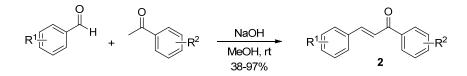
Supporting Information

Design, Synthesis and Biological Evaluation of Triazolo-pyrimidine Derivatives as Novel Inhibitors of Hepatitis B Virus Surface Antigen (HBsAg) Secretion

Wenquan Yu^{1,2,3}, Cally Goddard², Elizabeth Clearfield², Courtney Mills², Tong Xiao⁴, Haitao Guo³, John D. Morrey⁵, Neil E. Motter⁵, Kang Zhao¹, Timothy M. Block^{2,3}, Andrea Cuconati^{2,4}*, Xiaodong Xu^{2,4}*

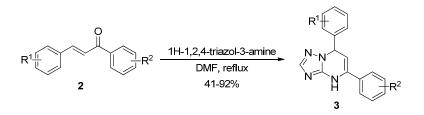
¹ School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China; ² Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, PA 18902, USA; ³ Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA 18902, USA; ⁴ Pharmabridge, Inc., Doylestown, PA 18902, USA; ⁵ Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA

* michaelxu@pharmabridgegroup.com & acuconati.research@hepb.org

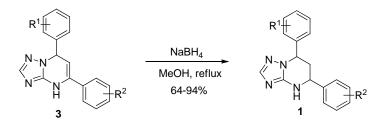

CONTENTS:

1.	Synthesis of Compounds 1, 3 and 4	S2
2.	NMR Spectra of Compounds 1, 3 and 4	S15
3.	X-ray Structure and Data of 1a	S35
4.	Effect of 1a and 3c on Complete Blood Count and Serum Chemistry	S39
5.	Effect of 1a and 3c on Mice's Weight	S46
6.	Pharmacokinetics and Bioavailability of 1a and 3c	S46

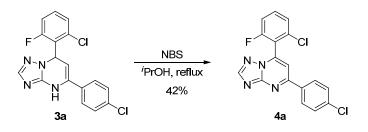
1. Synthesis of Compounds 1, 3 and 4


General information. ¹H NMR spectra were recorded on 500 MHz or 300 MHz INOVA VARIAN (75 MHz for ¹³C NMR; 282 MHz for ¹⁹F NMR) spectrometer. Chemical shifts values are given in ppm and referred as the internal standard to TMS (tetramethylsilane). The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet and dd, doublet of doublets. The coupling constants (J) are reported in Hertz (Hz). Melting points were determined with a national micromelting point apparatus without corrections. Mass Spectra were obtained on an Aligent LC-MS spectrometer (ES-API, Positive). Silica gel column chromatography was performed over silica gel 100-200 mesh, and the eluent was a mixture of ethyl acetate (EtOAc) and Hexanes. All the tested compounds possess a purity of at least 95% as determined by HPLC. Analytical HPLC was run on the Agilent 1100 HPLC instrument, equipped with Phenomenex® C12 column. Eluent system was: A (MeCN, 0.05%TFA) and C (H₂O, 0.05%TFA); flow rate = 1 mL/min; Method A: 60%A, 40%C, λ = 219 nm; Method B: 70%A, 30%C, $\lambda = 254$ nm; Method C: 80%A, 20%C, $\lambda = 254$ nm. Retention times (t_R) are given in minutes. Chiral resolution of compound 1a was carried out on the Waters 2695 HPLC instrument, equipped with CHIRALPAK® AD-RH column. Eluent system was: 30%A (H₂O), 70%B (EtOH); flow rate = 0.5 mL/min; λ = 219 nm.

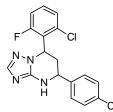
a. Preparation of 1,3-Diaryl-propenone 2


General Procedure A: To a stirred solution of substituted benzaldehyde (20 mmol) and acetophenone (20 mmol) in methanol (15 mL), was added dropwise a solution of sodium hydroxide (26 mmol) in methanol (15 mL). The resulting mixture was stirred at room temperature for 6 h, then filtered and washed with water to yield the crude product. Pure compound **2** was got by recrystallization from methanol or through silica gel column chromatography (EtOAc/Hexanes 2:98) as a light yellow solid in 38-97% yield.

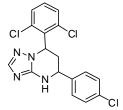
b. Preparation of 5,7-Diaryl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine 3.


General Procedure B: A solution of **2** (5 mmol) and 3-amino-1,2,4-triazole (7.5 mmol) in DMF (5 mL) was refluxed for 2 h. The reaction mixture was cooled to room temperature, diluted with water (50 mL) and stirred sufficiently. The resulting mixture was filtered and washed with water to give the crude product, which was further purified either by recrystallization from EtOAc or through silica gel column chromatography (EtOAc/Hexanes 30:70) to afford **3** as a white solid in 41-92% yield.

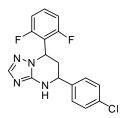
c. Synthesis of 5,7-Diaryl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine 1.


General Procedure C: A sample of sodium borohydride (10 mmol) was added to a suspension of **3** (1 mmol) in methanol (5 mL). The reaction mixture was refluxed for 30 min, then cooled to room temperature, diluted with water (50 mL) and stirred sufficiently. The resulting mixture was filtered and washed with water to give the crude product, which was further purified by recrystallization from a mixture of EtOAc and Hexanes to afford **1** as a white solid in 64-94% yield.

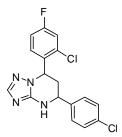
d. Synthesis of 7-(2-Chloro-6-fluorophenyl)-5-(4-chlorophenyl)-[1,2,4]triazolo [1, 5-a]pyrimidine 4a.


A sample of NBS (299 mg, 1.68 mmmol) was added to a solution of **3a** (101 mg, 0.28 mmol) in isopropanol (5 mL). The reaction mixture was refluxed for 36 h, then cooled to room temperature, treated with saturated NaHCO₃ solution (20 mL) and extracted with EtOAc (15 mL x 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The given residue was purified through silica gel column chromatography (EtOAc/Hexanes 30:70) to afford a 42 mg white solid of **4a** in 42% yield.

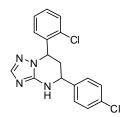
7-(2-Chloro-6-fluorophenyl)-5-(4-chlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1a).


The product was obtained according to general procedure C, as a white solid. Yield: 89%. m.p. 227-228 °C. $R_f = 0.16$ (EtOAc/Hexanes 33.3:66.7). MS: MH⁺ = 363. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.54-7.15 (m, 8H, CH_{ar}), 5.98-5.94 (m, 1H, CH), 4.82-4.78 (m, 1H, CH), 2.47-2.13 (m, 2H, CH₂). HPLC: 99.8% (Method A, t_R = 3.67 min).

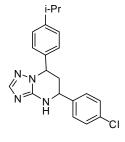
5-(4-Chlorophenyl)-7-(2,6-dichlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1b).


The product was obtained according to general procedure C, as a white solid. Yield: 88%. m.p. 246-247 °C. $R_f = 0.19$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 379. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.55-7.35 (m, 8H, CH_{ar}), 6.17 (dd, *J* = 11.0, 6.5 Hz, 1H, CH), 4.81 (d, *J* = 10.0 Hz, 1H, CH), 2.42-2.30 (m, 2H, CH₂). HPLC: 98.2% (Method A, t_R = 4.10 min).

5-(4-Chlorophenyl)-7-(2,6-difluorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1c).

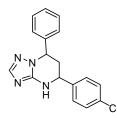

The product was obtained according to general procedure C, as a white solid. Yield: 84%. m.p. 245-246 °C. $R_f = 0.19$ (EtOAc/Hexanes 75:25). MS: $MH^+ = 347$. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.52-7.11 (m, 8H, CH_{ar}), 5.80 (dd, *J* = 11.0, 4.5 Hz, 1H, CH), 4.79 (d, *J* = 11.0 Hz, 1H, CH), 2.46-2.18 (m, 2H, CH₂). HPLC: 98.9% (Method A, $t_R = 3.35$ min).

7-(2-Chloro-4-fluorophenyl)-5-(4-chlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1d).


The product was obtained according to general procedure C, as a white solid. Yield: 94%. m.p. 224-225 °C. $R_f = 0.14$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 363. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.58-7.17 (m, 8H, CH_{ar}), 5.73 (d, *J* = 3.5 Hz, 1H, CH), 4.78 (d, *J* = 10.5 Hz, 1H, CH), 2.44-2.18 (m, 2H, CH₂). HPLC: 96.8% (Method A, t_R = 4.12 min).

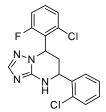
7-(2-Chlorophenyl)-5-(4-chlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1e).

The product was obtained according to general procedure C, as a white solid. Yield: 68%. m.p. 202-204 °C. $R_f = 0.14$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 345. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.56-7.27 (m, 9H, CH_{ar}), 7.08 (s, 1H, NH), 5.75 (s, 1H, CH), 4.78 (d, *J* = 10.5 Hz, 1H, CH), 2.46-2.16 (m, 2H, CH₂). HPLC: 98.8% (Method A, t_R = 3.63 min).

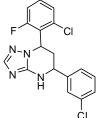

5-(4-Chlorophenyl)-7-(4-isopropylphenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1f).

The product was obtained according to general procedure C, as a white solid. Yield: 75%. m.p. 194-195 °C. $R_f = 0.09$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 353. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.47-7.44 (m, 3H, CH_{ar}), 7.41-7.38 (m, 2H, CH_{ar}), 7.18 (d, *J* = 8.0 Hz, 2H, CH_{ar}), 7.11 (d, *J* = 8.0 Hz, 2H, CH_{ar}), 5.34 (dd, *J* = 10.5, 5.0 Hz, 1H, CH), 4.70 (dd, *J* = 11.5, 2.5 Hz, 1H, CH), 2.90-2.82 (m, 1H, CH), 2.42-2.07 (m, 2H, CH₂), 1.18 (d,

J = 7.0 Hz, 6H, CH₃). HPLC: 99.8% (Method A, t_R = 4.99 min).


5-(4-Chlorophenyl)-7-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1g).

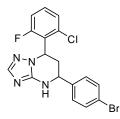
The product was obtained according to general procedure C, as a white solid. Yield: 77%. m.p. 210-212 °C. $R_f = 0.09$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 311. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.48-7.46 (m, 3H, CH_{ar}), 7.42-7.39 (m, 2H, CH_{ar}), 7.35-7.26 (m, 3H, CH_{ar}), 7.22-7.20 (m, 2H, CH_{ar}), 5.40-5.37 (m, 1H, CH), 4.71 (dd, *J* = 11.0, 2.5 Hz, 1H, CH), 2.45-


2.06 (m, 2H, CH₂). HPLC: 99.8% (Method A, $t_R = 3.11$ min).

