SUPPLEMENTARY DATA Supplementary Table 1. Organ and fat depot weights in control and IUGR rats fed high fat diet with or without resveratrol (Resv). | | High fat diet | | High fat diet + Resv | | 2-way
ANOVA | | | |--|-----------------|-------------------------|----------------------|-------------------------|----------------|------|-----| | | Control | IUGR | Control | IUGR | IUGR | Resv | Int | | Liver weight (g) | 22.8 ± 1.6 | 21.3 ± 1.1 | 21.4 ± 1.5 | 19.9 ± 1.3 | | | | | Liver relative weight (mg • g body weight ⁻¹) | 33.4 ± 1.1 | 32.6 ± 1.5 | 32.8 ± 0.7 | 32.5 ± 1.0 | | | | | Heart weight (g) | 2.68 ± 0.11 | 2.71 ± 0.10 | 2.58 ± 0.08 | 2.46 ± 0.09 | | | | | Heart relative weight (mg • g body weight ⁻¹) | 3.98 ± 0.22 | 4.15 ± 0.26 | 4.00 ± 0.13 | 4.07 ± 0.25 | | | | | Pancreas weight (g) | 1.36 ± 0.03 | 1.15 ± 0.08 | 1.26 ± 0.07 | 1.30 ± 0.16 | | | | | Pancreas relative weight (mg • g body weight ⁻¹) | 2.02 ± 0.1 | 1.76 ± 0.13 | 1.96 ± 0.14 | 2.13 ± 0.27 | | | | | Spleen weight (g) | 0.95 ± 0.05 | 1.01 ± 0.07 | 0.94 ± 0.05 | 0.92 ± 0.05 | | | | | Spleen relative weight (mg • g body weight ⁻¹) | 1.4 ± 0.08 | 1.54 ± 0.09 | 1.45 ± 0.03 | 1.51 ± 0.07 | | | | | Kidneys weight (g) | 4.08 ± 0.14 | $3.58 \pm 0.08 \dagger$ | 3.84 ± 0.09 | $3.30 \pm 0.08 \dagger$ | * | * | | | Kidneys relative weight (mg • g body weight ⁻¹) | 6.02 ± 0.15 | 5.48 ± 0.16 | 5.95 ± 0.22 | 5.43 ± 0.18 | * | | | | Intra-abdominal fat (g) | 73.0 ± 5.9 | 89.2 ± 5.5† | 55.38 ± 2.18 | $64.9 \pm 4.8 \dagger$ | * | * | | | Intra-abdominal to total fat (%) | 53.3 ± 3.9 | 63.0 ± 4.1† | 48.8 ± 5.9 | 53.6 ± 5.7 | * | * | | | Omental fat (g) | 2.95 ± 0.58 | 3.52 ± 0.48 | 2.44 ± 0.50 | 1.78 ± 0.18 | | * | * | | Retroperitoneal fat (g) | 35.9 ± 3.5 | 44.5 ± 3.6† | 23.4 ± 1.0 | 28.7 ± 2.8† | * | * | | | Epididymal fat (g) | 16.2 ± 1.6 | 24.5 ± 1.7† | 18.43 ± 2.33 | 18.8 ± 1.3 | | | | | Mesenteric fat (g) | 16.2 ± 2.8 | 14.4 ± 1.2 | 10.2 ± 0.6 | 14.3 ± 1.3 | | | * | | Subdiafragmatic fat (g) | 1.6 ± 0.2 | 2.3 ± 0.2† | 1.0 ± 0.1 | 1.3 ± 0.2 | * | * | | Measurements were made after nine weeks of HF: High fat diet with or without resveratrol (Resv) 4 g/Kg of diet,* p<0.05 for the respective source of variation such as intrauterine growth restriction (IUGR), Resv or their interaction (Int) using two-way ANOVA. † p<0.05 vs. Controls receiving the same diet after a Bonferroni post-hoc test (n=6 per group). ## SUPPLEMENTARY DATA Supplementary Figure 1. Experimental design and assignment of experimental groups. Following exposure to a normoxic (21% O_2 ; Control) or a hypoxic (11.5% O_2) prenatal environment that caused intrauterine growth restriction (IUGR) weaned male offspring were randomized to either high fat diet (HF-C) or high-fat diet supplemented with Resv 4 g/Kg of diet (HF-R). n= number of litters/dams in each group, N= number of offspring in each group. | | Experimental sub-groups | | | | | |--|-------------------------|---|---|--|--| | Determination | A | В | C | | | | Body weight and food consumption | х | х | x | | | | Determination of body composition and adiposity | x | | | | | | Insulin signaling studies | | X | | | | | Fat histology | x | | | | | | Determination of liver, muscle and plasma lipids | X | | X | | | | Indirect calorimetry and physical activity | | | x | | | | Glucose and insulin tolerance tests | | x | | | | Expanimental cub groups