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1. Mathematical model of competition for inorganic carbon and light 

We develop a model that considers several phytoplankton species competing for inorganic 

carbon and light in a well-mixed water column. The population dynamics of the species depend 

on the assimilation of carbon dioxide and bicarbonate. Uptake of these inorganic carbon sources 

induces dynamic changes in pH. These changes in pH, in turn, affect the availability of the 

different carbon sources, which feeds back on population growth. In addition, the growing 

cyanobacterial populations cast more shade, reducing light available for photosynthesis, and 

thereby suppressing further carbon assimilation and population growth.  
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Population dynamics  

We assume that the specific growth rates of the competing species depend on their intracellular 

carbon content (Droop, 1973; Grover, 1991). Let n denote the number of species, let Xi denote 

the population density of species i, and let Qi denote its intracellular carbon content. The 

population dynamics of the competing species, and the dynamic changes in their cellular carbon 

content, can be summarized by two sets of differential equations: 
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The first set of equations describes the population densities of the competing species, where i is 

the specific growth rate of species i and mi is its specific loss rate. The second set of equations 

describes the cellular carbon contents of the species, which increase through uptake of carbon 

dioxide (uCO2,i) and bicarbonate (uHCO3,i), and decrease through respiration (ri) and through 

dilution of the cellular carbon by growth.  

We assume that the cellular carbon assimilated by each species consists of structural 

biomass and a transient carbon pool. The relative size of the transient carbon pool, Si, is: 
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where Qmin,i is the minimum amount of cellular carbon incorporated into the structural biomass 

of species i, and Qmax,i is its maximum amount of cellular carbon. The transient carbon pool can 

be invested to make new structural biomass, which contributes to further population growth. The 

specific growth rate of a species is determined by the size of its transient carbon pool: 
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where µmax,i is the maximum specific growth rate of species i. Our model formulation resembles 

Droop’s (1973) classic growth model. However, in our model the cellular carbon content is 
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constrained between Qmin,i and Qmax,i, as there are physical limits to the amount of carbon that 

can be stored inside a cell. The specific growth rate equals zero if the transient carbon pool is 

exhausted (i.e., µi = 0 if Qi = Qmin,i), and reaches its maximum if cells are satiated with carbon 

(i.e., µi = µmax,i if Qi = Qmax,i). 

 

Carbon assimilation 

We assume that uptake rates of carbon dioxide and bicarbonate are increasing but saturating 

functions of resource availability as in Michaelis-Menten kinetics, and are suppressed when cells 

become satiated with carbon (Morel, 1987; Ducobu et al, 1998). Since carbon assimilation 

requires energy, we further assume that these uptake rates depend on photosynthetic activity. 

Uptake rates of carbon dioxide and bicarbonate by the different species can then be described by: 
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where umax,CO2,i and umax,HCO3,i are the maximum uptake rates of carbon dioxide and bicarbonate, 

respectively, HCO2,i and HHCO3,i are the half-saturation constants, Si is the relative size of the 

transient carbon pool as defined by equation (3), and Pi is the relative photosynthetic activity of 

species i (with 0 < Pi < 1). 

The light reaction of photosynthesis determines the amount of energy available for 

carbon assimilation. We therefore calculate the relative photosynthetic activity of a species from 

its depth-averaged photosynthetic rate (Huisman & Weissing, 1994; Huisman et al, 1999): 
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where pi(I(z)) is the photosynthetic rate of species i, and zm is the total depth of the water column. 

The notation pi(I(z)) indicates that the light reaction of photosynthesis is a function pi of light 

intensity I, which in turn is a function of depth z.  

The photosynthetic rate of a species is described as a Monod function of light intensity: 
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where pmax,i is the maximum photosynthetic rate of species i, and HI,i is its half-saturation 

constant for light. Because the maximum carbon uptake rate is already accounted for in 

equations (5a,b), we set pmax,i = 1 (which constrains Pi to 0 ≤ Pi ≤ 1). The underwater light 

intensity varies with depth according to Lambert-Beer’s law: 
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This equation states that the light intensity transmitted through the water column increases with 

the incident light intensity (Iin), but decreases with the depth in the water column (z), the 

background turbidity of the water itself (Kbg), the specific light attenuation coefficients of the 

competing species (ki), and the population densities of the species (Xi). We define Iout as the light 

intensity reaching the bottom of the water column (i.e., Iout = I(zm)). 