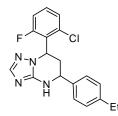
7-(2-Chloro-6-fluorophenyl)-5-(2-chlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1h).

The product was obtained according to general procedure C, as a white solid. Yield: 90%. m.p. 271-272°C. $R_f = 0.17$ (EtOAc/Hexanes 33.3:66.7). MS: MH⁺ = 363. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.70-7.15 (m, 8H, CH_{ar}), 6.05-6.00 (m, 1H, CH), 5.16-5.13 (m, 1H, CH), 2.47-2.08 (m, 2H, CH₂). HPLC: 99.4% (Method A, $t_R = 3.64$ min).

7-(2-Chloro-6-fluorophenyl)-5-(3-chlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1i).

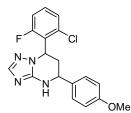

The product was obtained according to general procedure C, as a white solid. Yield: 80%. m.p. 262-263 °C. $R_f = 0.13$ (EtOAc/Hexanes 33.3:66.7). MS: MH⁺ = 363. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.56-7.17 (m, 8H, CH_{ar}), 5.94 (s, 1H, CH), 4.81 (s, 1H, CH), 2.48-2.15 (m, 2H, CH₂). HPLC: 99.7% (Method A, $t_R = 3.16$ min).

7-(2-Chloro-6-fluorophenyl)-5-(4-fluorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1j).


The product was obtained according to general procedure C, as a white solid. Yield: 68%. m.p. 240-241 °C. $R_f = 0.22$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 347. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.52-7.15 (m, 8H, CH_{ar}), 5.98-5.93 (m, 1H, CH), 4.82-4.78 (m, 1H, CH), 2.48-2.14 (m, 2H, CH₂). HPLC: 98.4% (Method A, $t_R = 3.86$ min).

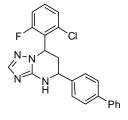
5-(4-Bromophenyl)-7-(2-chloro-6-fluorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1k).

The product was obtained according to general procedure C, as a white solid. Yield: 64%. m.p. 246-247 °C. $R_f = 0.22$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 409. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.58-7.15 (m, 8H, CH_{ar}), 5.97-5.95 (m, 1H, CH), 4.80-4.77 (m, 1H, CH), 2.43-2.15 (m, 2H, CH₂). HPLC: 99.5% (Method A, $t_R = 4.09$ min).

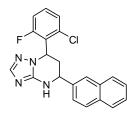

7-(2-Chloro-6-fluorophenyl)-5-(4-ethylphenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (11).

The product was obtained according to general procedure C, as a white solid. Yield: 90%. m.p. 230-231 °C. $R_f = 0.28$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 357. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.44-7.15 (m, 8H, CH_{ar}), 5.97-5.93 (m, 1H, CH), 4.75-4.72 (m, 1H, CH), 2.60 (q, *J* = 7.5 Hz, 2H, CH₂), 2.47-2.15 (m, 2H, CH₂), 1.17 (t, *J* = 7.5 Hz, 3H, CH₃). HPLC:

99.8% (Method A, $t_R = 3.67$ min).

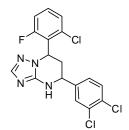

7-(2-Chloro-6-fluorophenyl)-5-(4-methoxyphenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1m).

The product was obtained according to general procedure C, as a white solid. Yield: 86%. m.p. 221-222 °C. $R_f = 0.20$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 359. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.41-6.93 (m, 8H, CH_{ar}), 5.96-5.92 (m, 1H, CH), 4.72 (d, *J* = 10.5 Hz, 1H, CH), 3.75 (s, 3H, OCH₃), 2.46-2.14 (m, 2H, CH₂). HPLC: 99.4% (Method A, $t_R = 3.03$

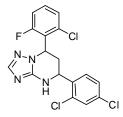

min).

5-([1,1'-Biphenyl]-4-yl)-7-(2-chloro-6-fluorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1n).

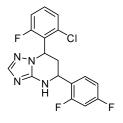
The product was obtained according to general procedure C, as a white solid. Yield: 84%. m.p. 213-215 °C. $R_f = 0.20$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 405. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.69-7.16 (m, 13H, CH_{ar}), 6.01-5.97 (m, 1H, CH), 4.85-4.82 (m, 1H, CH), 2.47-2.21 (m, 2H, CH₂). HPLC: 99.0% (Method A, $t_R = 4.92$ min).


7-(2-Chloro-6-fluorophenyl)-5-(naphthalen-2-yl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (10).

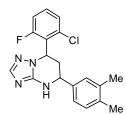
The product was obtained according to general procedure C, as a white solid. Yield: 72%. m.p. 224-225 °C. $R_f = 0.31$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 379. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.01-7.16 (m, 11H, CH_{ar}), 6.05-6.00 (m, 1H, CH), 4.98-4.95 (m, 1H, CH), 2.61-2.27 (m, 2H, CH₂, overlapped with the peaks of DMSO). HPLC: 99.6% (Method A, t_R


= 4.02 min).

7-(2-Chloro-6-fluorophenyl)-5-(3,4-dichlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1p).

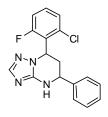

The product was obtained according to general procedure C, as a white solid. Yield: 77%. m.p. 252-254 °C. $R_f = 0.21$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 397. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.72-7.15 (m, 7H, CH_{ar}), 5.97-5.92 (m, 1H, CH), 4.84-4.80 (m, 1H, CH), 2.47-2.14 (m, 2H, CH₂). HPLC: 99.7% (Method A, $t_R = 4.56$ min).

7-(2-Chloro-6-fluorophenyl)-5-(2,4-dichlorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1q).

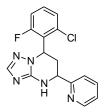

The product was obtained according to general procedure C, as a white solid. Yield: 88%. m.p. 267-269 °C. $R_f = 0.22$ (EtOAc/Hexanes 33.3:66.7). MS: MH⁺ = 397. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.70-7.15 (m, 7H, CH_{ar}), 6.05-6.00 (m, 1H, CH), 5.14-5.11 (m, 1H, CH), 2.49-2.09 (m, 2H, CH₂). HPLC: 98.7% (Method A, $t_R = 4.96$ min).

7-(2-Chloro-6-fluorophenyl)-5-(2,4-difluorophenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5a]pyrimidine (1r).

The product was obtained according to general procedure C, as a white solid. Yield: 92%. m.p. 225 °C. $R_f = 0.28$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 365. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.65-7.12 (m, 7H, CH_{ar}), 6.04-5.99 (m, 1H, CH), 5.05 (d, *J* = 10.5 Hz, 1H, CH), 2.43-2.23 (m, 2H, CH₂). HPLC: 99.1% (Method A, t_R = 3.37 min).


7-(2-Chloro-6-fluorophenyl)-5-(3,4-dimethylphenyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1s).

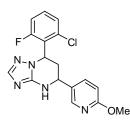
The product was obtained according to general procedure C, as a white solid. Yield: 88%. m.p. 223 °C. $R_f = 0.25$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 357. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.41-7.12 (m, 7H, CH_{ar}), 5.97-5.92 (m, 1H, CH), 4.69 (d, *J* = 10.5 Hz, 1H, CH), 2.46-2.14 (m, 2H, CH₂, overlapped with the peaks of two CH₃), 2.23 (s, 3H, CH₃, overlapped


with the peaks of CH₂), 2.20 (s, 3H, CH₃, overlapped with the peaks of CH₂). HPLC: 99.7% (Method A, $t_R = 3.95$ min).

7-(2-Chloro-6-fluorophenyl)-5-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1t).

The product was obtained according to general procedure C, as a white solid. Yield: 82%. m.p. 270-271 °C. $R_f = 0.26$ (EtOAc/Hexanes 75:25). MS: MH⁺ = 329. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.50-7.15 (m, 9H, CH_{ar}), 5.99-5.94 (m, 1H, CH), 4.80-4.76 (m, 1H, CH), 2.48-2.16 (m, 2H, CH₂). HPLC: 99.5% (Method A, $t_R = 3.05$ min).

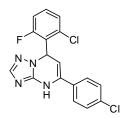
7-(2-Chloro-6-fluorophenyl)-5-(pyridin-2-yl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1u).



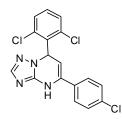
The product was obtained according to general procedure C, as a white solid. Yield: 65%. m.p. 232 °C. $R_f = 0.08$ (EtOAc/Hexanes 90:10). MS: MH⁺ = 330. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.56-8.54 (m, 1H, CH_{ar}), 7.87-7.83 (m, 1H, CH_{ar}), 7.60-7.13 (m, 6H, CH_{ar}), 6.05-5.99 (m, 1H, CH), 4.88-4.85 (m, 1H, CH), 2.60-2.23 (m, 2H, CH₂, overlapped with the peaks of DMSO). HPLC:

99.7% (Method A, $t_R = 2.24$ min).

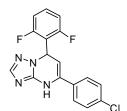
7-(2-Chloro-6-fluorophenyl)-5-(6-methoxypyridin-3-yl)-4,5,6,7-tetrahydro-


[1,2,4]triazolo[1,5-a]pyrimidine (1v).

The product was obtained according to general procedure C, as a white solid. Yield: 64%. m.p. 230-221 °C. $R_f = 0.14$ (EtOAc/Hexanes 90:10). MS: MH⁺ = 360. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.22 (d, *J* = 2.0 Hz, 1H, CH_{ar}), 7.79-7.77 (m, 1H, CH_{ar}), 7.48-7.16 (m, 4H, CH_{ar}), 6.86-6.82

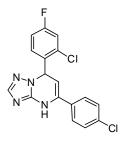

(m, 1H, CH_{ar}), 5.98-5.93 (m, 1H, CH), 4.79-4.75 (m, 1H, CH), 3.85 (s, 3H, OCH₃), 2.47-2.20 (m, 2H, CH₂). HPLC: 95.0% (Method A, t_R = 2.61 min).

7-(2-Chloro-6-fluorophenyl)-5-(4-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3a).

