The Lanthanide Contraction Revisited

Michael Seitz, Allen G. Oliver, and Kenneth N. Raymond*

Department of Chemistry, University of California, Berkeley, CA 94720-1460 E-mail: raymond@socrates.berkeley.edu. Fax: (510) 486-5283.

Supporting Information

Table of Contents:

Page

1. 1.1 1.2 1.3 1.4 1.5	TREN-1,2-HOIQO Lanthanide Complexes Structure Bond Lengths O-O Distances Dihedral Angles along the Edges of the Coordination Polyhedron Trends in Bond Lengths vs. f Electron Configuration	S2 S2 S2 S2 S3 S3
2.	TREN-SAL Lanthanide Complexes	S14
2.1	Structure	S14
2.2	Bond Lengths	S14
2.3	X-X Distances	S15
2.4	Trends in Bond Lengths vs. f Electron Configuration	S15
3.	[Ln(tptz)(NO ₃) ₃ (H ₂ O)] Complexes	S19
3.1	Structure	S19
3.2	Bond Lengths	S19
3.3	X-X Distances	S20
3.4	Trends in Bond Lengths vs. f Electron Configuration	S20
4.	[Ln(PhMeCH-DOTAM)(H ₂ O)](OTf) ₃ Complexes	S32
4.1	Structure	S32
4.2	Bond Lengths	S32
4.3	X-X Distances	S33
4.4	Trends in Bond Lengths vs. f Electron Configuration	S33
5.	[Ln(H ₂ O) ₉](EtOSO ₃) ₃ Complexes	S44
5.1	Bond Lengths	S44
5.2	O-O Distances	S44
5.3	Trends in Bond Lengths vs. f Electron Configuration	S45
6.	The Average X-X Distance vs. the Average Ln-X Bond Length	S48
7.	References	S51

1. TREN-1,2-HOIQO Lanthanide Complexes

1.1 Structure

Asymmetric unit of $[Gd(TREN-1,2-HOIQO)(H_2O)]^*H_2O$. Thermal ellipsoid plot (Ortep 3 for Windows,¹ 50% probability level) with atom numbering scheme. Hydrogens and the isolated water molecule omitted for clarity.

1.2 Bond Lengths

Table S1. Bond lengths in [Ln(TREN-1,2-HOIQO)(H₂O)]*H₂O.

f electrons (Ln)	d _{Ln-O3} (su) [Å]	d _{Ln-O6} (su) [Å]	d _{Ln-O9} (su) [Å]	d _{Ln-O2} (su) [Å]	d _{Ln-O5} (su) [Å]	d _{Ln-O8} (su) [Å]	d _{Ln-O10} (su) [Å]	d _{Ln-O7} (su) [Å]	$\Sigma d_{Ln-O}(su) [Å]$
0 (La)	2.482(4)	2.463(4)	2.479(4)	2.447(4)	2.443(5)	2.473(4)	2.581(4)	2.516(4)	19.884(34)
1 (Ce) ²	2.469(4)	2.445(4)	2.450(4)	2.432(4)	2.426(4)	2.445(4)	2.573(4)	2.478(4)	19.718(32)
2 (Pr)	2.452(4)	2.427(4)	2.428(4)	2.407(4)	2.405(4)	2.437(3)	2.556(4)	2.473(4)	19.585(31)
3 (Nd)	2.434(4)	2.397(4)	2.415(4)	2.395(4)	2.394(4)	2.418(4)	2.536(4)	2.461(4)	19.450(32)
4 (Pm)	-	-	-	-	-	-	-	-	-
5 (Sm)	2.396(4)	2.381(4)	2.374(4)	2.377(4)	2.377(4)	2.396(4)	2.518(4)	2.434(4)	19.253(32)
6 (Eu)	2.384(5)	2.368(5)	2.356(5)	2.361(5)	2.367(5)	2.386(5)	2.501(5)	2.420(5)	19.143(40)
7 (Gd)	2.373(5)	2.357(5)	2.349(5)	2.352(4)	2.343(5)	2.376(4)	2.491(5)	2.403(5)	19.044(38)
8 (Tb)	2.356(4)	2.338(4)	2.333(4)	2.336(4)	2.332(4)	2.361(4)	2.462(4)	2.381(4)	18.899(32)
9 (Dy)	2.340(4)	2.335(4)	2.322(4)	2.329(4)	2.327(4)	2.355(4)	2.460(4)	2.375(4)	18.843(32)
10 (Ho)	2.327(5)	2.318(5)	2.313(5)	2.312(5)	2.311(5)	2.333(5)	2.456(5)	2.353(5)	18.723(40)
11 (Er)	2.314(4)	2.309(5)	2.307(4)	2.307(4)	2.313(4)	2.330(4)	2.442(5)	2.353(4)	18.675(34)
12 (Tm)	2.308(4)	2.300(4)	2.294(4)	2.297(4)	2.304(4)	2.324(4)	2.424(4)	2.338(4)	18.589(32)
13 (Yb)	2.277(6)	2.282(6)	2.265(6)	2.300(6)	2.286(6)	2.301(6)	2.437(6)	2.333(6)	18.481(48)
14(Lu)	2.288(3)	2.292(3)	2.282(3)	2.294(3)	2.287(3)	2.320(3)	2.418(3)	2.329(3)	18.510(24)
d_{La}/d_{Lu}	1.085	1.075	1.086	1.067	1.068	1.066	1.067	1.080	1.074

1.3 O-O Distances

Table S2. Distances O-O (O bound to Ln) in [Ln(TREN-1,2-HOIQO)(H₂O)]*H₂O.