 With equations (7) and (8), the depth integral in equation (6) can be solved analytically 

(Huisman & Weissing, 1994): 
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Carbon is lost by respiration. We assume that the respiration rate is proportional to the 

size of the transient carbon pool: 

 iii Srr max,          (10) 

where rmax,i is the maximum respiration rate when cells are fully satiated with carbon. 
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Dissolved inorganic carbon 

Carbon dioxide readily dissolves in water, and a small fraction reacts with water forming 

carbonic acid (H2CO3). Carbonic acid may subsequently dissociate into bicarbonate and a proton. 

The reaction from dissolved carbon dioxide to bicarbonate, and vice versa, depends on pH and is 

relatively slow (Stumm & Morgan, 1996). Bicarbonate can dissociate further into carbonate and 

a proton. This is a much faster process, such that the dissociation of bicarbonate into carbonate 

and its reverse reaction are essentially in equilibrium with alkalinity and pH (Stumm & Morgan, 

1996). The chemical reactions of inorganic carbon are summarized in Table S1. In addition to 

these chemical processes, carbon dioxide and bicarbonate are consumed for photosynthesis by 

the competing species, and carbon dioxide is released by respiration.  

Dissolved carbon dioxide and carbonic acid cannot be distinguished experimentally. 

Therefore, let [CO2] denote the total concentration of dissolved carbon dioxide and carbonic 

acid. In addition, let [CARB] denote the total concentration of bicarbonate and carbonate. Thus, 

the total dissolved inorganic carbon (DIC) is defined as: 

DIC = [CO2] + [CARB]       (11) 

Changes in dissolved inorganic carbon can then be described by (Johnson, 1982; Stumm & 

Morgan, 1996): 
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The first equation describes changes in the concentration of dissolved carbon dioxide through the 

influx ([CO2]in) and efflux of water containing dissolved CO2, through gas exchange with 

atmospheric CO2 (gCO2), and through the chemical reaction from dissolved CO2 to bicarbonate 

and vice versa (cCO2). In addition, the concentration of dissolved carbon dioxide increases 

through respiration (ri,) and decreases through uptake of CO2 (uCO2,i) by the species. The second 
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equation describes changes in the summed concentration of bicarbonate and carbonate through 

in- and efflux of water containing these inorganic carbon species, through the chemical reaction 

from bicarbonate to dissolved CO2 and vice versa (cCO2), and through uptake of bicarbonate 

(uHCO3,i) by the species.  

Our experiments are continuously aerated with a defined concentration of CO2. The CO2 

from this gas mixture dissolves in water. We assume that the CO2 gas influx (gCO2) is 

proportional to the aeration rate (a), and to the concentration difference between dissolved CO2 

in equilibrium with the gas pressure ([CO2
*]) and the actual dissolved CO2 concentration 

(Siegenthaler & Sarmiento, 1993): 

   ]CO[]CO[ 2
*

2CO2
 aγg        (13) 

where  is a constant of proportionality. The value of [CO2
*] is calculated from the partial 

pressure of CO2 in the gas inflow (pCO2) and the solubility of CO2 gas in water (Table S1). 