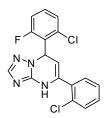

The product was obtained according to general procedure B, as a white solid. Yield: 78%. m.p. 213-215 °C. $R_f = 0.43$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 361. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.16 (s, 1H, NH), 7.66-7.61 (m, 3H, CH_{ar}), 7.49-7.21 (m, 5H, CH_{ar}), 6.81-6.80 (m, 1H, CH=C), 5.19 (s, 1H, CH). HPLC: 99.5% (Method B, $t_R = 5.75$ min).

5-(4-Chlorophenyl)-7-(2,6-dichlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3b).

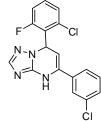
The product was obtained according to general procedure B, as a white solid. Yield: 91%. m.p. 235 °C. $R_f = 0.44$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 377. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.20 (s, 1H, NH), 7.65-7.35 (m, 8H, CH_{ar}), 7.06 (d, *J* = 3.6 Hz, 1H, CH=C), 5.10 (dd, *J* = 3.3, 1.5 Hz, 1H, CH). HPLC: 99.9% (Method B, $t_R = 6.64$ min).


5-(4-Chlorophenyl)-7-(2,6-difluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3c).

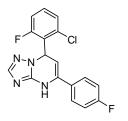
The product was obtained according to general procedure B, as a white solid. Yield: 83%. m.p. 223-224 °C. $R_f = 0.40$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 345. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.13 (s, 1H, NH), 7.66-7.61 (m, 3H, CH_{ar}), 7.49-7.41 (m, 3H, CH_{ar}), 7.13-7.07 (m, 2H, CH_{ar}), 6.63 (d, *J* = 3.6 Hz, 1H, CH=C), 5.26-5.25 (m, 1H, CH); ¹⁹F NMR


(282 MHz, DMSO-*d*₆): δ -118.26. ¹³C NMR (75 MHz, DMSO-*d*₆): δ 160.6 (dd, *J*_{C-F} = 247.9, 7.7 Hz, C), 150.5 (C), 150.4 (C), 135.9 (C), 134.3 (C), 133.5 (CH), 131.4 (t, *J*_{C-F} = 10.7 Hz, C), 129.2 (CH), 128.4 (CH), 117.2 (t, *J*_{C-F} = 15.2 Hz, C), 112.8 (d, *J*_{C-F} = 24.9 Hz, CH), 95.1 (CH), 50.8 (CH). HPLC: 98.8% (Method B, t_R = 4.96 min).

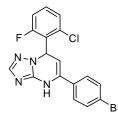
7-(2-Chloro-4-fluorophenyl)-5-(4-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3d).


The product was obtained according to general procedure B, as a white solid. Yield: 83%. m.p. 250-251 °C. $R_f = 0.17$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 361. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.18 (d, *J* = 1.5 Hz, 1H, NH), 7.69 (s, 1H, CH_{ar}), 7.64-7.61 (m, 2H, CH_{ar}), 7.49-7.46 (m, 3H, CH_{ar}), 7.25-7.22 (m, 2H, CH_{ar}), 6.57 (d, *J* = 3.6 Hz, 1H, CH=C), 5.17 (dd, *J* = 3.6, 1.5 Hz, 1H, CH). HPLC: 98.4% (Method B, $t_R = 6.39$ min).

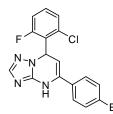
7-(2-Chloro-6-fluorophenyl)-5-(2-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3h).


The product was obtained according to general procedure B, as a white solid. Yield: 77%. m.p. 192-193 °C. $R_f = 0.40$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 361. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.12 (s, 1H, NH), 7.63 (s, 1H, CH_{ar}), 7.54-7.25 (m, 7H, CH_{ar}), 6.57 (d, *J* = 1.5 Hz, 1H, CH=C), 4.74 (s, 1H, CH). HPLC: 98.0% (Method B, t_R = 4.94 min).

7-(2-Chloro-6-fluorophenyl)-5-(3-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3i).

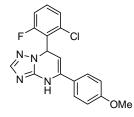

The product was obtained according to general procedure B, as a white solid. Yield: 88%. m.p. 246-248 °C. $R_f = 0.36$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 361. ¹H NMR (300 MHz, DMSO- d_6): δ 10.15 (s, 1H, NH), 7.66-7.17 (m, 8H, CH_{ar}), 6. 78 (d, J = 2.1 Hz, 1H, CH=C), 5.26 (s, 1H, CH). HPLC: 97.5% (Method B, $t_R = 5.85$ min).

7-(2-Chloro-6-fluorophenyl)-5-(4-fluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3j).

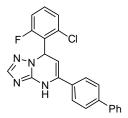

The product was obtained according to general procedure B, as a white solid. Yield: 57%. m.p. 203-204 °C. $R_f = 0.34$ (EtOAc/Hexanes 50:50). MS: $MH^+ = 345$. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.13 (s, 1H, NH), 7.68-7.63 (m, 3H, CH_{ar}), 7.45-7.21 (m, 5H, CH_{ar}), 6.80-6.79 (m, 1H, CH=C), 5.12 (s, 1H, CH). HPLC: 96.4% (Method B, $t_R = 4.62$ min).

5-(4-Bromophenyl)-7-(2-chloro-6-fluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3k).

The product was obtained according to general procedure B, as a white solid. Yield: 73%. m.p. 242-243 °C. $R_f = 0.28$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 407. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.16 (s, 1H, NH), 7.65-7.38 (m, 8H, CH_{ar}), 6.80 (d, *J* = 1.8 Hz, 1H, CH=C), 5.19 (s, 1H, CH). HPLC: 99.6% (Method B, $t_R = 6.57$ min).

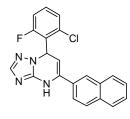

7-(2-Chloro-6-fluorophenyl)-5-(4-ethylphenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3l).

The product was obtained according to general procedure B, as a white solid. Yield: 76%. m.p. 220-221 °C. $R_f = 0.40$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 355. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.15 (d, *J* = 0.9 Hz, 1H, NH), 7.64 (s, 1H, CH_{ar}), 7.53-7.23 (m, 7H, CH_{ar}), 6.80-6.79 (m, 1H, CH=C), 5.81 (s, 1H, CH), 2.63 (q, *J* = 1.8 Hz, 2H, CH₂), 1.18 (t, *J* = 7.5


Hz, 3H, CH₃). HPLC: 99.1% (Method B, $t_R = 6.15$ min).

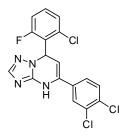
7-(2-Chloro-6-fluorophenyl)-5-(4-methoxyphenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3m).

The product was obtained according to general procedure B, as a white solid. Yield: 76%. m.p. 217-218 °C. $R_f = 0.22$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 357. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.02 (s, 1H, NH), 7.64-6.94 (m, 8H, CH_{ar}), 6.79-6.78 (m, 1H, CH=C), 5.03 (s, 1H, CH), 3.78 (s, 3H, OCH₃). HPLC: 99.1% (Method B, t_R = 4.32 min).

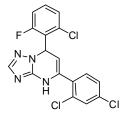

5-([1,1'-Biphenyl]-4-yl)-7-(2-chloro-6-fluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5a]pyrimidine (3n).

The product was obtained according to general procedure B, as a white solid. Yield: 81%. m.p. 267 °C. $R_f = 0.17$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 403. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.17 (d, *J* = 1.2 Hz, 1H, NH), 7.72-7.66 (m, 7H, CH_{ar}), 7.50-7.38 (m, 6H, CH_{ar}), 6.83 (m, 1H, CH=C), 5.22 (s, 1H, CH). HPLC: 99.1% (Method B, t_R = 7.85 min).

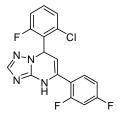
$\label{eq:constraint} 7-(2-Chloro-6-fluorophenyl)-5-(naphthalen-2-yl)-4, \\ 7-dihydro-[1,2,4]triazolo[1,5]triazolo[1,5-dihydro-[1,2,4]triazolo[1,5]triaz$


a]pyrimidine (3o).

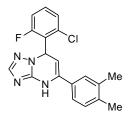
The product was obtained according to general procedure B, as a white solid. Yield: 92%. m.p. 237 °C. $R_f = 0.34$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 377. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.25 (s, 1H, NH), 8.22 (s, 1H, CH_{ar}), 7.97-7.92 (m, 3H, CH_{ar}), 7.75-7.40 (m, 7H, CH_{ar}), 6.87 (d, *J* = 1.8 Hz, 1H, CH=C), 5.33 (s, 1H, CH). HPLC: 98.9% (Method B, $t_R = 6.45$


min).

7-(2-Chloro-6-fluorophenyl)-5-(3,4-dichlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3p).

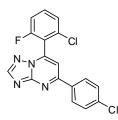

The product was obtained according to general procedure B, as a white solid. Yield: 57%. m.p. 246-247 °C. $R_f = 0.30$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 395. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.20 (s, 1H, NH), 7.90 (d, *J* = 1.8 Hz, 1H, CH_{ar}), 7.69-7.19 (m, 6H, CH_{ar}), 6.82-6.80 (m, 1H, CH=C), 5.36 (s, 1H, CH). HPLC: 97.1% (Method B, $t_R = 7.61$ min).

7-(2-Chloro-6-fluorophenyl)-5-(2,4-dichlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3q).

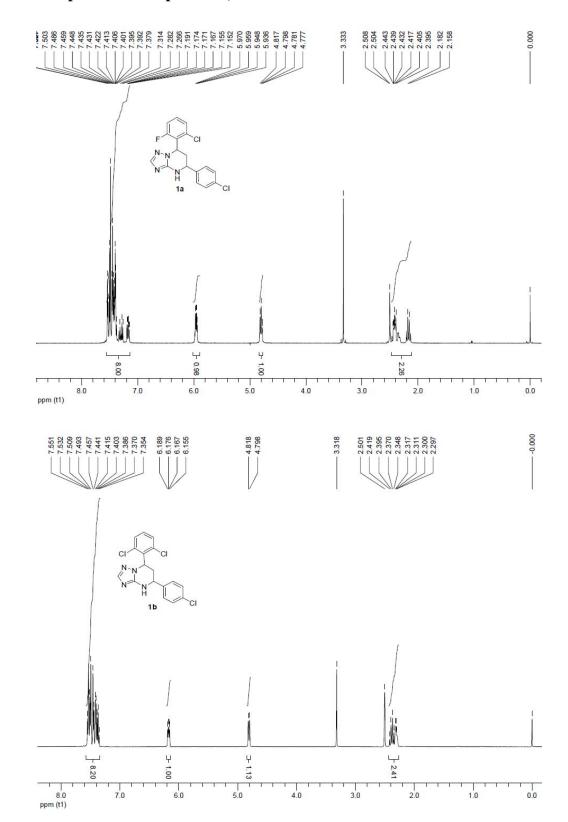


The product was obtained according to general procedure B, as a white solid. Yield: 52%. m.p. 209-211 °C. $R_f = 0.46$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 395. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.14 (s, 1H, NH), 7.72-7.24 (m, 7H, CH_{ar}), 6.80 (d, *J* = 1.8 Hz, 1H, CH=C), 4.79 (s, 1H, CH). HPLC: 95.0% (Method B, $t_R = 6.80$ min).

