validation).

Text S5—Computational Methods. Two datasets were created as
described in the main text (Computational Methods): pHIN1
sequences versus prior circulating human strains, and pHIN1
sequences versus classical swine strains. These datasets were
analyzed using JBoost (http://jboost.sourceforge.net/) to identify
positions in HA that distinguish “pH1N1” isolates from “human
circulating” HINI isolates, as well as positions that distinguish
pHINI1 from “swine” H1NI isolates. JBoost is an open-source
Java implementation of the Adaboost (7) machine-learning algo-
rithm. This discriminative learning approach tries to identify the
features that best distinguish between different data categories.
Ultimately, classifiers in the form of decision trees called alter-
nating decision trees (ADTs) (8) are generated. The ADT algo-
rithm is an easily interpretable, boosting-based algorithm that is a
generalization of decision trees and boosting using decision
stumps. This algorithm also provides a measure of confidence,
called a classification margin, for each prediction. An example of
adecision tree created by the ADT method is presented in Fig. S3.
The rectangles in the decision tree are the decision (or splitter)
nodes, and the ovals are the prediction nodes; the values in each
oval correspond to the contribution of that node to the prediction
score. The number in each decision node represents the number
of the iteration in which that feature was selected. In order to
predict the label of a given example, we begin at the root of the
decision tree and traverse the tree, using the decision nodes and
summing the scores in the prediction nodes along the selected
path.

In our setting each data instance is an influenza HA sequence,
so the dimensionality of each data point is N = 155 for the re-
ceptor-binding site of the HA dataset. Each data instance consists
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of the amino acid sequence alone, without taking into account
functional annotations of the protein (e.g., glycosylation sites).
The data labels are the host species from which each isolate was
obtained: pHIN1, human circulating or swine. The algorithm
uses the data and labels to learn an ADT that can then be used
to predict which strain a certain sequence belongs to.

The ADT algorithm selects the set of positions that best dis-
criminate between the requested groups. In order to measure
the predictive power of our proposed method over test data, we
performed 50 runs of 5-fold cross-validation experiments over
100 iterations, producing 50 different runs altogether.

Stopping criteria. While boosting algorithms have been shown to
be empirically robust to overfitting, some simple criteria for
choosing the number of iterations have been suggested. Here
we used a stopping criterion based on the convergence of the dis-
tribution of margins over all training points. Specifically, let us
denote by m! the margin of the ith data point in iteration ¢,
and by S, the average margin over all data points in iteration
t: S, =32~ mi. Our stopping criterion was defined by

(S;41 —8,)* < &, where e = 1075,

Adjusting for biases in training set size. In order to balance the
sizes of the different sets of HA sequences (number of swine,
pHINI, and circulating human sequences), we used a standard
technique in boosting to account for biases in the label distribu-
tion and to reweight the data such that each label had equal
weight. This is easily done in boosting algorithms, where each
point i is associated with a weight w in each iteration, by
tweaking W, = (wj.wi,--w)') to be such that ¥, nnwh =
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on the different HA sequence sets in the initial rounds of training.

Measuring the informativeness of selected features. In order to as-
sess the importance of the selected features over the different
decision trees created, we developed a scoring function to rank
positions selected by the algorithm. Our scoring function is an
extension of the one suggested by Creamer et al. (9). Intuitively,
given a set of decision trees generated using many different parti-
tions of the data into training and test data, a feature is more
important if it appears in many of the trees and is selected in ear-
lier boosting iterations. Moreover, because our main concern is
predicting mutations that characterize the pH1N1 strain, our
scoring function also takes into account the relative contribution
of a given feature in assigning a sequence to the pHINI1 class.
More formally, the score of a given feature i is given by
S(i) = n;*my, *max,; (PN )> Where n; is the number of appear-
ances of feature 7 in the set of trees, m;;., is the mean iteration in
which feature i appears, and max,;)(pgn;) is the maximal value
of the pH1NT1 label prediction nodes taken over all of the decision
nodes that contain feature i. A larger contribution score implies a
greater importance of the feature for predictions related to the
pHINT strain.