f electrons	d ₀₇₋₀₉	d ₀₃₋₀₅	d ₀₇₋₀₅	d _{O3-O9}	d ₀₅₋₀₆	d ₀₉₋₀₁₀	d ₀₂₋₀₃	d ₀₇₋₀₈	d ₀₇₋₀₁₀	d ₀₃₋₀₆	d ₀₇₋₀₆	d ₀₁₀₋₀₃	d ₀₂₋₀₅	d ₀₂₋₀₉	d ₀₉₋₀₈	d ₀₈₋₀₅	d ₀₆₋₀₁₀	d ₀₂₋₀₈	Σd_{O-O}
(Ln)	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]
0 (La)	3.120	3.942	3.408	3.960	2.568	3.213	2.557	3.078	3.124	3.284	3.143	3.092	3.158	3.602	2.576	3.090	2.905	2.915	56.735
1 (Ce) ²	3.109	3.902	3.379	3.912	2.555	3.159	2.562	3.043	3.104	3.224	3.122	3.064	3.128	3.555	2.574	3.065	2.907	2.881	56.245
2 (Pr)	3.112	3.908	3.353	3.840	2.557	3.119	2.551	3.039	3.086	3.217	3.100	3.023	3.106	3.509	2.576	3.031	2.884	2.862	55.873
3 (Nd)	3.112	3.897	3.335	3.793	2.551	3.086	2.549	3.006	3.072	3.190	3.077	2.992	3.086	3.477	2.576	2.997	2.856	2.843	55.495
4 (Pm)	-	-	-	-	-	-													
5 (Sm)	3.085	3.865	3.319	3.703	2.562	3.023	2.567	2.986	3.040	3.135	3.054	2.931	3.040	3.428	2.573	2.959	2.839	2.795	54.904
6 (Eu)	3.083	3.866	3.294	3.646	2.560	2.976	2.551	2.967	3.031	3.137	3.038	2.910	3.023	3.392	2.570	2.940	2.838	2.775	54.597
7 (Gd)	3.085	3.852	3.258	3.610	2.562	2.973	2.546	2.953	3.015	3.120	3.023	2.888	3.012	3.363	2.565	2.914	2.804	2.758	54.301
8 (Tb)	3.067	3.823	3.253	3.578	2.556	2.936	2.534	2.928	2.976	3.074	3.004	2.850	2.995	3.326	2.567	2.890	2.774	2.749	53.880
9 (Dy)	3.074	3.817	3.237	3.535	2.558	2.901	2.544	2.918	2.969	3.063	3.001	2.842	2.984	3.302	2.570	2.881	2.788	2.724	53.708
10 (Ho)	3.061	3.795	3.208	3.515	2.552	2.891	2.539	2.884	2.959	3.033	2.977	2.826	2.955	3.284	2.558	2.855	2.767	2.702	53.361
11 (Er)	3.060	3.792	3.211	3.489	2.544	2.876	2.549	2.884	2.948	3.018	2.976	2.802	2.953	3.272	2.564	2.853	2.753	2.684	53.228
12 (Tm)	3.059	3.775	3.217	3.470	2.562	2.854	2.538	2.881	2.924	2.998	2.966	2.792	2.933	3.248	2.572	2.835	2.736	2.682	53.042
13 (Yb)	3.042	3.738	3.188	3.412	2.542	2.824	2.521	2.856	2.920	2.958	2.954	2.788	2.927	3.221	2.544	2.809	2.741	2.669	52.654
14 (Lu)	3.054	3.752	3.194	3.417	2.552	2.831	2.535	2.860	2.913	2.974	2.956	2.761	2.928	3.216	2.579	2.812	2.722	2.674	52.730
d _{La} / d _{Lu}	1.022	1.051	1.067	1.159	1.006	1.135	1.009	1.076	1.072	1.104	1.063	1.120	1.079	1.120	0.999	1.090	1.067	1.090	1.076

1.4 Dihedral Angles along the Edges of the Coordination Polyhedron

Table S3. Dihedral angles along the edges of the coordination polyhedron [°]. Shape measure SM_{tdh} (deviation relative to an ideal trigonal-dodecahedron) and SM_{Gd} (deviation relative to the gadolinium complex).³

edge	ideal	La	Ce ²	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
07-08	74.3	55.07	55.68	56.25	56.68	57.31	57.75	57.94	58.37	58.77	58.70	58.85	59.35	59.72	60.10
07-05	29.9	41.41	41.56	41.77	42.10	42.00	42.24	42.42	42.09	42.36	42.54	42.75	42.31	43.00	41.60
07-06	61.5	49.04	48.85	49.16	49.02	49.25	49.54	49.40	49.45	49.51	49.18	49.02	49.47	48.91	50.19
07-010	61.5	56.74	57.09	57.40	57.55	57.88	57.89	57.86	57.90	58.21	58.17	58.30	58.38	59.55	57.81
07-09	29.9	47.45	46.36	45.77	45.51	44.62	43.87	43.60	43.44	42.49	42.23	42.41	42.03	40.98	41.47
O6-O10	53.2	61.63	61.31	61.04	60.82	60.79	60.78	61.22	60.70	60.74	60.98	60.80	60.54	60.87	61.31
O9-O10	74.3	68.17	69.12	68.39	68.26	68.38	68.31	68.07	67.95	68.35	68.79	68.42	68.37	69.03	68.33
O3-O9	29.9	30.36	29.78	30.81	31.32	31.28	31.93	32.46	32.32	32.54	32.67	33.06	33.07	31.99	33.02
02-09	61.5	40.79	41.52	40.91	41.39	41.47	40.91	41.13	42.01	42.00	42.25	42.33	42.69	43.26	43.33
02-08	53.2	63.81	63.67	63.64	63.10	63.33	63.25	63.29	62.81	62.97	62.61	62.80	62.40	62.70	62.62
02-05	61.5	62.25	62.23	62.55	62.98	63.87	64.15	64.18	63.98	64.33	64.58	64.75	64.47	65.26	64.65
03-05	29.9	13.68	13.98	13.05	13.10	12.47	12.02	11.46	11.93	11.56	11.64	11.57	12.06	11.18	11.71
02-03	74.3	86.69	87.41	87.47	87.83	88.45	88.63	88.64	89.19	89.63	89.89	89.75	89.33	89.71	89.14
05-06	74.3	80.45	80.35	80.54	80.37	80.85	81.14	81.17	81.17	81.44	81.28	81.53	81.25	81.25	81.69
O3 -O6	53.2	57.05	57.54	57.88	57.78	58.11	58.46	58.73	59.02	59.53	59.43	59.37	59.66	59.67	59.85
010-03	74.3	72.70	72.39	72.08	71.85	71.41	71.10	70.54	70.02	69.50	69.50	69.21	68.65	68.80	67.86
09-08	61.5	68.95	68.61	68.48	67.87	67.32	67.16	67.06	66.82	66.48	66.52	66.14	66.11	65.35	65.52
08-05	61.5	57.52	57.45	57.87	57.78	57.83	57.87	57.83	58.56	58.19	58.03	57.95	58.62	57.91	58.68
SM _{tdh}	0	11.01	10.77	10.81	10.70	10.66	10.70	10.77	10.56	10.58	10.57	10.64	10.44	10.41	10.34
$\rm SM_{Gd}$	-	2.01	1.78	1.44	1.24	0.89	0.70	0	0.65	0.69	0.72	0.74	0.94	1.27	1.26

1.5 Trends in Bond Lengths and O-O Distances vs. f Electron Configuration Bond lengths:

Figure S1. Bond length Ln-O2 vs. f electronic configuration.