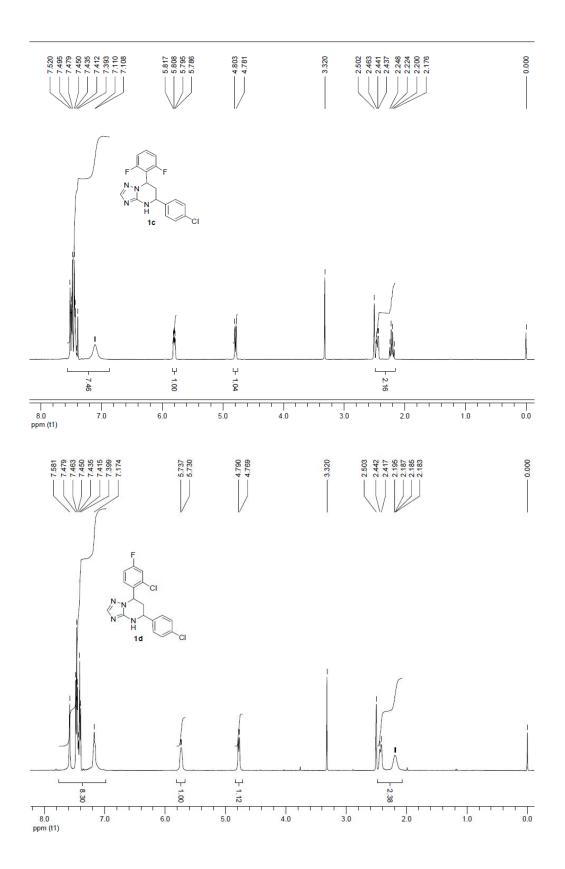
7-(2-Chloro-6-fluorophenyl)-5-(2,4-difluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3r).

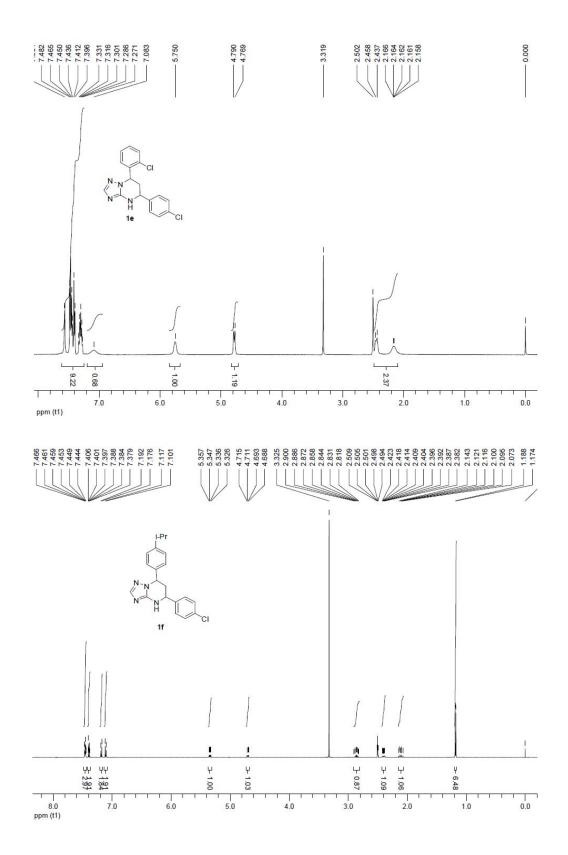


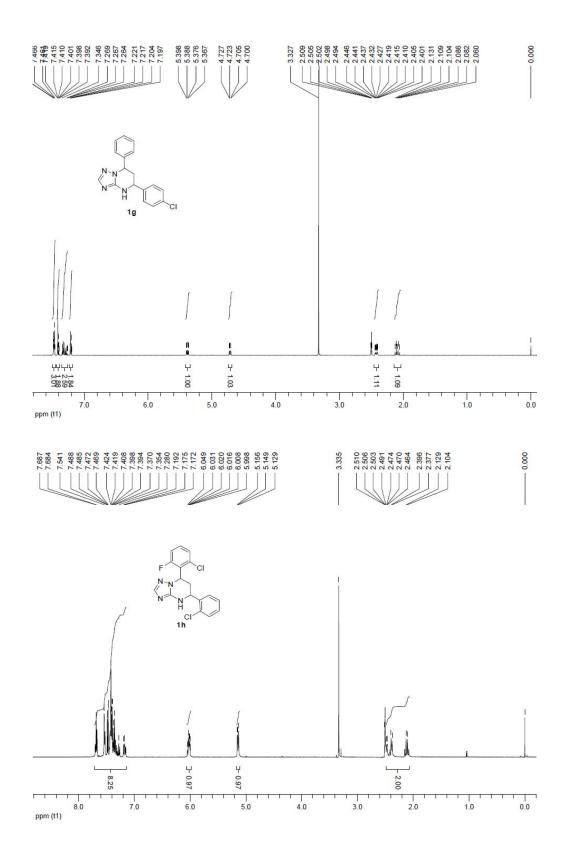
The product was obtained according to general procedure B, as a white solid. Yield: 66%. m.p. 186-188 °C. $R_f = 0.46$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 363. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.15 (s, 1H, NH), 7.64-7.11 (m, 7H, CH_{ar}), 6.81-6.80 (m, 1H, CH=C), 4.91 (s, 1H, CH). HPLC: 96.3% (Method B, t_R = 4.65 min). 7-(2-Chloro-6-fluorophenyl)-5-(3,4-dimethylphenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine (3s).

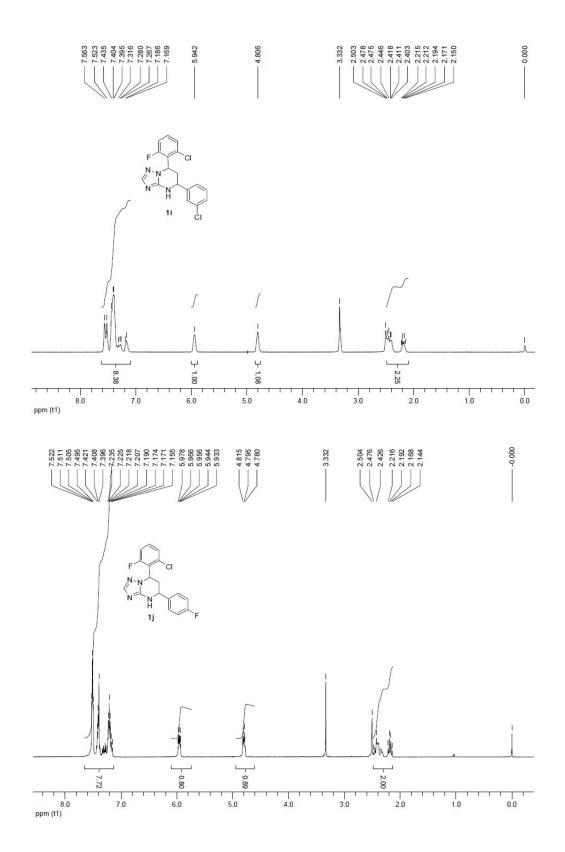


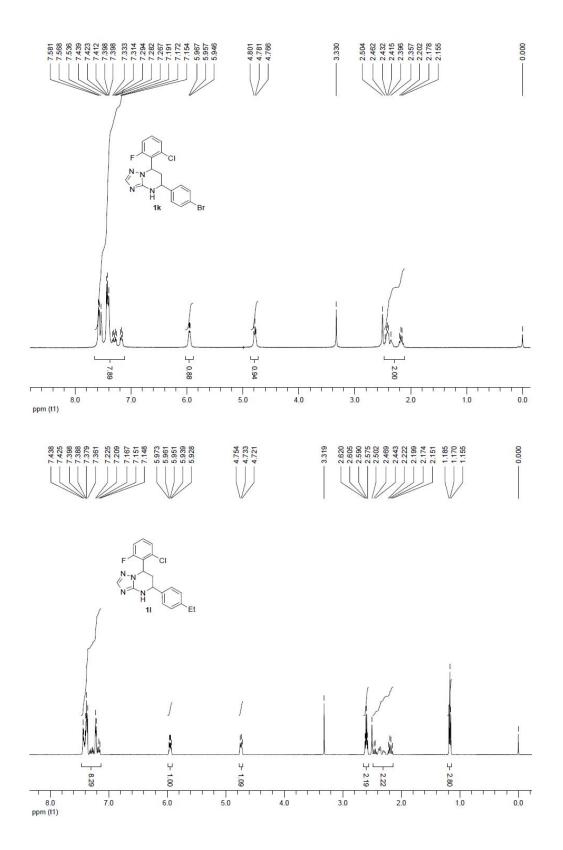
The product was obtained according to general procedure B, as a white solid. Yield: 70%. m.p. 217-218 °C. $R_f = 0.40$ (EtOAc/Hexanes 50:50). MS: MH⁺ = 355. ¹H NMR (300 MHz, DMSO-*d*₆): δ 10.00 (s, 1H, NH), 7.64 (s, 1H, CH_{ar}), 7.42-7.14 (m, 6H, CH_{ar}), 6.79-6.78 (m, 1H, CH=C), 5.07 (s, 1H, CH). HPLC: 99.6% (Method B, $t_R = 6.37$ min).