Dissolved CO2 reacts with water and subsequently dissociates into HCO3
- and H+. This 

process occurs at a rate kCO2 (Table S1). Dissolved CO2 can also react with OH- forming HCO3
-, 

which occurs at a rate kOH. Conversely, HCO3
- and H+ associate to dissolved CO2 and water at a 

rate kH, while HCO3
- can also react to dissolved CO2 and OH- at a rate kHCO3. The overall change 

in dissolved CO2 through these chemical reactions (cCO2) can be described as (Johnson, 1982): 

       
  3HCOH2OHCOCO HCOHCOOH
322

kkkkc     (14) 

 

Algorithm to calculate bicarbonate and carbonate concentrations 

The concentrations of bicarbonate and carbonate can be calculated from [CARB] assuming 

equilibrium with alkalinity and pH (Portielje & Lijklema, 1995; Stumm & Morgan, 1996). For 

this purpose, we used an iterative algorithm that is solved at each time step of our model 

simulations to calculate alkalinity and pH, and from there the bicarbonate and carbonate 

concentration. This iterative algorithm is described below. 
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 Alkalinity is defined as the acid-neutralizing capacity of water. In our experiments, 

alkalinity is dominated by dissolved inorganic carbon and inorganic phosphates. Accordingly, 

the alkalinity is given by (Wolf-Gladrow et al, 2007): 

           OHPO2HPOCO2HCOALK 3
4

2
4

2
33     HPOH 43  (15) 

Alkalinity can be calculated from this equation in two different ways. First, initial 

estimates of the concentrations of bicarbonate, carbonate, phosphoric acid (H3PO4), dihydrogen 

phosphate (H2PO4
-), hydrogen phosphate (HPO4

2-), and phosphate (PO4
3-) can be calculated from 

the summed concentration of bicarbonate and carbonate (CARB), the summed concentration of 

dissolved inorganic phosphates (RP, 300 μmol L-1 in our experiments), and the proton 

concentration (H+) obtained from the pH at the previous time step (pHt-1): 
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where K2 = 4.34×10-11 is the equilibrium dissociation constant of bicarbonate into carbonate 

(Table S1), KP1 = 7.11×10-3, KP2 = 6.32×10-8 and KP3 = 4.47×10-13 are the equilibrium constants 

of the inorganic phosphates, and αP is calculated as: 
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Alkalinity is calculated from these initial estimates using equation (15).  
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Alternatively, alkalinity can be calculated from dynamic changes of alkalinity over time. 

According to equation (15), biological uptake or release of carbon dioxide does not change 

alkalinity. Furthermore, uptake of bicarbonate for photosynthesis is accompanied by the release 

of a hydroxide ion or uptake of a proton to maintain charge balance, and therefore bicarbonate 

uptake does not change alkalinity either. Hence, carbon assimilation by the species does not 

affect alkalinity. Nitrate, phosphate and sulfate assimilation, however, are accompanied by 

proton consumption in order to maintain charge balance. Therefore, assimilation of these 

nutrients increases alkalinity (Brewer & Goldman, 1976; Wolf-Gladrow et al, 2007). More 

specifically, both nitrate and phosphate uptake increase alkalinity by 1 mole equivalent, whereas 

sulfate uptake increases alkalinity by 2 mole equivalents (Wolf-Gladrow et al, 2007). 

Accordingly, changes in alkalinity can be calculated as: 

    i
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where ALKin is the alkalinity of the inflowing mineral medium, and uN,i, uP,i, and uS,i are the 

uptake rates of nitrate, phosphate, and sulfate by species i. Because nitrogen, phosphorus and 

sulfur were not limiting factors in our experiments, we assume for simplicity that the uptake rates 

of nitrate, phosphate and sulfate are proportional to the net uptake rate of carbon: 

 iiiijij ruuyu   ,HCO,CO,,
32

   with j = N,P,S   (24) 

where yN,i, yP,i and yS,i are the cellular N:C, P:C and S:C ratios of species i. 

The difference, ALK, between the alkalinity calculated from equations (16-22) and the 

alkalinity calculated from equation (23) is used to make a new pH estimate: 

pHpHpH 1-tt          (25) 

where pH is calculated according to (Stumm & Morgan, 1996):
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where HCO3 = [H+]/([H+] + K2), CO3 = K2/([H
+] + K2),01 = [H+]/([H+] + KP1), 10 = KP1/([H

+] 

+ KP1), 12 = [H+]/([H+] + KP2), 21 = KP2/([H
+] + KP2),23 = [H+]/([H+] + KP3), 32 = KP3/([H

+] 

+ KP3), [P01] = [H3PO4] + [H2PO4
-], [P12] = [H2PO4

-] + [HPO4
2-], and [P23] = [HPO4

2-] + [PO4
3-]. 