Figure S2. Bond length Ln-O3 vs. f electronic configuration.

Figure S3. Bond length Ln-O5 vs. f electronic configuration.

Figure S4. Bond length Ln-O6 vs. f electronic configuration.

Figure S5. Bond length Ln-O7 vs. f electronic configuration.

Figure S6. Bond length Ln-O8 vs. f electronic configuration.

Figure S7. Bond length Ln-O9 vs. f electronic configuration.

Figure S8. Bond length Ln-O10 vs. f electronic configuration.

Figure S9. Sum of bond lengths Ln-O vs. f electronic configuration. Quadratic fit (χ^2 -weighting factor: su⁻²).

Distances O-O:

Figure S10. Distance O7-O9 vs. f electronic configuration.

Figure S12. Distance O7-O5 vs. f electronic configuration.

Figure S13. Distance O3-O9 vs. f electronic configuration.

Figure S14. Distance O5-O6 vs. f electronic configuration.

Figure S15. Distance O9-O10 vs. f electronic configuration.

Figure S16. Distance O2-O3 vs. f electronic configuration.

Figure S17. Distance O7-O8 vs. f electronic configuration.

Figure S18. Distance O7-O10 vs. f electronic configuration.

Figure S19. Distance O3-O6 vs. f electronic configuration.

Figure S20. Distance O7-O6 vs. f electronic configuration.

Figure S21. Distance O10-O3 vs. f electronic configuration.

Figure S22. Distance O2-O5 vs. f electronic configuration.

Figure S23. Distance O2-O9 vs. f electronic configuration.

Figure S24. Distance O8-O9 vs. f electronic configuration.

Figure S25. Distance O8-O5 vs. f electronic configuration.

Figure S26. Distance O6-O10 vs. f electronic configuration.

Figure S27. Distance O2-O8 vs. f electronic configuration.

Figure S28. Sum of distance O-O vs. f electronic configuration. Quadratic fit.

- 2. TREN-SAL Lanthanide Complexes⁴⁻⁷
- 2.1 Structure

Asymmetric unit of [Gd(TREN-SAL)].⁴ Thermal ellipsoid plot (Ortep 3 for Windows,¹ 50% probability level) with atom numbering scheme. Hydrogens omitted for clarity.

2.2 Bond Lengths

Table S4. Bond lengths in TREN-SAL lanthanide complexes.⁴⁻⁷

f electrons (Ln)	d _{Ln-N1} (su) [Å] (1x)	d _{Ln-N2} (su) [Å] (3x)	d _{Ln-O1} (su) [Ă] (3x)	Σd _{Ln-X} (su) [Å]
0 (La)	-	-	-	-
1 (Ce) ⁴	2.834(4)	2.605(3)	2.288(3)	17.513(22)
2 (Pr) ⁴	2.814(6)	2.577(5)	2.282(5)	17.391(36)
3 (Nd) ⁴	2.796(5)	2.573(4)	2.273(3)	17.334(26)
4 (Pm)	-	-	-	-
5 (Sm) ⁵	2.773(4)	2.531(3)	2.247(3)	17.107(22)
6 (Eu) ⁵	2.761(9)	2.535(7)	2.233(6)	17.065(48)
7 (Gd) ⁴	2.746(4)	2.511(3)	2.232(2)	16.975(19)
8 (Tb) ⁵	2.732(7)	2.489(5)	2.214(4)	16.841(34)
9 (Dy) ⁶	2.738(6)	2.480(4)	2.201(4)	16.781(30)
10 (Ho) ⁶	2.703(9)	2.472(5)	2.193(6)	16.698(42)
11 (Er) ⁷	2.716(8)	2.455(6)	2.188(5)	16.645(41)
12 (Tm) ⁷	2.713(8)	2.449(6)	2.167(5)	16.561(41)
13 (Yb) ⁴	2.694(10)	2.430(7)	2.160(6)	16.464(49)
14 (Lu) ⁷	2.722(8)	2.426(6)	2.162(5)	16.486(41)
d_{Ce} / d_{Lu}	1.041	1.074	1.058	1.062

2.3 X-X Distances

f electrons (Ln)	d _{N1-N2} [Å] (3x)	d _{N2-N2'} [Å] (3x)	d _{N2-01} [Å] (3x)	d _{N2-O1'} [Å] (3x)	d ₀₁₋₀₁ , [Å] (3x)	Σd _{x-x} [Å]
0 (La)	-	-	-	-	-	-
1 (Ce) ⁴	2.909	4.073	2.833	3.424	3.481	50.160
2 (Pr) ⁴	2.900	4.042	2.821	3.394	3.454	49.833
3 (Nd) ⁴	2.908	4.055	2.819	3.374	3.425	49.743
4 (Pm)	-	-	-	-	-	
5 (Sm) ⁵	2.881	3.994	2.826	3.295	3.364	49.080
6 (Eu) ⁵	2.874	3.997	2.843	3.272	3.335	48.963
7 (Gd) ⁴	2.871	3.973	2.826	3.273	3.305	48.744
8 (Tb) ⁵	2.856	3.943	2.813	3.219	3.285	48.348
9 (Dy) ⁶	2.858	3.931	2.813	3.202	3.254	48.174
10 (Ho) ⁶	2.840	3.923	2.819	3.187	3.223	47.976
11 (Er)*	-	-	-	-	-	
12 (Tm)*	-	-	-	-	-	
13 (Yb) ⁴	2.836	3.873	2.794	3.102	3.163	47.304
14 (Lu)*	-	-	-	-	-	-
$d_{Ce} \ / \ d_{Lu}$	1.026	1.052	1.014	1.104	1.101	1.060

Table S5. X-X Distances in TREN-SAL lanthanide complexes.⁴⁻⁷

* Coordinates were not available for the calculation of X-X distances.