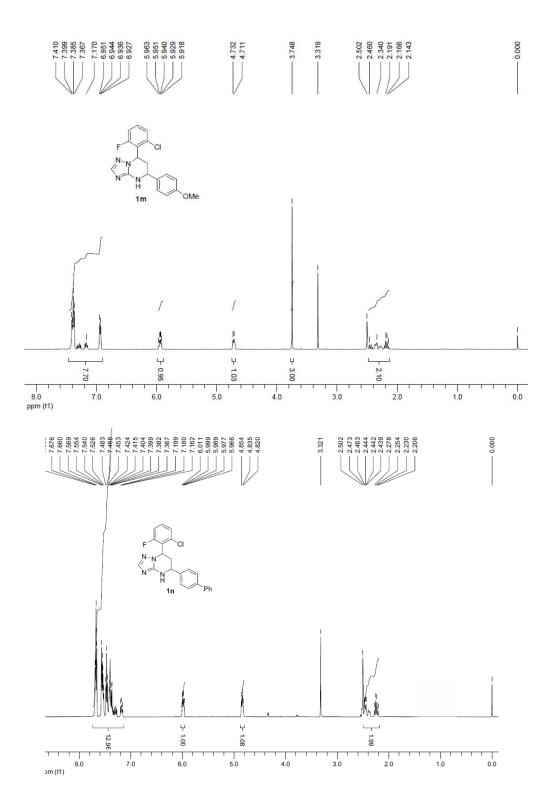

7-(2-Chloro-6-fluorophenyl)-5-(4-chlorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine (4a).

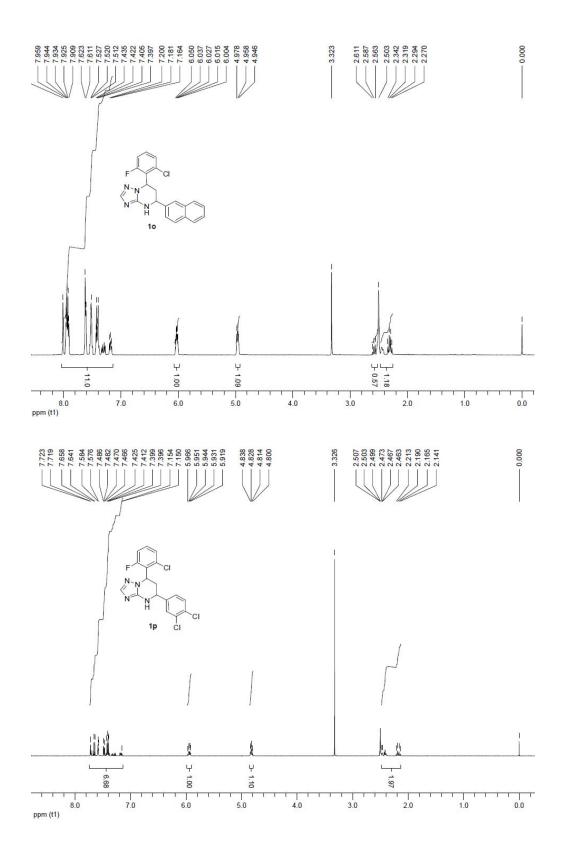


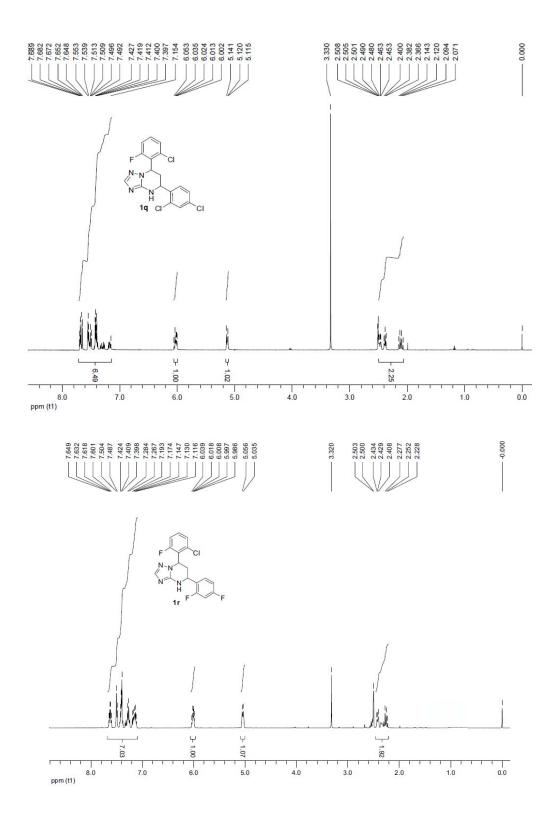

Yield: 42%. m.p. 238-239 °C. $R_f = 0.33$ (EtOAc/Hexanes 30:70). MS: MH⁺ = 359. ¹H NMR (500 MHz, CDCl₃): δ 8.48 (s, 1H, CH_{ar}), 8.15 (d, *J* = 7.5 Hz, 2H, CH_{ar}), 7.57-7.39 (m, 5H, CH_{ar}), 7.20-7.19 (m, 1H, CH_{ar}). HPLC: 97.9 % (Method C, t_R = 5.47 min).