Decision of the cutoff for top-ranked positions. In order to choose a
cutoff for a smaller subset from the list of ranked positions, we
looked for a set of positions that would cover 70% of the cumu-
lative distribution of the computed ranking scores. That is to say,
the sum of the scores of the positions that we chose for further
analysis consisted of 70% of the total ranking scores for all
detected positions.
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Fig. S1. A histogram of all T- and B-cell epitopes reported for the RBD of influenza A H1N1, or influenza A (unspecified) in the Immune Epitope Database.
Seventy-eight percent of the RBD sequence is covered by one or more epitopes.
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Fig. S2. The discriminating positions are not necessarily conserved. Scatter plot of the evolutionary conservation scores versus our calculated rank for the
positions that were detected as discriminative between the pH1N1 and the circulating human strains. The evolutionary conservation scores were calculated
using the ConSurf web server (http://consurf.tau.ac.il) (1). Higher conservation scores are given to evolutionarily variable sites. Evidently there is no correlation
between the conservation score and our rank.

1. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res

38:W529-W533.
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Fig. S3. Representative ADT obtained after 10 iterations. The ovals in the decision tree are the prediction nodes, and the rectangles represent the splitter
nodes. The final prediction score is obtained by starting from the score of the top prediction node and summing the scores of the relevant prediction nodes that

meet the conditions of the splitter nodes.
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Table S1. Highly ranked residues detected as discriminating between the
pH1N1 and human circulating H1N1 strains in the analysis of the entire HA

Position in Detected in RBD
structure 3lzg  Rank* Antigenic site? In RBD?* analysis?*
145 1 in Ca antigenic site yes yes
242 2 yes yes
317 3 no no
219 4 yes yes
206 5 in Ca antigenic site yes yes
171 6 in Ca antigenic site yes yes
261 7 yes yes
296 8 no no
225 9 in Ca antigenic site yes yes
-5 10 no no

55 11 no no
-1 12 no no
132 13 yes yes
305 14 no no
21 15 yes yes
301 16 no no

36 17 no no
275 18 no no

*Rank refers to the rank for contribution to discrimination (according to the ranking
function, see Methods). Antigenic site? refers to whether the position is in a known
antigenic site.

'In RBD? refers to whether the position is part of the RBD sequence (positions
114-268).

*Detected in RBD analysis? refers to whether the position was detected in the analysis
of the HA RBD sequences of the pH1N1 versus the circulating human H1N1 strains.
Positions are numbered as in the A/California/04/2009 H1N1 strain (PDB ID code 3lzg)
structure sequence; therefore, residues appearing before the first position of the
structure sequence are numbered with a minus sign (e.g., —5).
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Table S2. Highly ranked residues detected as discriminating between the pH1N1 and
swine H1N1 strains in the analysis of the entire HA

Position in Detected in RBD
structure 3lzg Rank* Antigenic site? In RBD?* analysis?*
149 1 yes yes
225 2 in Ca antigenic site yes yes
132 3 yes yes
171 4 in Ca antigenic site yes yes
186 5 yes yes
188 6 in Sb antigenic site yes yes
226 7 yes yes
-1 8 no no
324 9 no no
233 10 yes yes
71 11 no no
-5 12 no no
206 13 in Ca antigenic site yes yes
318 14 no no
530 15 no no
-12 16 no no
263 17 yes yes
131 18 yes yes
426 19 no no
51 20 no no
75 21 no no
300 22 no no
414 23 no no
-3 24 no no
527 25 no no
120 26 yes yes
-2 27 no no
377 28 no no
557 29 no no
200 30 yes yes
189 31 in Sb antigenic site yes yes
88 32 no no
-7 33 no no
146 34 yes yes

*Rank refers to the rank for contribution to discrimination (according to the ranking function, see
Computational Methods). Antigenic site? refers to whether the position is in a known
antigenic site.