2.4 Trends in Bond Lengths and X-X Distances vs. f Electron Configuration

Figure S29. Bond length Ln-N1 vs. f electronic configuration.

Figure S30. Bond length Ln-N2 vs. f electronic configuration.

Figure S31. Bond length Ln-O1 vs. f electronic configuration.

Figure S32. Sum of bond lengths Ln-X (X = N, O) vs. f electronic configuration. Quadratic fit (χ^2 - weighting factor: su⁻²).

Figure S33. Distance N1-N2 vs. f electronic configuration.

Figure S34. Distance N2-N2' vs. f electronic configuration.

Figure S35. Distance N2-O1 vs. f electronic configuration.

Figure S36. Distance N2-O1' vs. f electronic configuration.

Figure S37. Distance O1-O1' vs. f electronic configuration.

Figure S38. Sum of Distances X-X (X = N, O; bound to Ln) vs. f electronic configuration. Quadratic fit.

[Ln(tptz)(NO₃)₃(H₂O)] Complexes⁸
Structure

Asymmetric unit of $[La(tptz)(NO_3)_3(H_2O)]^*2EtOH.^8$ Thermal ellipsoid plot (Ortep 3 for Windows,¹ 50% probability level) with atom numbering scheme. Hydrogens and the two isolated ethanol molecules omitted for clarity.

3.2 Bond Lengths

Table S6. Bond lengths in [Ln(tptz)(NO₃)₃(H₂O)].⁸

	f electrons	d _{Ln-N1} (su)	d _{Ln-N2} (su)	d _{Ln-N6} (su)	d _{Ln-O1} (su)	d _{Ln-O2} (su)	d _{Ln-O4} (su)	d _{Ln-O5} (su)	d _{Ln-O7} (su)	d _{Ln-O8} (su)	d _{Ln-O10} (su)	Σd_{Ln-X} (su)
	(Ln)	[Å]	[Å]									
	0 (La)	2.667(2)	2.691(1)	2.703(1)	2.617(1)	2.570(1)	2.588(2)	2.631(1)	2.595(1)	2.631(1)	2.452(1)	26.145(12)
	1 (Ce)	2.660(4)	2.678(4)	2.696(4)	2.598(4)	2.549(4)	2.565(4)	2.618(4)	2.585(4)	2.611(4)	2.424(4)	25.984(40)
	2 (Pr)	2.630(3)	2.644(3)	2.668(3)	2.583(3)	2.524(3)	2.546(3)	2.594(3)	2.556(2)	2.592(3)	2.412(3)	25.749(29)
	3 (Nd)	2.614(3)	2.629(3)	2.658(3)	2.568(3)	2.506(3)	2.534(3)	2.584(3)	2.541(3)	2.584(3)	2.400(3)	25.618(30)
	4 (Pm)	-	-	-	-	-	-	-	-	-	-	-
	5 (Sm)	2.593(2)	2.603(2)	2.629(2)	2.546(2)	2.481(2)	2.505(2)	2.566(2)	2.511(2)	2.557(2)	2.368(2)	25.359(20)
	6 (Eu)	2.576(2)	2.579(2)	2.619(2)	2.536(2)	2.465(2)	2.490(2)	2.558(2)	2.496(2)	2.544(2)	2.349(2)	25.212(20)
	7 (Gd)	2.569(2)*	2.567(2)*	2.607(2)	2.532(2)	2.456(2)	2.485(2)*	2.555(2)	2.481(2)*	2.538(2)	2.337(2)	25.127(20)
	8 (Tb)	2.555(2)*	2.545(2)*	2.592(2)	2.523(2)*	2.439(2)	2.464(2)	2.552(2)	2.467(2)	2.520(2)*	2.322(2)	24.979(20)
1	9 (Dy)	2.547(2)*	2.534(2)*	2.582(2)	2.516(2)*	2.426(2)	2.451(2)	2.545(2)	2.453(2)	2.515(2)*	2.311(2)	24.880(20)
	10 (Ho)	2.537(2)*	2.524(2)*	2.573(2)	2.512(2)*	2.416(1)	2.442(2)	2.544(2)	2.442(1)	2.506(2)*	2.303(2)	24.799(18)
	11 (Er)	2.528(2)*	2.513(2)*	2.562(3)	2.503(3)*	2.401(3)	2.429(2)	2.544(3)	2.432(2)	2.495(2)*	2.292(3)	24.699(25)
	12 (Tm)	2.508(4)	2.508(4)	2.519(3)	2.542(3)*	2.404(3)	2.419(3)	2.520(3)*	2.437(3)	2.528(3)	2.262(3)	24.647(32)
	13 (Yb)	2.510(2)*	2.490(2)*	2.541(2)	2.504(2)*	2.377(2)	2.399(2)	2.567(2)	2.413(2)	2.482(2)*	2.270(2)	24.553(20)
	14 (Lu)	-	-	-	-	-	-	-	-	-	-	-
	d_{La}/d_{Yb}	1.063	1.081	1.064	1.080	1.081	1.079	1.075	1.045	1.060	1.025	1.065

* Bond lengths taken from the published cif-files. Incorrectly listed in the original publication (see ref. 8).

