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SI Materials and Methods
Cell Culture and Image Acquisition. Fluorescence observations were
done with NG108-15 cells transfected with a pEGFP (enhanced
green fluorescent protein)-actin vector (Clontech) to fluores-
cently label the actin cytoskeleton. Transfection was performed
using Nanofectin (PAA) according to the product manual. Cells
were cultured in Dulbecco’s Modified Eagle Medium (PAA)
supplemented with 10% fetal bovine serum (PAA), 100 U∕mL
penicillin/streptomycin (Sigma) and 10 mM Hepes (Sigma). To
ensure cell viability and pH stability during the observation per-
iod, the petri dish was placed in a sealed temperature controlled
chamber. Furthermore, the objective was heated to 37 °C to
prevent cooling of the samples. Fluorescence image time series
were recorded for 5–20 min with 3–6 s time resolution using an
oil immersion objective [63× 1.4 NA (numerical aperture), Leica
Microsystems] on a confocal laser scanning microscope (TCS
SP2 AOBS, Leica Microsystems) with a resolution of 1;024×
1;024 pixel and 4× line average in bidirectional mode.

Measurement of the Viscoelastic Properties. Scanning force micro-
scopy (SFM) measurements were recorded using a NanoWizard
SFM (JPK Instruments) placed on an inverted microscope DM
IRB (Leica Microsystems). Commercial cantilevers (NANO-
SENSORS; Nano World) with spring constants of approximately
0.02–0.06 N∕m were modified as described previously (1) by
gluing polystyrene beads (Seradyn Particle Technology; radius
approximately 2.8 μm) to the tip. Oscillatory drive signals neces-
sary to perform frequency-dependent viscoelasticity measure-
ments were generated by a lock-in amplifier (SR850; Stanford
Research Systems). Phase and amplitude differences between
the applied modulation and the cantilever response signal were
recorded. Cells were placed on commercial glass slides (Super-
frost-Plus, Menzel–Gläser). A detailed description of rheological
SFM measurements on isolated cells has previously been pub-
lished (1, 2).

For frequency-dependent measurements, the cantilever slowly
approached the sample, whereas an oscillation was superimposed
on the cantilever. This experiment was done several times with
different frequencies (0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 30 Hz). Using
a standard rheology approach (1–3), the measured stress and
strain signals are expressed in terms of frequencies, and thus a
frequency-dependent complex dynamic elasticity modulus E� ¼
E0 þ iE00 is measured.

The following gives the calculations that allow to extract the
viscoelastic properties like relaxation time and the elastic relaxa-
tion modulus from frequency-dependent measurements of the
storage modulus E0ðωÞ and the loss modulus E00ðωÞ. We use a vis-
coelasticity model to relate the SFMmeasurements to the growth
cones’ viscoelastic properties. Wottawah et al. (3) have shown
that the viscoelastic behavior of cells can be described by a vis-
coelastic three parameter model where elastic and viscous ele-
ments are arranged in parallel (Voigt–Model), combined with
a viscous element that is in series to the previous pair (Fig. S2).
For each of the three elements the stress can be related to the
strain:

σ1 ¼ η1 � _u [S1]

σ2 ¼ η2 � _u [S2]

σ3 ¼ E3 � u: [S3]

Furthermore, the geometry constraints the total stress to be
σ ¼ σ1 ¼ σ2 þ σ3 and the total displacement to be u ¼ u1 þ u2 ¼
u1 þ u3. Combining these equations, one finds a general differ-
ential equation that describes the behavior of such a model:

a1 _uþ a2ü ¼ σ þ b1 _σ; [S4]

with the parameters expressed in terms of η1, η2, and E3. Eq. S4
can also be derived more general as the first terms of a series
expansion (4). Because the frequency-dependent properties of
this differential equation are required, we used the Fourier trans-
formation method to solve this equation further. Expressing uðtÞ
and σðtÞ as its Fourier transform the time derivatives can be
obtained as _uðtÞ ¼ iωuðtÞ, üðtÞ ¼ −ω2uðtÞ, and _σðtÞ ¼ iωσðtÞ. Thus
Eq. S4 is solved to be:

σðtÞ ¼
�
ω2ða1b1 − a2Þ
1þ ω2b1

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
E0ðωÞ

þ i
ωa1 − ω3a2b1
1þ ω2b1

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
E00ðωÞ

�
uðtÞ: [S5]

This is just in the form to identify the storage modulus E0ðωÞ
and the loss modulus E00ðωÞ with fit parameters a1, a2 and b1:

E0 ¼ ω2ða1b1 − a2Þ
1þ ω2b1

2
[S6]

E″ ¼ ωa1 − ω3a2b1
1þ ω2b1

2
: [S7]

This model is used to fit the measured complex elastic modulus
as shown in Fig. 1 of the main text. The fit parameters relate
to the viscoelastic steady state parameters by τR ¼ b1 ,η ¼ a1,
E ¼ a

1
2

a1b1−a2
, where τR is the relaxation time, η is the steady state

viscosity and E is the Young’s modulus.
Transforming the frequency-dependent complex dynamic

modulus into the time domain yields the time-dependent relaxa-
tion modulus, which is required for the internal force calculation:

EðtÞ ¼ a1b1 − a2
b1

2
eð−t∕b1Þ þ a2

b1
δðtÞ: [S8]

As the SFM measures E0ðωÞ and E00ðωÞ, Eqs. S6 and S7 can be
used as fit functions to extract the three parameters a1, a2, and b1
that fully describe the model.

Theory of Viscoelasticity to Calculate Internal Forces. To gain the
forces that drive retrograde actin flow within the lamellipodium
of neuronal growth cones, we extended linear elasticity theory to
the viscoelastic regime. Linear elasticity theory (5, 6) connects
stress σ and strain u. The simplest application is Hooke’s law
for a 1D deformation of an elastic:

σ ¼ E � u; [S9]

with E being the Young’s modulus. In the ideal case of pure elas-
tic deformation, the stress does not decrease over time if the
deformation persists. The other extreme is a pure viscous defor-
mation, in which the stress in the object relaxes immediately.
Here, the stress only depends on the speed of the deformation,
represented by the strain rate _u ¼ du∕dt:

σ ¼ η _u; [S10]
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where η is the steady state viscosity. Theory of viscoelasticity com-
bines both types of deformation. If the stress resulting from a
known deformation is sought, the Boltzmann superposition prin-
ciple is useful (4). This principle states that the effect of a com-
pound cause is the sum of the effects of the separated individual
causes. Thus the strain history is considered as a composition of
single deformation pulses:

σðtÞ ¼
Z

t

−∞
Eðt − τÞ du

dτ
dτ: [S11]

If the time-dependent relaxation modulus EðtÞ and the strain
uðtÞ are known, the time-dependent stress σðtÞ can be calculated.
To reach a similar description in 3D, it is necessary to change to a
tensorial description of strain and stress. The strain tensor uij is
calculated at each point in the object from the deformation vector
~u by

uij ¼
1

2

�
∂ui
∂xj

þ ∂uj
∂xi

þ ∂ui
∂xj

∂uj
∂xi

�
; [S12]

and for small deformations uij, this equation can be linearized by
neglecting the last term: uij ¼ 1∕2ð∂ui∕∂xj þ ∂uj∕∂xiÞ. The linear-
ization is valid in the system of growth cones, because during the
relaxation time, the flow deforms the lamellipodium by less than
5%. Deriving Hooke’s law in three dimensions leads to an expres-
sion in which a fourth order tensor Cijkl is required to connect
stress and strain:

σij ¼ Cijklukl: [S13]

Here, the Einstein sum convention is used. Using symmetry
arguments and assuming a homogeneous, isotropic material, it
can be shown (5) that the complicated fourth order elastic mod-
ulus tensor Cijkl can be reduced to two nonzero values. These two
numbers are called Lamé coefficients λ;μ, and Eq. S13 reduces to:

σij ¼ λukkδij þ 2μuij; [S14]

where δij is the Kronecker Delta. This relation can be converted
to use the bulk properties Young’s modulus E and Poisson ratio ν
to calculate the stress:

σij ¼
E

1þ ν

�
uij þ

ν

1 − 2ν
ukkδij

�
: [S15]