This new pH estimate is then used to calculate new values for bicarbonate, carbonate and the 

inorganic phosphates using equations (16-22). This yields a new alkalinity estimate, which gives 

a new pH, and so on. This iterative procedure is continued until pH and alkalinity have both 

reached a stable value. 

 Finally, the bicarbonate and carbonate concentration are calculated from this stable pH 

value using equations (16) and (17). 

 

2. Estimation of model parameters 

The model parameters were estimated from the experiments. For this purpose, it is useful to 

distinguish between system parameters and species parameters. System parameters are under 

experimental control, and included incident light intensity (Iin), mixing depth of the chemostats 

(zm), dilution rate (D), the composition of the mineral medium (e.g., [CO2]in, [CARB]in), and the 

CO2 concentration in the gas flow (pCO2). We assume that the specific loss rates of the species 

are governed by the dilution rate of the chemostat (i.e., mi = D for all i). Background turbidity 

(Kbg) was determined from measurements of Iin and Iout in chemostats filled with mineral medium 

but without cyanobacteria. According to Lambert-Beer’s law, in equation (8), the background 

turbidity can then be calculated as Kbg = ln(Iin/Iout)/zm. The values of the system parameters are 

summarized in Table 1 of the main text of this article. 

The species parameters were estimated from the monoculture experiments, by fitting the 

time courses predicted by the model to the time courses of the experimental variables measured 

in the monoculture experiments. These experimental variables included population density (Xi), 

total dissolved inorganic carbon, pH, alkalinity, and light penetration through the culture vessel 
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(Iout). Following the same procedure as in earlier studies (Huisman et al, 1999; Passarge et al, 

2006), measured data were first log-transformed to homogenize the variances. Subsequently, log-

transformed values were normalized, using the total sum of squares of each experimental 

variable as weighting factor. Parameter estimates were obtained by minimization of the residual 

sum of squares between observed and predicted values of these log-transformed normalized data, 

using the Gauss-Marquardt-Levenberg algorithm in the software package PEST (Watermark 

Numerical Computing, Brisbane, Australia). The values of the species parameters are 

summarized in Table 2 of the main text. 

The parameters estimated from the monoculture experiments were used to predict 

dynamic changes of species abundances, inorganic carbon concentrations, pH and microcystin 

concentrations in the competition experiments. 
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Table S1 Reactions and equilibrium constants of dissolved inorganic carbon in water.  

Reactions 
Equilibrium 
constants 

Description Value (1) Units 

     -
2 OHHOH  

    WKOHH   
Equilibrium constant 
of water 7.71×10-15 - 

   222 COOHpCO   
 

0
2

*
2 K

pCO

CO
  

Solubility of CO2 gas 
in water 3.73×10-2 mol L-1 atm-1 

     -
32 HCOHCO    

  
  1

2

3 K
CO

HCOH




 Dissociation constant 
of CO2 

4.25×10-7 -  

     -2
3

-
3 COHHCO  

 
  
  2-

3

2
3 K

HCO

COH




 Dissociation constant 
of HCO3

- 4.34×10-11 - 

        HHCOCOOH -
322  kCO2 

Reaction rate of H2O 
and CO2 

 2.68×10-2 s-1 

     -
32

- HCOCOOH   kOH 
Reaction rate of OH- 
and CO2

 ×104
 s-1 

       22
-
3 COOHHHCO    kHCO3 

Reaction rate of 
HCO3

- and H+
 

1.36×10-4 s-1 

     2
--

3 COOHHCO   kH 
Reaction rate of the 
dissociation of HCO3

- 7.47×103 s-1 

(1) Values of the equilibrium constants and reaction rates assume a temperature of 21.5 oC and a pressure of 1 atm. 

The solubility of CO2 in water and dissociation constants are based on Stumm & Morgan (1996); reaction rates are 

based on Welch et al (1969). 

  

 