3.3 X-X Distances

Table S7. Distances X-X (X = N,O bound to Ln) in [Ln(tptz)(NO₃)₃(H₂O)].⁸

f electrons	d _{N1-N2}	d _{N1-O2}	d _{N1-010}	d _{N1-07}	d _{N1-O8}	d _{N2-02}	d ₀₂₋₀₁₀	d ₀₁₀₋₀₇	d ₀₇₋₀₈	d _{08-N2}	d _{N6-O1}	d ₀₁₋₀₄	d ₀₄₋₀₅	d _{O5-N6}	d _{N2-N6}	d ₀₁₋₀₂	d ₀₁₋₀₁₀	d ₀₁₀₋₀₄	d ₀₄₋₀₇	d ₀₇₋₀₅	d ₀₅₋₀₈	Σd_{X-X}
(Ln)	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]	[Å]
0 (La)	2.705	3.175	3.195	3.246	2.979	2.918	3.025	3.115	2.164	3.145	3.048	3.042	2.152	3.089	2.698	2.159	3.080	3.042	3.154	3.028	2.993	61.152
1 (Ce)	2.715	3.157	3.176	3.237	2.967	2.900	3.002	3.084	2.165	3.124	3.045	3.014	2.161	3.078	2.700	2.162	3.039	2.974	3.100	2.981	2.949	60.730
2 (Pr)	2.701	3.141	3.148	3.179	2.934	2.871	2.975	3.060	2.163	3.080	3.004	2.974	2.159	3.041	2.691	2.161	3.014	2.959	3.080	2.950	2.906	60.191
3 (Nd)	2.702	3.121	3.128	3.149	2.918	2.848	2.971	3.032	2.170	3.053	2.994	2.955	2.162	3.026	2.687	2.160	2.993	2.928	3.057	2.931	2.889	59.874
4 (Pm)	-		-	-					-	-	-				-	-	-	-		-		-
5 (Sm)	2.703	3.099	3.087	3.111	2.902	2.833	2.928	3.004	2.168	3.001	2.945	2.906	2.155	2.990	2.677	2.163	2.958	2.890	3.017	2.887	2.842	59.266
6 (Eu)	2.691	3.089	3.066	3.083	2.884	2.816	2.914	2.974	2.171	2.968	2.929	2.886	2.153	2.964	2.676	2.150	2.942	2.869	3.003	2.876	2.820	58.924
7 (Gd)	2.692	3.077	3.056	3.068	2.874	2.808	2.895	2.963	2.163	2.955	2.914	2.869	2.157	2.953	2.667	2.159	2.925	2.862	2.993	2.859	2.806	58.715
8 (Tb)	2.688	3.065	3.031	3.043	2.859	2.789	2.881	2.945	2.158	2.920	2.901	2.846	2.152	2.936	2.659	2.153	2.911	2.838	2.972	2.840	2.788	58.375
9 (Dy)	2.690	3.052	3.019	3.025	2.850	2.775	2.868	2.926	2.162	2.906	2.881	2.825	2.149	2.925	2.656	2.156	2.900	2.824	2.958	2.822	2.770	58.139
10 (Ho)	2.686	3.036	3.004	3.009	2.842	2.763	2.859	2.911	2.159	2.889	2.871	2.816	2.151	2.909	2.659	2.156	2.890	2.818	2.947	2.813	2.754	57.942
11 (Er)	2.686	3.026	2.988	2.993	2.827	2.748	2.834	2.906	2.156	2.873	2.855	2.800	2.144	2.899	2.656	2.156	2.871	2.814	2.930	2.801	2.744	57.707
12 (Tm)	2.647	3.056	3.015	2.980	2.797	2.767	2.836	2.913	2.167	2.860	2.853	2.803	2.159	2.899	2.631	2.151	2.851	2.748	2.938	2.753	2.731	57.555
13 (Yb)	2.677	3.007	2.974	2.977	2.826	2.729	2.825	2.876	2.162	2.836	2.842	2.776	2.141	2.888	2.642	2.148	2.861	2.788	2.906	2.785	2.719	57.385
14 (Lu)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d_{La} / d_{Yb}	1.010	1.056	1.074	1.080	1.054	1.069	1.071	1.083	1.001	1.109	1.072	1.096	1.005	1.070	1.021	1.005	1.077	1.091	1.085	1.087	1.101	1.066

3.4 Trends in Bond Lengths and X-X Distances vs. f Electron Configuration Bond Lengths:

Figure S39. Bond length Ln-N1 vs. f electronic configuration.

Figure S40. Bond length Ln-N2 vs. f electronic configuration.

Figure S41. Bond length Ln-N6 vs. f electronic configuration.

Figure S42. Bond length Ln-O1 vs. f electronic configuration.

Figure S43. Bond length Ln-O2 vs. f electronic configuration.

Figure S44. Bond length Ln-O4 vs. f electronic configuration.

Figure S45. Bond length Ln-O5 vs. f electronic configuration.

Figure S46. Bond length Ln-O7 vs. f electronic configuration.

Figure S47. Bond length Ln-O8 vs. f electronic configuration.

Figure S48. Bond length Ln-O10 vs. f electronic configuration.

Figure S49. Sum of bond lengths Ln-X Ln-X (X = N, O) vs. f electronic configuration. Quadratic fit (χ^2 - weighting factor: su⁻²).

Distances X-X (X = N,O):

Figure S50. Distance N1-N2 vs. f electronic configuration.

Figure S51. Distance N1-O2 vs. f electronic configuration.

Figure S52. Distance N1-O10 vs. f electronic configuration.

Figure S53. Distance N1-O7 vs. f electronic configuration.

Figure S54. Distance N1-O8 vs. f electronic configuration.

Figure S55. Distance N2-O2 vs. f electronic configuration.

Figure S56. Distance O2-O10 vs. f electronic configuration.

Figure S57. Distance O7-O10 vs. f electronic configuration.

Figure S58. Distance O7-O8 vs. f electronic configuration.

Figure S59. Distance O8-N2 vs. f electronic configuration.

Figure S60. Distance N6-O1 vs. f electronic configuration.

Figure S61. Distance O1-O4 vs. f electronic configuration.

Figure S62. Distance O4-O5 vs. f electronic configuration.

Figure S63. Distance O5-N6 vs. f electronic configuration.

Figure S64. Distance N2-N6 vs. f electronic configuration.

Figure S65. Distance O1-O2 vs. f electronic configuration.

Figure S66. Distance O1-O10 vs. f electronic configuration.

Figure S67. Distance O4-O10 vs. f electronic configuration.

Figure S68. Distance O4-O7 vs. f electronic configuration.

Figure S69. Distance O5-O7 vs. f electronic configuration.

Figure S70. Distance O5-O8 vs. f electronic configuration.

Figure S71. Sum of distance X-X (X = N, O) vs. f electronic configuration. Quadratic fit.

- 4. [Ln(PhMeCH-DOTAM)(H₂O)] (OTf)₃ Complexes⁹⁻¹¹
- 4.1 Structure

Asymmetric unit of $[Ln(PhMeCH-DOTAM)(H_2O)](OTf)_3 * 3 H_2O.⁹$ Thermal ellipsoid plot (Ortep 3 for Windows,¹ 50% probability level) with atom numbering scheme. Hydrogens, triflates, and the three isolated water molecules omitted for clarity.