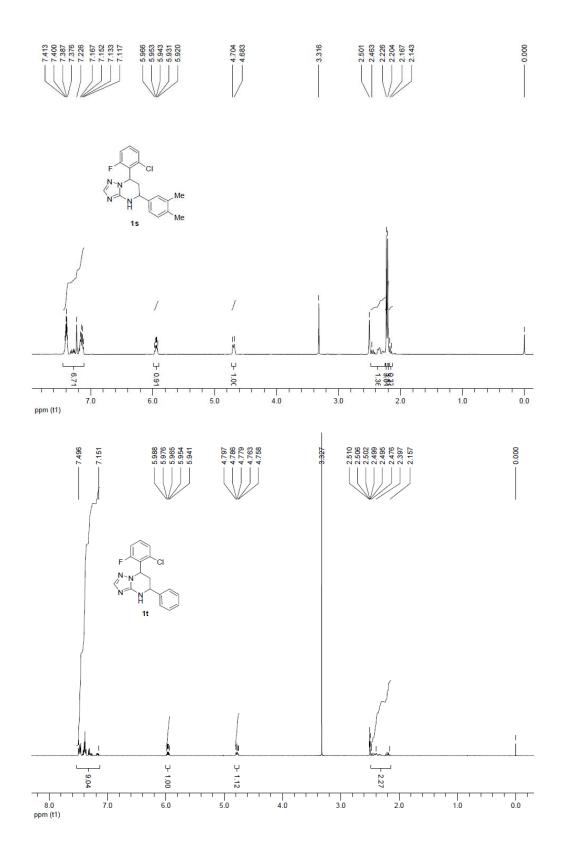


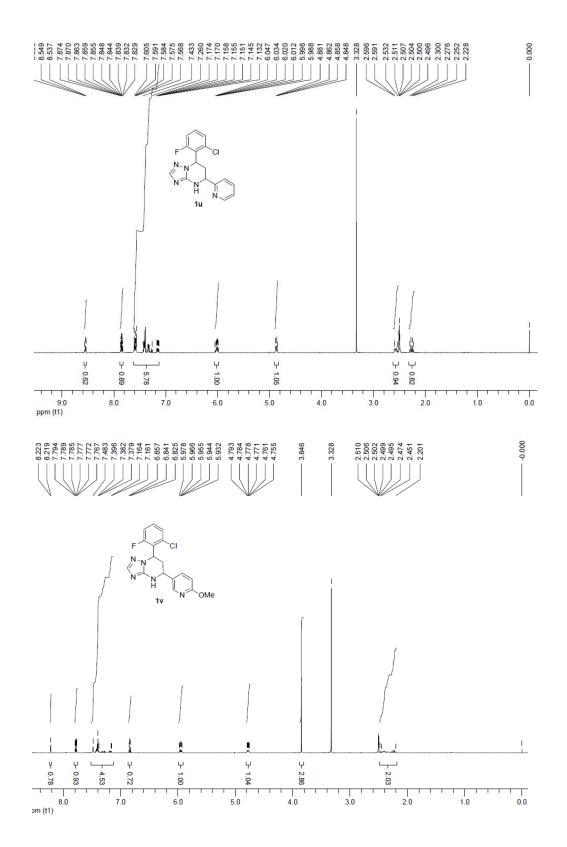

2. NMR Spectra of Compounds 1, 3 and 4

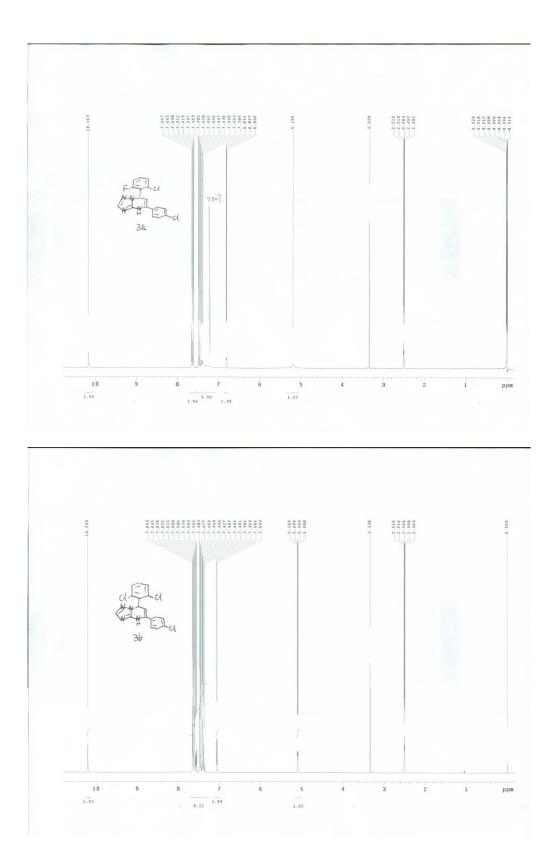


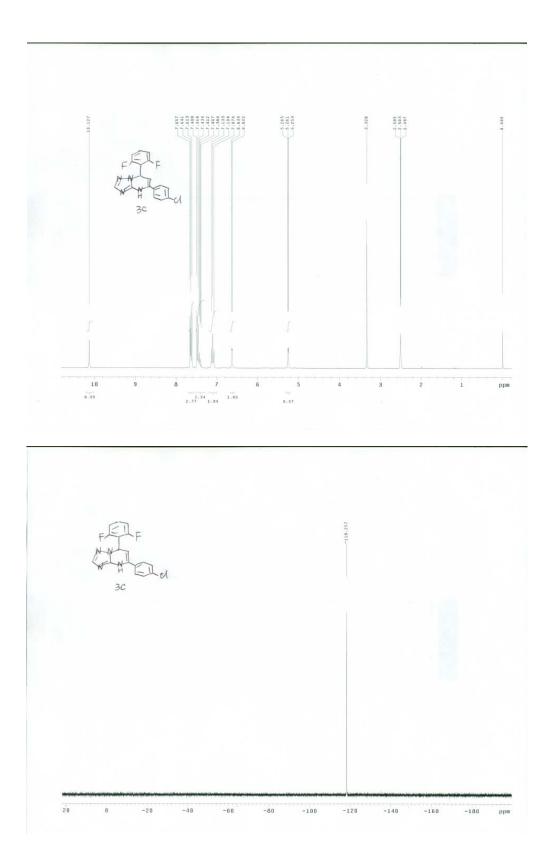


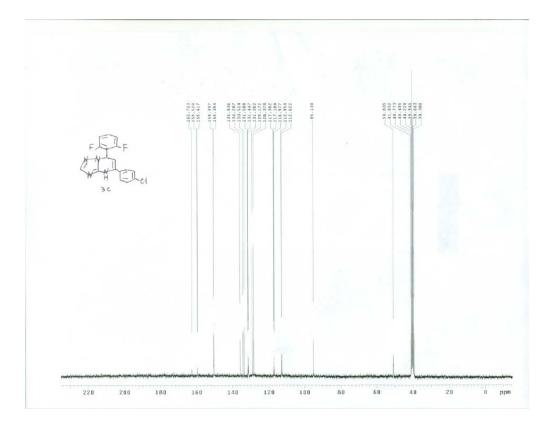


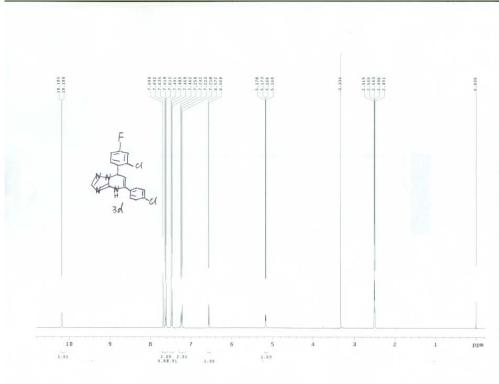


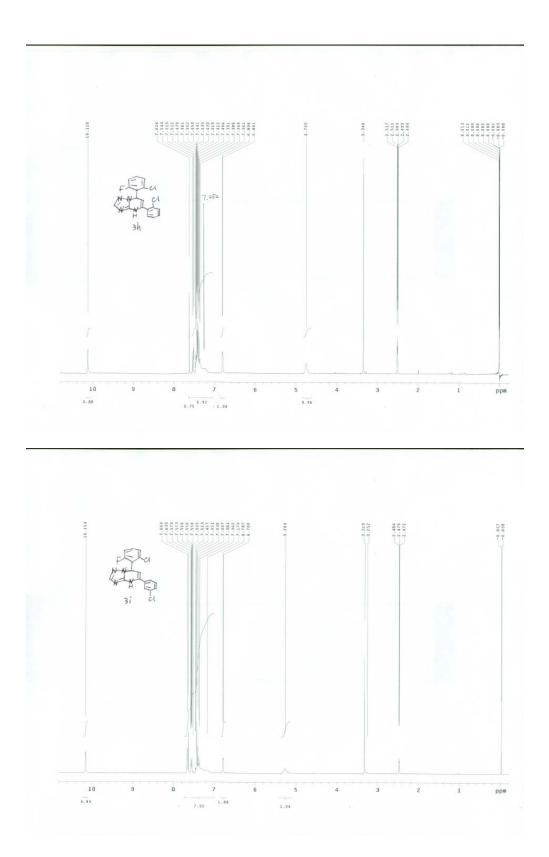


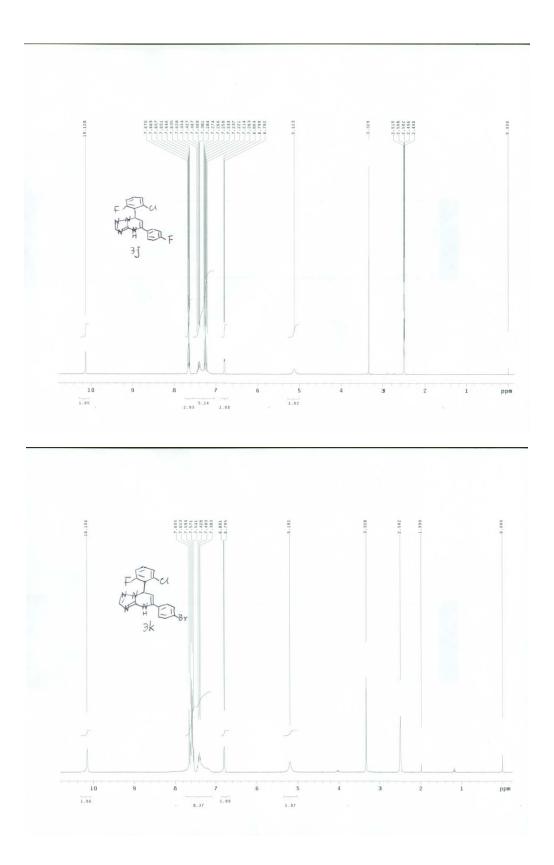


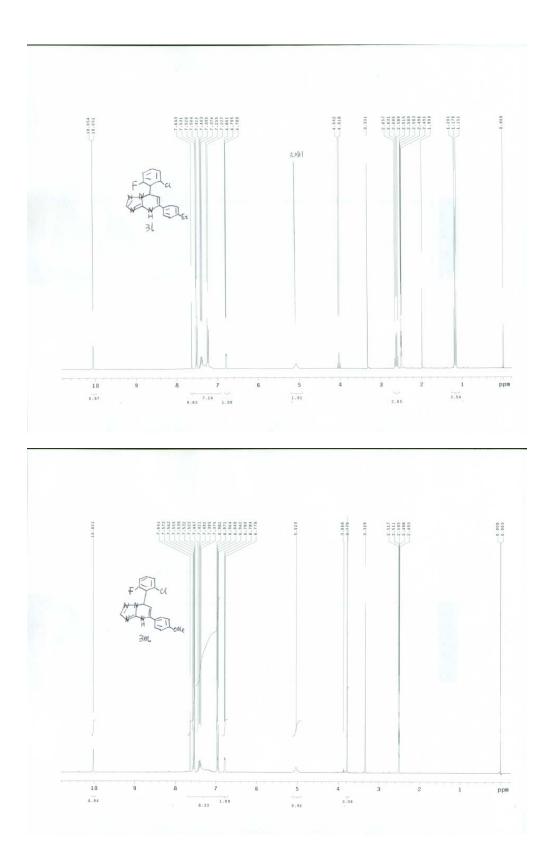


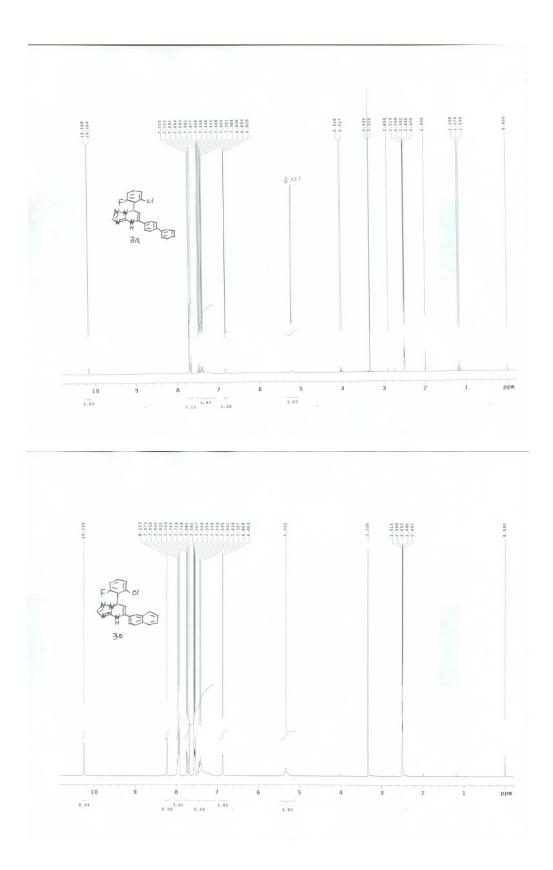


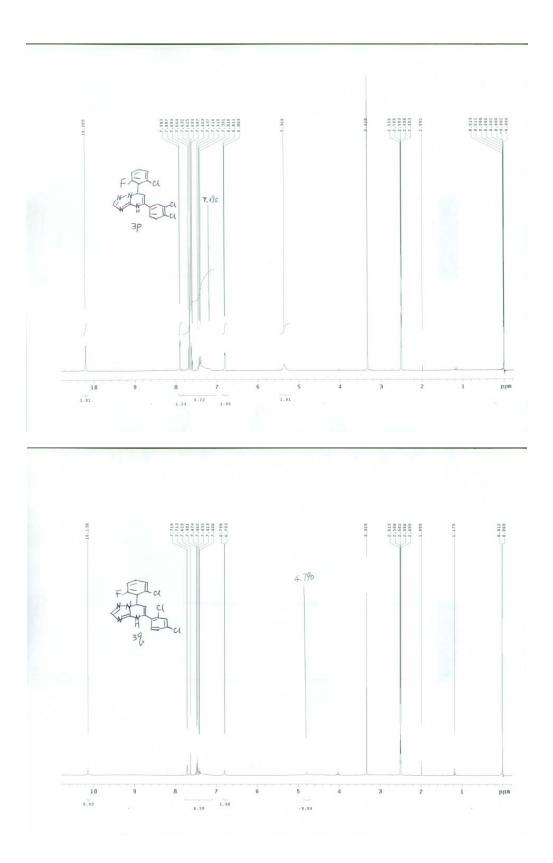


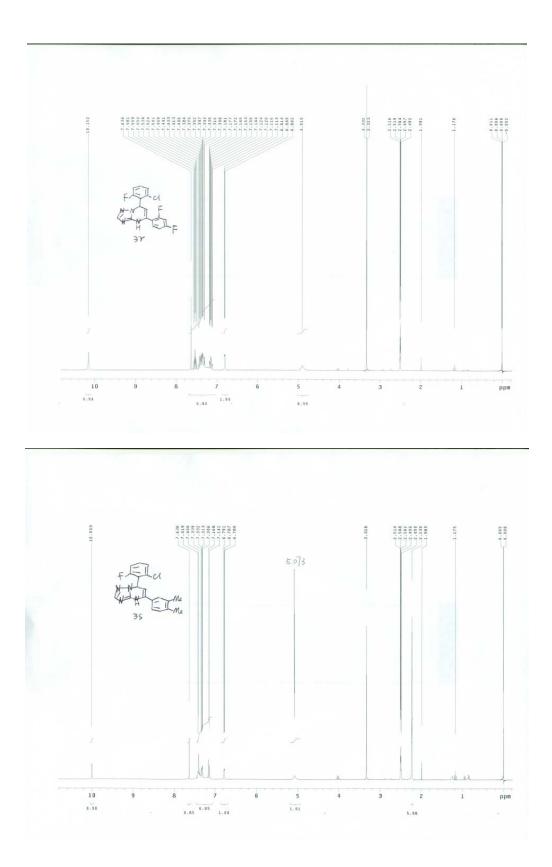


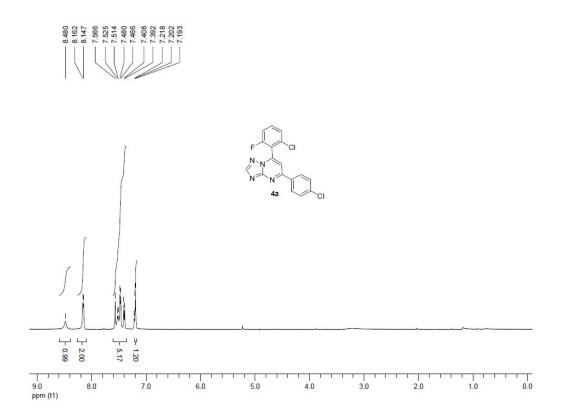












3. X-ray Structure and Data of 1a

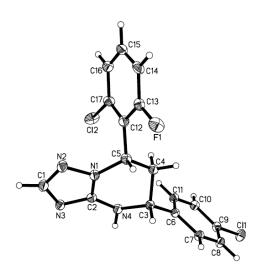


Table 1. Crystal data and structure refinement for 10mxu1h.

Identification code	10mxu1h
Empirical formula	C18 H17 Cl2 F N4 O
Formula weight	395.26
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 8.1141(6) A alpha = 90 deg. b = 10.4273(8) A beta = 108.5760(10) deg. c = 22.6565(17) A gamma = 90 deg.
Volume	1817.1(2) A^3
Z, Calculated density	4, 1.445 Mg/m^3
Absorption coefficient	0.382 mm^-1
F(000)	816
Crystal size	0.54 x 0.45 x 0.20 mm
Theta range for data collection	1.90 to 28.34 deg.
Limiting indices	-10<=h<=10, -13<=k<=13, -30<=1<=30
Reflections collected / unique	34527 / 4515 [R(int) = 0.0331]
Completeness to theta = 28.34	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9275 and 0.8202
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4515 / 50 / 269
Goodness-of-fit on F^2	1.156
Final R indices [I>2sigma(I)]	R1 = 0.0492, wR2 = 0.1046
R indices (all data)	R1 = 0.0576, wR2 = 0.1084
Largest diff. peak and hole	0.577 and -0.472 e.A^-3

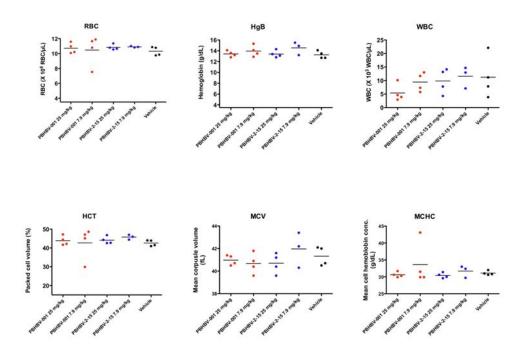
Table 2. Atomic coordinates (x 10^{14}) and equivalent isotropic displacement parameters (A^A2 x 10^{13}) for 10mxulh. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
cl(1)	2710(1)	745(1)	-292(1)	35(1)
N(1)	-994(2)	5997(2)	1954(1)	24(1)
N(2)	-1867(2)	6939(2)	2167(1)	30(1)
N(3) N(4)	-3460(2) -1389(2)	6257(2) 4707(2)	1195(1) 1066(1)	25(1) 23(1)
(1)	-3305(3)	7044(2)	1694(1)	30(1)
(2)	-1958(3)	5612(2)	1383(1)	22(1)