In RBD? refers to whether the position is part of the RBD sequence (positions 114-268).

*Detected in RBD analysis? refers to whether the position was detected in the analysis of the HA
RBD sequences of the pH1N1 versus the classical swine strains. Positions are numbered as in the
structure of the A/California/04/2009 H1N1 strain (PDB ID code 3lzg); therefore, residues
appearing before the first position of the structure are numbered with a minus sign (e.g., —1).

Table S3. Differential binding of reverse genetics A/swine/NC/18062/02, A/swine/NC/18062/02-HA133,, A/swine/NC/18062/02-HA149, A/
TN/560-1/09, A/TN/560-1/09-HA133,, and A/TN/560-1/09-HA149 with different erythrocytes as measured by hemagglutination assay

rg-sw/NC/18062/ rg-sw/NC/18062/ rg-TN/560-1/ rg-TN/560-1/

Erythrocytes type rg-SW/NC/02 02-HA1334 02-HA149 rg-TN/560-1/09 09-HA133, 09-HA149
Turkey 32 32 32 32 32 32
Chicken 128 32 32 16 16 16

Goose 64 16 16 32 32 32
Guinea pig 24 4 8 32 32 32

Horse <1 <1 <1 <1 <1 <1
Human (type O) 24 4 4 16 16 16
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Table S4. Experimental validation of residues discriminating classical swine HIN1 and pH1N1 strains

Rank Residue number in structure 3lzg Virus rescued* HA assay* MLDs, (logse)"
1 149 rg-Sw/NC/02-HA-R149K D <15
rg-TN/560-HA-K149R S 3.5
2 171 rg-NC/02-HA-N171D did not rescue ND —
rg-TN/560-HA-D171N S 2.17
3 225 ND ND —
ND ND —
4 132 rg-Sw/NC/02-HA-T132S S 2.53
ND ND —
5 1334 rg-Sw/NC/02-HA-R133,K D <15
rg-TN/560 HA-K133,R S 3.38

*ND: not done, D: different from parental strain, S: same as parental strain.
'SW/NC/02 MLDsg: 10245, TN/560 MLDsq: 1024,

Table S5. Highly ranked residues detected as discriminating between the pH1N1 and human

seasonal H1N1 strains by AVANA (6) and the method presented here

Position in structure 3lzg Appears in AVANA analysis Appears in our highly ranked set
124 yes no
131 yes no
132 yes yes
133 yes no
136 yes no
138 yes no
140 yes no
142 yes no
144 yes no
145 yes yes
149 yes no
152 yes no
155 yes no
156 yes no
158 yes no
159 yes no
160 yes no
163 yes no
169 yes no
171 yes yes
173 yes yes
182 yes no
186 yes no
187 yes no
188 yes no
189 yes no
192 yes no
193 yes no
196 yes no
197 yes no
198 yes no
199 yes no
203 yes no
205 yes no
206 no yes
208 yes no
211 yes no
214 yes no
219 yes yes
225 no yes
230 yes no
237 yes no
242 yes no
244 yes no
248 yes no
252 yes no
253 yes no
260 yes no
261 yes yes
263 yes yes
264 yes yes

Positions appearing in both analyses are marked in bold.
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Table S6. Highly ranked residues detected as
discriminating between the pH1N1 and swine H1N1 strains

by AVANA (6) and the method presented here

Position in Appears in AVANA  Appears in our highly
structure 3lzg analysis ranked set
131 no yes
132 yes yes
1335 no yes
145 yes no
149 yes yes
171 yes yes
186 yes yes
188 no yes
189 yes yes
200 no yes
206 no yes
208 yes yes
210 yes no
219 yes no
225 no yes
226 no yes
227 yes no
242 yes no
261 yes no
263 yes no
264 yes no

Positions appearing in both analyses are marked in bold.
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