4.2 Bond Lengths

Table S8. Bond lengths in [Ln(PhMeCH-DOTAM)(H₂O)](OTf)₃ * 3 H₂O.⁹⁻¹¹

f electrons	d _{Ln-O1} (su)	d _{Ln-O2} (su)	d _{Ln-O3} (su)	d _{Ln-O4} (su)	d _{Ln-O5} (su)	d _{Ln-N1} (su)	d _{Ln-N2} (su)	d _{Ln-N3} (su)	d _{Ln-N4} (su)	Σd_{Ln-X} (su)
(Ln)	[Å]	[Å]								
0 (La)	-	-	-	-	-	-	-	-	-	-
1 (Ce)	-	-	-	-	-	-	-	-	-	-
2 (Pr) ⁹	2.428(2)	2.403(2)	2.434(2)	2.415(2)	2.516(2)	2.696(2)	2.738(2)	2.708(2)	2.746(2)	23.084(18)
3 (Nd) ⁹	2.414(2)	2.392(2)	2.419(2)	2.402(2)	2.501(2)	2.677(2)	2.715(2)	2.690(2)	2.725(2)	22.935(18)
4 (Pm)	-	-	-	-	-	-	-	-	-	-
5 (Sm) ⁹	2.374(4)	2.352(4)	2.383(4)	2.362(4)	2.495(2)	2.647(5)	2.685(5)	2.654(5)	2.697(5)	22.649(40)
6 (Eu) ⁹	2.377(2)	2.355(2)	2.379(2)	2.361(2)	2.482(2)	2.643(2)	2.680(2)	2.655(2)	2.689(2)	22.621(18)
7 (Gd) ⁹	2.368(2)	2.346(2)	2.367(2)	2.353(2)	2.460(2)	2.633(2)	2.670(2)	2.650(2)	2.675(2)	22.522(18)
8 (Tb) ¹⁰	2.355(2)	2.333(2)*	2.350(2)*	2.331(2)	2.461(3)	2.624(3)	2.664(3)*	2.642(3)*	2.669(3)	22.429(23)
9 (Dy) ⁹	2.344(2)	2.315(2)	2.336(2)	2.317(2)	2.454(2)	2.620(2)	2.654(2)	2.644(2)	2.658(2)	22.342(18)
10 (Ho)	-	-	-	-	-	-	-	-	-	-
11 (Er) ¹⁰	2.321(1)	2.296(2)	2.310(1)	2.294(2)	2.432(2)	2.605(2)	2.639(2)	2.629(2)	2.636(2)	22.162(15)
12 (Tm)	-	-	-	-	-	-	-	-	-	-
13 (Yb) ¹¹	2.298(2)*	2.274(2)	2.288(2)	2.274(2)*	2.440(2)	2.598(2)	2.636(2)	2.626(2)	2.630(3)	22.064(19)
14 (Lu) ¹⁰	2.292(2)	2.273(2)	2.283(2)	2.273(2)	2.426(2)	2.592(2)	2.636(2)	2.623(2)	2.623(3)	22.021(19)
d_{Pr} / d_{Lu}	1.059	1.057	1.066	1.062	1.037	1.040	1.039	1.032	1.047	1.048

* Bond lengths taken from the published cif-files. Incorrectly listed in the original publication (see ref. 10 and 11).

4.3 X-X Distances

Table S9. Distances X-X (X = N,O bound to Ln) in [Ln(PhMeCH-DOTAM)(H₂O)] (OTf)₃ * 3 H₂O.⁹⁻¹¹

f electrons	d ₀₅₋₀₁	d ₀₅₋₀₂	d ₀₅₋₀₃	d ₀₅₋₀₄	d ₀₁₋₀₂	d ₀₂₋₀₃	d ₀₃₋₀₄	d ₀₄₋₀₁	d _{01-N1}	d _{O1-N2}	d _{O2-N2}	d _{O2-N3}	d _{O3-N3}	d _{O3-N4}	d _{O4-N4}	d _{O4-N1}	d _{N1-N2}	d _{N2-N3}	d _{N3-N4}	d _{N4-N1}	Σd_{X-X}
(Ln)	[Å]	[Å]																			
0 (La)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1 (Ce)	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
2 (Pr) ⁹	2.909	2.984	3.015	2.989	3.259	3.310	3.222	3.372	2.794	3.086	2.729	3.037	2.785	3.096	2.763	3.114	2.999	3.019	2.990	3.025	60.497
3 (Nd) ⁹	2.883	2.955	2.967	2.953	3.236	3.276	3.209	3.337	2.791	3.067	2.725	3.018	2.779	3.082	2.764	3.087	2.988	3.009	2.979	3.013	60.118
4 (Pm)	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-
5 (Sm) ⁹	2.831	2.889	2.913	2.893	3.171	3.200	3.136	3.274	2.776	3.009	2.713	2.971	2.766	3.062	2.751	3.074	2.962	2.997	2.975	2.987	59.350
6 (Eu) ⁹	2.814	2.886	2.891	2.874	3.171	3.200	3.140	3.256	2.779	3.039	2.722	2.986	2.769	3.050	2.752	3.046	2.972	2.985	2.964	2.992	59.288
7 (Gd) ⁹	2.793	2.861	2.858	2.844	3.154	3.176	3.133	3.236	2.776	3.024	2.724	2.980	2.770	3.038	2.751	3.028	2.965	2.980	2.953	2.984	59.028
8 (Tb) ¹⁰	2.781	2.847	2.838	2.823	3.129	3.153	3.101	3.211	2.770	3.006	2.720	2.970	2.767	3.025	2.745	3.010	2.962	2.980	2.950	2.981	58.769
9 (Dy) ⁹	2.758	2.838	2.822	2.796	3.116	3.114	3.093	3.182	2.765	3.000	2.716	2.955	2.761	3.015	2.736	2.997	2.954	2.978	2.953	2.981	58.530
10 (Ho)	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-
11 (Er) ¹⁰	2.729	2.801	2.768	2.746	3.077	3.071	3.063	3.137	2.759	2.981	2.716	2.938	2.751	2.989	2.732	2.974	2.943	2.964	2.940	2.972	58.051
12 (Tm)	-					-				-	-				-	-	-	-		-	-
13 (Yb) ¹¹	2.715	2.797	2.758	2.727	3.038	3.035	3.037	3.111	2.750	2.959	2.717	2.926	2.745	2.972	2.725	2.956	2.933	2.963	2.935	2.974	57.773
14 (Lu) ¹⁰	2.704	2.777	2.736	2.710	3.032	3.022	3.033	3.101	2.747	2.954	2.727	2.921	2.742	2.963	2.733	2.953	2.930	2.966	2.931	2.974	57.656
d_{Pr} / d_{Lu}	1.076	1.075	1.102	1.103	1.075	1.095	1.062	1.087	1.017	1.045	1.001	1.040	1.016	1.045	1.011	1.055	1.024	1.018	1.020	1.017	1.049

4.4 Trends in Bond Lengths and X-X Distances vs. f Electron Configuration Bond Lengths:

Figure S72. Bond length Ln-O1 vs. f electronic configuration.