(3)	41(3)	3891(2)	1437(1)	21(1)
(4)	1442(3)	4759(2)	1860(1)	24(1)
(4) (5)	764(3)	5573(2)	2300(1)	27(1)
:(6)	742(3)	3103(2)	1011(1)	20(1)
(7)	859(3)	1774(2)	1072(1)	25(1)
(8)	1468(3)	1040(2)	674(1)	26(1)
(9)	1966(3)	1652(2)	217(1) 151(1)	25(1)
(10) (11)	1897(3) 1283(3)	2974(2) 3695(2)	550(1)	24(1) 23(1)
(11)	917(4)	8043(2)	1548(1)	40(1)
(1)	2886(4)	5346(3)	3523(2)	40(1)
(12)	1972(6)	6619(4)	2616(2)	27(1)
(13)	3028(5)	6453(4)	3226(2)	27(1)
(14)	4185(5)	7375(4)	3548(2)	37(1)
(15)	4318(6)	8494(5)	3239(3)	38(1)
(16)	3327(5)	8684(4)	2628(2)	34(1)
(17)	2162(6)	7741(5)	2324(2)	28(1)
(1')	3583(3) 827(19)	5626(2) 7820(10)	3558(1) 1493(6)	40(1) 40(1)
(12')	1923(11)	6765(7)	2475(4)	27(1)
(13')	3272(9)	6913(7)	3056(3)	27(1)
(14')	4334(11)	7990(9)	3256(5)	37(1)
(15')	4135(10)	9013(8)	2860(4)	38(1)
(16')	2923(9)	8988(7)	2265(4)	34(1)
(17')	1897(13)	7871(10)	2087(3)	28(1)
D(1) D(18)	3596(2) 3062(4)	6312(2) 7498(3)	108(1) 262(2)	41(1) 59(1)

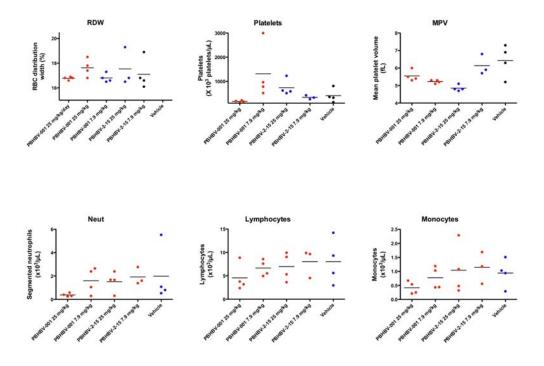
Table	3.	Bona	Tengths	[A]	and	angles	[aeg]	TOP	10
N(3)3)3 N(4)4)2)3333(2)4(4)2(5)5(5)(6)(7)7)8 N(4)2)3(2)3(2)(4)4)2(5)(5)(5)(6)(7)7)8 N(4)2)3(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(- N-C-C-C-F-H-H-C-H-H-C-C-H-C-C-H-C-H-C-C-H-C-C-C-C-C-H-C-H-C-H-C-H-C-C-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H)))))))))))))))))))))))))))))))))))))				1.7413(1.343(1.343(1.385(1.314(1.337(1.337(1.353(1.337(1.353(1.337(1.353(1.337(1.353(1.337(1.353(1.337(1.353(1.337(1.338(1.333(1.338(1.333(1.338(1.333(1.338(1.333(1.338(1.333(1.33)(1.333	(2) (2) (3)		
C(2) C(2) C(2) C(2) C(2) C(2) C(2) N(2) N(2) N(2) N(2) N(2) N(2) N(2) N	J-n(2))-n(c))-n(c))-n(c))-c(c)-c(c) N))))))))))))))			10.03(1 26.59(1 23.26(1) 01.21(1 01.21(1 01.76(1 16.16(1) 127.75(1) 21.7 21.7 21.7 21.7 21.7 21.85(1) 09.82(1) 09.1 09.1 109.1 09.1 12.64(1) 09.1 12.64(1) 09.1 12.64(1) 09.1 12.64(1) 09.1 13.51(1) 13.51(1) 13.51(1) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 13.5(2) 15.5(2) 1	7) 6) 7) 6) 7) 7) 6) 9) 7) 8) 8) 8) 5) 6) 6) 7)		

Table 3. Bond lengths [A] and angles [deg] for 10mxu1h.

Symmetry transformations used to generate equivalent atoms:


Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 10mxu1h. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C1(1) N(1) N(2) N(3) N(4) C(3) C(4) C(3) C(4) C(3) C(4) C(5) C(6) C(12) C(12) C(12) C(13) C(13) C(14) C(15) C(15) C(15) C(15) C(17)	45(1) 24(1) 30(1) 24(1) 29(1) 23(1) 23(1) 23(1) 23(1) 23(1) 23(1) 24(1) 29(1) 30(1) 26(1) 27(1) 39(1) 25(1) 26(2) 24(2) 29(2) 29(2) 29(2) 29(2) 29(1)	32(1) 27(1) 31(1) 25(1) 24(1) 22(1) 22(1) 22(1) 21(1) 27(1) 32(1) 22(1) 22(1) 27(1) 27(1) 20(1) 30(1) 30(1) 33(2) 48(2) 48(2) 29(2) 35(2) 51(1)	34(1) 20(1) 27(1) 23(1) 17(1) 30(1) 19(1) 20(1) 19(1) 20(1) 19(1) 24(1) 22(1) 22(1) 22(1) 22(1) 22(1) 22(1) 22(1) 23(1) 24(1) 23(1) 24(2) 46(2) 19(2) 24(1)	$\begin{array}{c} -3(1) \\ -4(1) \\ -8(1) \\ -1(1) \\ -2(1) \\ -5(1) \\ 1(1) \\ 2(1) \\ -2(1) \\ -2(1) \\ -2(1) \\ -3(1) \\ 2(1) \\ -2(1) \\ -1$	20(1) 5(1) 6(1) 3(1) 2(1) 5(1) 5(1) 2(1) 2(1) 2(1) 3(1) 9(1) 7(1) 5(1) 8(1) 1(1) 5(1) 8(1) 1(1) 5(1) 14(2) 3(2) 1(1)	7 (1) 2 (1) 3 (1) 2 (1) 3 (1) 2 (1) 1 (1) 2 (1) 1 (1) 1 (1) 2 (1) 1 (1) 1 (1) 2 (1) 1 (1) 1 (1) 2
C(15) C(16) C(17) C(12') F(1') C(12') C(12') C(13') C(14') C(15') C(16')	22(2) 29(2) 26(2) 39(1) 57(1) 25(1) 26(2) 24(2) 22(2) 29(2)	40(2) 29(2) 35(2) 51(1) 30(1) 33(2) 48(2) 40(2) 29(2)	49(2) 46(2) 19(2) 24(1) 28(1) 23(1) 21(2) 30(2) 49(2) 46(2)	-19(2) -5(2) -8(2) 10(1) 9(1) -6(1) -1(1) -14(2) -19(2) -5(2)	9(2) 14(2) 3(2) 1(1) 8(1) 5(1) 6(1) -3(1) 9(2) 14(2)	-2(2) -2(1) -2(1) -1(1) -7(1) 3(1) 4(2) 6(2) -2(2) -2(1)
C(16') C(17') O(1) C(18)	29(2) 26(2) 34(1) 45(1)	29(2) 35(2) 37(1) 40(1)	46(2) 19(2) 36(1) 71(2)	-5(2) -8(2) -11(1) -14(1)	14(2) 3(2) -9(1) -8(1)	-2(1) -2(1) 10(1) 7(1)


Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 10mxu1h.

	x	У	z	U(eq)
H(4N)	-2140(40)	4360(30)	738(14)	46(8)
H(1)	-4194	7634	1698	36
H(3)	-404	3303	1700	26
H(4A)	1889	5336	1599	29
H(4B)	2421	4223	2111	29
H(5)	660	4988	2636	32
H(7)	518	1365	1389	30
H(8)	1541	134	715	32
H(10)	2263	3378	-161	29
H(11)	1228	4602	511	28
H(14)	4871	7245	3970	44
H(15)	5105	9142	3452	45
H(16)	3440	9450	2417	41
H(14')	5175	8011	3659	44
H(15')	4837	9754	2993	45
H(16')	2790	9694	1989	41
H(10)	4590(40)	6150(30)	391(14)	47(8)
H(18A)	2298	7911	-115	88
H(18B)	4081	8041	448	88
H(18C)	2429	7378	561	88

4. Effect of 1a and 3c on Complete Blood Count and Serum Chemistry

Figure 1. Effect of **PBHBV-001** (**1a**) and **PBHBV-2-15** (**3c**) Administered i.v. on RBC, HgB, WBC, HCT, MCV, and MCHC in C57BL/6 Mice (24 hours).

Figure 2. Effect of **PBHBV-001** (1a) and **PBHBV-2-15** (3c) Administered i.v. on RDW, Platelets, MPV, Neut, Lymphocytes, and Monocytes in C57BL/6 Mice (24 hours).

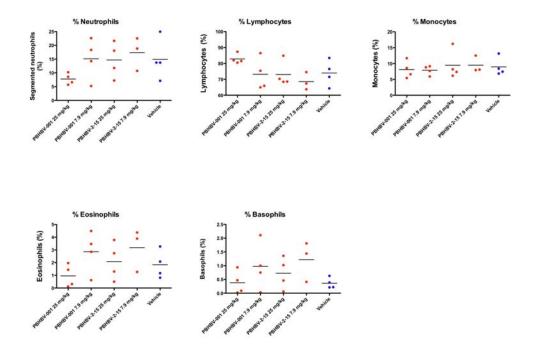
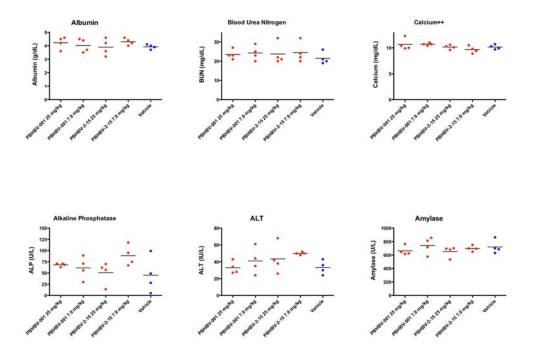
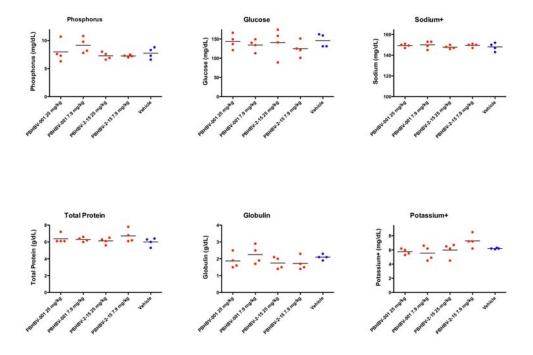




Figure 3. Effect of PBHBV-001 (1a) and PBHBV-2-15 (3c) Administered i.v. on % Neutrophils,

% Lymphocytes, % Monocytes, % Eosinophils, and % Basophils in C57BL/6 Mice (24 hours).

Figure 4. Effect of **PBHBV-001** (1a) and **PBHBV-2-15** (3c) Administered i.v. on Albumin, BUN, Calcium, Alk Phos, ALT, and Amylase in C57BL/6 Mice (24 hours).

Figure 5. Effect of **PBHBV-001** (**1a**) and **PBHBV-2-15** (**3c**) Administered i.v. on Phosphorus, Glucose, Sodium, Total Protein, Globulin, and Potassium⁺ in C57BL/6 Mice (24 hours).

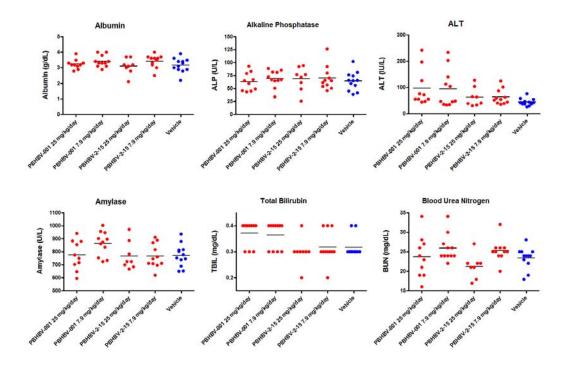
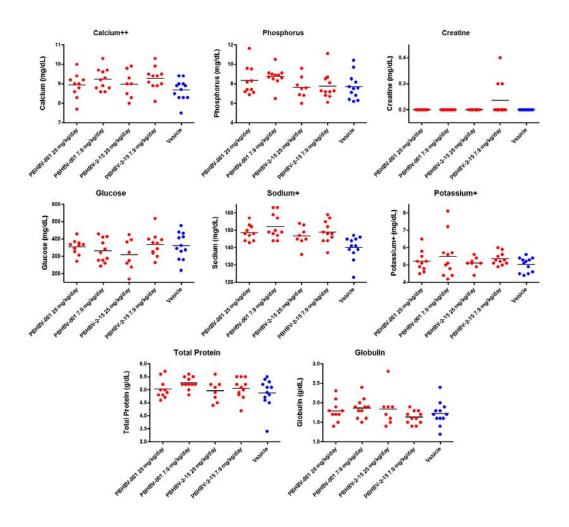



Figure 6. Effect of PBHBV-001 (1a) and PBHBV-2-15 (3c) Administered Orally on Albumin, Alkaline Phosphatase, ALT, Amylase, Total Bilirubin and Blood Urea Nitrogen in HBV-transgenic Mice (14 days).

Figure 7. Effect of **PBHBV-001** (**1a**) and **PBHBV-2-15** (**3c**) Administered Orally on Calcium++, Phosphorus, Creatine, Glucose, Sodium+, Potassium+, Total Protein, Globulin, and in HBV-transgenic Mice (14 days).

5. Effect of 1a and 3c on Mice's Weight

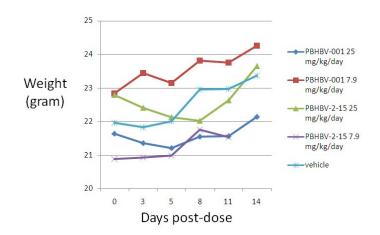
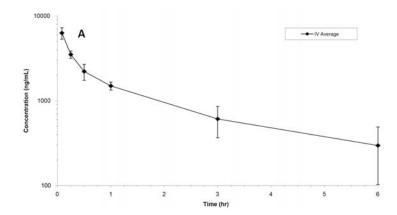
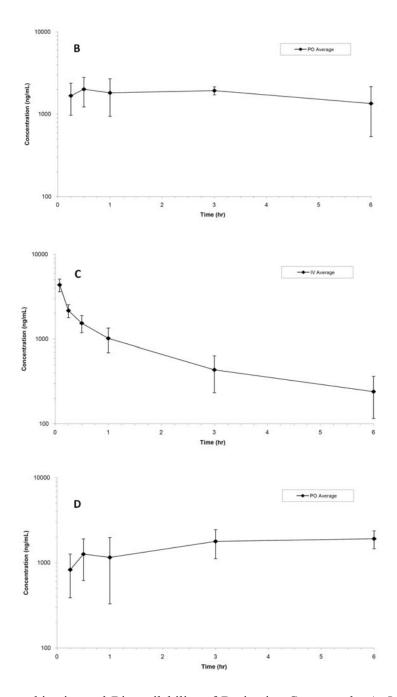




Figure 8. Effect of PBHBV-001 (1a) and PBHBV-2-15 (3c) Administered Orally on Mice's Weight (14 days).

6. Pharmacokinetics and Bioavailability of 1a and 3c

Figure 9. Pharmacokinetics and Bioavailability of Derivative Compounds: A. Intravenous PK Profile of **PBHBV-001** (**1a**); B. Oral PK Profile of **PBHBV-001** (**1a**); C. Intravenous PK Profile of **PBHBV-2-15** (**3c**); D. Oral PK Profile of **PBHBV-2-15** (**3c**). The Average Values from Three Animals are Depicted. Error Bars Represent Standard Deviation.