Recalling the Boltzmann superposition principle Eq. S11, the
time-dependent stress can be calculated by:

σijðtÞ ¼
Z

t

−∞

Eðt − τÞ
1þ ν

�
duij
dτ

þ ν

1 − 2ν

dukk
dτ

δij

�
dτ: [S16]

Internal Force Calculation. To calculate the time-dependent stress
from the measured deformation data, the viscoelastic constitutive
equation has to be integrated:

σijðtÞ ¼
Z

t

−∞

Eðt − τÞ
1þ ν

�
duij
dτ

þ ν

1 − 2ν

dukk
dτ

δij

�
dτ: [S17]

The integral of Eq. S17 is solved using the measured data for
the strain rate, which arises from the deformation between two
confocal image recordings (separated by time Δt). One can
separate the process in four steps:

1. Detection of the flow fields using previously described corre-
lation algorithms (7).

2. Calculation of the static stress field that is generated by the
observed deformation during two successive images. This
results in one tensorial stress field for each image pair.

3. Accumulating the stresses from the previous deformations,
whereas integrating the decay of these stresses according to
the viscous dissipation.

4. Calculation of the internal forces using the local force balance.

Step 1:Detection of the retrograde actin flow. This step has been
already extensively discussed previously, and hence we refer the
interested reader to previous articles (7).

Step 2: Calculation of the static stress. We assume that the strain
rate _uij is constant during the time interval between two confocal
image recordings (Δt), therefore the integral for this fixed time
sequence becomes independent of this constant strain rate.
Hence, the integral can be split into subsequent time parts of
length Δt.

The solution for the most recent time interval ½0;Δt� can be
calculated to yield:

σijðΔtÞ½0;Δt� ¼
Z

Δt

0

EðΔt − τÞ
1þ ν

�
duij
dτ

þ ν

1 − 2ν

dukk
dτ

δij

�
dτ [S18]

¼ 1

1þ ν

�
Δuij
Δt

þ ν

1 − 2ν

Δukk
Δt

δij

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α0

Z
Δt

0

EðΔt − τÞdτ [S19]

¼α0

Z
Δt

0

�
a1b1 − a2

b1
2

eð−ðΔt−τÞ∕b1Þ þ a2
b1

δðΔt − τÞ
�
dτ: [S20]

Because the integral goes over half of the delta function, the
second term is trivial:

Z
Δt

0

a2
b1

δðΔt − τÞdτ ¼ 1∕2 � a2
b1

: [S21]

The first part of the integral can be calculated by:

Z
Δt

0

a1b1 − a2
b1

2
eð−ðΔt−τÞ∕b1Þdτ ¼ a1b1 − a2

b1
2

eð−Δt∕b1Þ
Z

Δt

0

eðτ∕b1Þδτ

[S22]

¼ a1b1 − a2
b1

2
eð−Δt∕b1Þ½b1eτ∕b1 �Δt0 [S23]

¼ a1b1 − a2
b1

ð1 − e−Δt∕b1Þ; [S24]

which reveals the result for the first time interval:

σijðΔtÞ½0;Δt� ¼ α0 �
�
a1b1 − a2

b1
ð1 − e−Δt∕b1ÞÞ þ a2

2b1

�
: [S25]

Step 3: The previous equation calculates the stress from the
most recent deformation data. Unrelaxed stress from previous
deformations also has to be included. We solve this problem
by separating the integral of the deformation history into the
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discrete time spans that we measured, which is motivated by the
sketch:

Z
0

−∞
¼ ∑

m¼t∕Δt

n¼1

Z
−ðn−1Þ×Δt

−n×Δt
: [S26]

Hence, we separate the integral into the sum of times. Each
integral in this sum represents the time between two images.
The goal is to derive a relation for each of these time spans,
and then weight them by the prefactor that corresponds to the
relaxation up to the current moment. Together with the time
interval ½0;Δt�, this yields the full history. Now the problem
reduced to calculating for each previous time interval ½−n � Δt; −
ðn − 1ÞΔt� the integral:

σijðΔtÞ½−nΔt;−ðn−1ÞΔt� ¼
Z

−ðn−1ÞΔt

−nΔt

EðΔt − τÞ
1þ ν

��
duij
dτ

�
n

þ ν

1 − 2ν

�
dukk
dτ

�
n
δij

�
dτ: [S27]

Similar as in the second step, we assumed that the deformation
rate was constant during the recording of subsequent images.The
index n at the curly brackets denoted the average deformation
rate in the nth interval. Hence the non-time-dependent para-
meters can be separated and we combine them in the αn para-
meter:

σijðΔtÞ½−nΔt;−ðn−1ÞΔt� ¼
1

1þ ν

��
duij
dτ

�
n
þ ν

1 − 2ν

�
dukk
dτ

�
n
δij

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

αn

×
Z

−ðn−1ÞΔt

−nΔt
EðΔt − τÞdτ

[S28]

¼αn

Z
−ðn−1ÞΔt

−nΔt

a1b1 − a2
b1

2
eð−ðΔt−τÞ∕b1Þ þ a2

b1
δðΔt − τÞdτ: [S29]

The last term vanishes for n ≥ 1 and the first term reduces to:

σijðΔtÞ½−nΔt;−ðn−1ÞΔt� ¼ αn

Z
−ðn−1ÞΔt

−nΔt

a1b1 − a2
b1

2
eð−ðΔt−τÞ∕b1Þdτ [S30]

¼αn
a1b1 − a2

b1
2

eð−Δt∕b1Þ½b1eτ∕b1 �−nΔtþΔt
−nΔt [S31]

¼αn
a1b1 − a2

b1
eð−Δt∕b1Þeð−Δt∕b1ÞnðeΔt∕b1 − 1Þ [S32]

¼αn
a1b1 − a2

b1
eð−Δt∕b1Þnð1 − e−Δt∕b1Þ: [S33]

The last expression can be calculated using the measured strain
rates at the nth time interval, and the viscoelastic parameters.

For the full stress tensor this calculation has to be done for
the previous history, and then values are summed up. It has to
be mentioned that the stress field of previous times we need
to deform according to the measured deformation rates. This
is necessary because a position, which is at a given point in the
lab system, was previously at a different position. As the flow is
known, this flow of stress can be calculated using the retrograde
flow fields.

Step 4: Finally, the stress tensor has to be translate into a force.
This is done by recognizing that a gradient in stress will immedi-
ately relax, unless it is compensated by an internal force in the
system (5):

f inti ¼ −
∂σik
∂xk

: [S34]

Here the Einstein sum convention applies.
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Fig. S1. Retrograde actin flow in neuronal growth cones. The color coded flow field represents the retrograde flow amplitude in μm∕min, the arrows (black)
give the direction of flow. (A) Example of a very homogeneous retrograde flow field (this data was already used in a previous publication) (7). (B) Retrograde
flow field of the growth cone presented in Fig. 2 of the main text. (C) Retrograde flow field of the growth cone presented in Fig. 3 of the main text.
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Fig. S2. Extended Kelvin–Voigt Model. Sketch of the viscoelastic model used to fit the SFM data presented in Fig. 1.

Movie S1. Fluorescence time series a GFP-actin transfected NG108-15 neuronal growth cone.

Movie S1 (AVI)

Movie S2. Detected retrograde flow field for a NG108-15 growth cone as presented inMovie S1. The color coding represents the flow velocity in μm∕min, and
the black arrows denote the direction of flow.

Movie S2 (AVI)
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Movie S3. Calculated force field shows distribution and dynamics of internal forces, as shown in Fig. 2 of the main text. Color coding gives the force
magnitude in Pa, arrows indicate the direction of the forces.

Movie S3 (AVI)

Movie S4. Traction stress field of a neuronal growth cone exerted onto a laminin coated elastic polyacrylamide gel substrate as shown in Fig. 3 of the main
text. Color code gives traction stress magnitude in Pa.

Movie S4 (AVI)

Movie S5. Internal stress field for a growth cone on a laminin coated polyacrylamide substrate as shown in Fig. 3 of the main text. This growth cone
corresponds to the growth cone shown in Movie S4, but now the internal stresses are presented. Color code gives internal stress magnitude in Pa.

Movie S5 (AVI)
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