Figure S73. Bond length Ln-O2 vs. f electronic configuration.

Figure S74. Bond length Ln-O3 vs. f electronic configuration.

Figure S75. Bond length Ln-O4 vs. f electronic configuration.

Figure S76. Bond length Ln-O5 vs. f electronic configuration.

Figure S77. Bond length Ln-N1 vs. f electronic configuration.

Figure S78. Bond length Ln-N2 vs. f electronic configuration.

Figure S79. Bond length Ln-N3 vs. f electronic configuration.

Figure S80. Bond length Ln-N4 vs. f electronic configuration.

Figure S81. Sum of bond lengths Ln-X Ln-X (X = N, O) vs. f electronic configuration. Quadratic fit (χ^2 - weighting factor: su⁻²).

Distances X-X (X = N,O):

Figure S82. Distance O5-O1 vs. f electronic configuration.

Figure S83. Distance O5-O2 vs. f electronic configuration.

Figure S84. Distance O5-O3 vs. f electronic configuration.

Figure S85. Distance O5-O4 vs. f electronic configuration.

Figure S86. Distance O1-O2 vs. f electronic configuration.

Figure S87. Distance O2-O3 vs. f electronic configuration.

Figure S88. Distance O3-O4 vs. f electronic configuration.

Figure S89. Distance O4-O1 vs. f electronic configuration.

Figure S90. Distance O1-N1 vs. f electronic configuration.

Figure S91. Distance O1-N2 vs. f electronic configuration.

Figure S92. Distance O2-N2 vs. f electronic configuration.

Figure S93. Distance O2-N3 vs. f electronic configuration.

Figure S94. Distance O3-N3 vs. f electronic configuration.

Figure S95. Distance O3-N4 vs. f electronic configuration.

Figure S96. Distance O4-N4 vs. f electronic configuration.

Figure S97. Distance O4-N1 vs. f electronic configuration.

Figure S98. Distance N1-N2 vs. f electronic configuration.

Figure S99. Distance N2-N3 vs. f electronic configuration.

Figure S100. Distance N3-N4 vs. f electronic configuration.

Figure S101. Distance N4-N1 vs. f electronic configuration.

Figure S102. Sum of distance X-X (X = N, O) vs. f electronic configuration. Quadratic fit.

5 [Ln(H₂O)₉](EtOSO₃)₃ Complexes¹² 5.1 Bond Lengths

f electrons (Ln)	d _{Ln-O1} (su) [Å] (6x)	d _{Ln-O2} (su) [Å] (3x)	Σd _{Ln-O} (su) [Å]
0 (La)	2.517(1)	2.616(3)	22.950(15)
1 (Ce)	2.491(1)	2.600(3)	22.746(15)
2 (Pr)	2.470(2)	2.583(3)	22.569(21)
3 (Nd)	2.457(1)	2.570(2)	22.452(12)
4 (Pm)	-	-	
5 (Sm)	2.430(1)	2.550(4)	22.230(18)
6 (Eu)	2.415(1)	2.542(3)	22.116(15)
7 (Gd)	2.401(1)	2.536(3)	22.014(15)
8 (Tb)	2.382(2)	2.527(3)	21.873(21)
9 (Dy)	2.371(1)	2.517(4)	21.777(15)
10 (Ho)	2.362(2)	2.511(4)	21.705(24)
11 (Er)	2.352(2)	2.503(3)	21.621(21)
12 (Tm)	2.340(2)	2.504(5)	21.552(27)
13 (Yb)	2.324(2)	2.503(3)	21.453(21)
14 (Lu)	2.318(2)	2.497(3)	21.399(21)
d _{La} / d _{Lu}	1.086	1.048	1.072

Table S10. Bond lengths in $[Ln(H_2O)_9](EtOSO_3)_3$.¹²

5.2 O-O Distances

Table S11. Distances O-O (O bound to Ln) in $[Ln(H_2O)_9](EtOSO_3)_3$.¹²

f electrons (Ln)	d _{01'-02} [Å] (6x)	d _{O1-O2} [Å] (6x)	d _{o1-01'} [Å] (3x)	d _{01'-01'} [Å] (6x)*	Σd _{O-O} [Å]
0 (La)	2.770	3.058	3.531	3.108	64.209
1 (Ce)	2.753	3.034	3.509	3.062	63.621
2 (Pr)	2.735	3.009	3.483	3.033	63.111
3 (Nd)	2.726	2.995	3.475	3.010	62.811
4 (Pm)	-	-	-	-	-
5 (Sm)	2.704	2.966	3.444	2.969	62.166
6 (Eu)	2.695	2.952	3.428	2.948	61.854
7 (Gd)	2.683	2.940	3.402	2.935	61.554
8 (Tb)	2.673	2.920	3.379	2.909	61.149
9 (Dy)	2.661	2.909	3.369	2.890	60.867
10 (Ho)	2.654	2.901	3.357	2.878	60.669
11 (Er)	2.649	2.884	3.339	2.868	60.423
12 (Tm)	2.648	2.875	3.325	2.853	60.231
13 (Yb)	2.638	2.865	3.300	2.833	59.916
14 (Lu)	2.633	2.854	3.285	2.832	59.769
d _{La} / d _{Lu}	1.052	1.071	1.075	1.097	1.074

* Distance not listed in the original publication; values calculated from the published coordinates (see ref. 12).

5.3 Trends in Bond Lengths and O-O Distances vs. f Electron Configuration Bond Lengths:

Figure S104. Bond length Ln-O2 vs. f electronic configuration.

Figure S105. Sum of bond lengths Ln-O vs. f electronic configuration. Quadratic fit (χ^2 - weighting factor: su⁻²).

Distances O-O:

Figure S106. Distance O1'-O2 vs. f electronic configuration.

Figure S107. Distance O1-O2 vs. f electronic configuration.

Figure S108. Distance O1-O1' vs. f electronic configuration.

Figure S109. Distance O1'-O1' vs. f electronic configuration.

Figure S110. Sum of distances O-O vs. f electronic configuration. Quadratic fit $(\chi^2$ - weighting factor: su⁻²).

6. The Average X-X Distance vs. the Average Ln-X Bond Length

f electrons	[Ln(TREN-1,2-	[Ln(TREN-1,2-	[Ln(tptz)(NO ₃) ₃	[Ln(tptz)(NO ₃) ₃	[Ln((PhMeCH-	[Ln((PhMeCH-	[Ln(H ₂ O) ₉]	[Ln(H ₂ O) ₉]	[Ln(TREN-	[Ln(TREN-
(Ln)	HOIQO)(H ₂ O)]	HOIQO)(H ₂ O)]	(H ₂ O)]	(H ₂ O)]	DOTAM)(H ₂ O)](OTf) ₃	DOTAM)(H ₂ O)](OTf) ₃	(EtOSO ₃) ₃	(EtOSO ₃) ₃	SAL)]	SAL)]
	avg. Ln-O [Å]	avg. O-O [Å]	avg. Ln-X [Å]	avg. X-X [Å]	avg. Ln-X [Å]	avg. X-X [Å]	avg. Ln-O [Å]	avg. O-O [Å]	avg. Ln-X [Å]	avg. X-X [Å]
0 (La)	2.486	3.152	2.615	2.912	-	-	2.550	3.058	-	-
1 (Ce)	2.465	3.125	2.598	2.892	-	-	2.527	3.030	2.576	3.344
2 (Pr)	2.448	3.104	2.575	2.866	2.565	3.025	2.508	3.005	2.558	3.322
3 (Nd)	2.431	3.083	2.562	2.851	2.548	3.006	2.495	2.991	2.547	3.316
4 (Pm)	-	-	-	-	-	-	-	-	-	-
5 (Sm)	2.407	3.050	2.536	2.822	2.517	2.968	2.470	2.960	2.517	3.272
6 (Eu)	2.393	3.033	2.521	2.806	2.513	2.964	2.457	2.945	2.510	3.264
7 (Gd)	2.381	3.017	2.513	2.796	2.502	2.951	2.446	2.931	2.496	3.250
8 (Tb)	2.362	2.993	2.498	2.780	2.492	2.938	2.430	2.912	2.478	3.223
9 (Dy)	2.355	2.984	2.488	2.769	2.482	2.927	2.420	2.898	2.473	3.212
10 (Ho)	2.340	2.965	2.480	2.759	-	-	2.412	2.889	2.456	3.198
11 (Er)	2.334	2.957	2.470	2.748	2.462	2.903	2.402	2.877	-	-
12 (Tm)	2.324	2.947	2.465	2.741	-	-	2.395	2.868	-	-
13 (Yb)	2.310	2.925	2.455	2.733	2.452	2.889	2.384	2.853	2.428	3.154
14 (Lu)	2.314	2.929	-	-	2.447	2.883	2.378	2.846	-	-

Table S12. Average distances Ln-X and X-X (X=N,O; bound to Ln).

Figure S111. Average O-O vs. average Ln-O in [Ln(TREN-1,2-HOIQO)(H₂O)].

Figure S112. Average O-O vs. average Ln-O in [Ln(tptz)(NO₃)₃(H₂O)].

Figure S113. Average O-O vs. average Ln-O in [Ln(PhMeCH-DOTAM) (H_2O)](OTf)₃.

Figure S114. Average O-O vs. average Ln-O in [Ln(H₂O)₉](EtOSO₃)₃.

Figure S115. Average X-X vs. average Ln-X in [Ln(TREN-SAL)].

Figure S116. Average X-X vs. average Ln-X in all complexes.

7. References

- ¹ ORTEP-3 for Windows: Farrugia, L.J. J. Appl. Cryst. **1997**, *30*, 565.
- ² Seitz, M.; Pluth, M.D.; Raymond, K.N. *Inorg. Chem.* **2007**, *46*, 351-353.
- ³ For the definition of the shape measure S see: Xu, J.; Radkov, E.; Ziegler, M.; Raymond, K.N. *Inorg. Chem.* **2000**, *39*, 4156-4164.
- ⁴ Bernhardt, P.V.; Flanagan, B.M.; Riley, M.J.; *Aust. J. Chem.* **2001**, *54*, 229-232.
- ⁵ Bernhardt, P.V.; Flanagan, B.M.; Riley, M.J.; *Aust. J. Chem.* **2000**, *53*, 229-231.
- ⁶ Kanesato, M.; Yokoyama, T.; *Anal. Sci.* **2000**, *16*, 335-336.
- ⁷ Kanesato, M.; Yokoyama, T.; *Chem. Lett.* **1999**, 137-138.
- ⁸ Cotton, S.A.; Franckevicius, V.; Mahon, M.F.; Ooi, L.L.; Raithby, P.R.; Teat, S.J. *Polyhedron* **2006**, *25*, 1057-1068.
- ⁹ Parker, D.; Puschmann, H.; Batsanov, A.S.; Senanayake, K. *Inorg. Chem.* **2003**, *42*, 8646-8651.
- ¹⁰ Aime, S.; Barge, A.; Batsanov, A.S.; Botta, M.; Delli Castelli, D.; Fedeli, F.; Mortillaro, A.; Parker, D.; Puschmann, H. *Chem. Commun.* **2002**, 1120-1121.
- ¹¹ Batsanov, A.S.; Beeby, A.; Bruce, J.I.; Howard, J.A.K.; Kenwright, A.M.; Parker, D. *Chem. Commun.* **1999**, 1011-1012.
- ¹² Gerkin, R.E.; Reppart, W.J. Acta Crystallogr. C 1984, 40, 781-786.