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SI Materials and Methods
Sample Preparation. The serum samples were biotinylated using
a protocol previously optimized for labeling the serum proteome
(1). All serum samples were labeled, using EZ-Link Sulfo-NHS-
LC-Biotin (Pierce), as previously described (1). Briefly, 50-μL se-
rum aliquots were centrifuged and diluted 1:45 in PBS, resulting in
a final protein concentration of about 2 mg/mL. Sulfo-NHS-biotin
then was added to a final concentration of 0.6 mM, and the sam-
ples were incubated on ice for 2 h. Unconjugated biotin was re-
moved by dialysis against PBS at 4 °C for 72 h. Finally, the samples
were aliquoted and stored at −20 °C before use.

Production and Purification of Recombinant Antibody Fragments.
One hundred thirty-five human recombinant single-chain Fv
(scFv) antibody fragmentswere selected against 65 antigens,mainly
against immunoregulatory proteins, using a phage display library
(Table 2) (2). The selection criteria were stringent, using standard
operating procedures, to ensure the correct antibody specificity.
All scFv probes were produced in 100-mL Escherichia coli cultures
and purified from either expression supernatants or periplasmic
preparations using affinity chromatography on Ni2+-NTA agarose
(Qiagen). Elution was performed using 250 mM imidazole fol-
lowed by extensive dialysis against PBS. The protein concentration
was determined by measuring the absorbance at 280 nm, and the
purified scFv was stored at 4 °C until further use.

Fabrication and Processing of Antibody Microarrays. The production
and handling of the antibodymicroarrays was performed according
to a previously optimized set-up (1, 3). Briefly, the scFvmicroarrays
were fabricated, using a noncontact printer (Biochip Arrayer1;
Perkin-Elmer Life and Analytical Sciences), which deposits
∼330 pL per drop using piezo technology. The scFv antibodies
were arrayed by spotting two drops at each position; the first drop
was allowed to dry before the second drop was dispensed. Black
polymer MaxiSorp microarray slides (NUNC A/S) were used for
solid support, and each antibody was arrayed in eight replicates to
ensure adequate statistics. To assist in the grid alignment during
the subsequent quantification, a row containing Alexa Fluor 647-
conjugated streptavidin (2 μg/mL) was spotted as the top row in all
eight subarrays that constituted the array. The slides were blocked
with 5% (wt/vol) fat-free milk powder (Semper AB) in PBS
overnight and then were placed in a ProteinArray Workstation
(Perkin-Elmer Life and Analytical Sciences), where they were
washed for 4 min at 60 μL/min with 0.05% Tween-20 in PBS.
Thereafter, 75 μL of the labeled sample, diluted 1:2 (total dilution
1:90) in 1% (wt/vol) fat-free milk powder and 1% (vol/vol) Tween
20, was injected and agitated over the array every 15 s for 60 min.
After another 4-min wash, the arrays were incubated for 60 min
with 350 μL of 1 μg/mLAlexa Fluor 647-conjugated streptavidin in
PBS, with 1% (wt/vol) fat-free milk powder and 1% Tween 20.
Finally, after a last washing step, the arrays were dried under
a stream of nitrogen gas and were scanned with a confocal mi-
croarray scanner (ScanArray Express; Perkin-Elmer Life and
Analytical Sciences) at 5-μm resolution, using three different
scanner settings.
The ScanArray Express software version 4.0 (Perkin-Elmer Life

& Analytical Sciences) was used to quantify the intensity of each
spot, using the fixed-circle method. The local background was
subtracted, and to compensate for possible local defects, the two
highest and two lowest replicates were excluded automatically. In
all further data analysis, each data point represents themean value
from the remaining four replicate spots. For protein analytes

displaying saturated signals, values from lower scanner settings
were used.

Microarray Data Normalization. Chip-to-chip normalization of the
dataset was performed using a semiglobal normalization approach,
similar to the normalizationmethod used forDNAmicroarrays. To
find a scaling factor (4–6), the coefficient of variation (CV) was
calculated for each antibody, and the 15% of antibodies displaying
the lowest CV values over all samples were identified, corre-
sponding to 20 analytes. The normalization factor Ni was calcu-
lated by the formula Ni = Si/μ, where Si is the sum of the signal
intensities of the 20 analytes for each sample, and μ is the average
of Si from all samples. To normalize samples, all antibody in-
tensities in a sample were divided by its normalization factor Ni.

Data Analysis. Classifier calibration and independent testing. To reduce
sample-to-sample variations, differences between t = 0 and t = 3-
to 6-mo protein expressions were used as independent variables for
a support vector machine (SVM) classifier. We trained and tested
SVMs with a leave-one-out procedure, using n = 38 samples and
initially all M = 135 variables. Because the number of antibodies
exceeded the number of samples, we needed to eliminate the an-
tibodies with low impact on the predictions to avoid fitting to noise
because of random correlations. This procedure was followed for
every leave-one-out sample using a backward-elimination pro-
cedure. Performance was measured by the Receiver Operating
Characteristics (ROC) area. The ranked antibody lists resulting
from each SVMmodel then were fused into a consensus signature
that was used with a frozen SVM in an independent test set. The
different steps are described in some detail below, and the full
procedure is summarized in Fig. S3.
Leave-one-out procedure. The principle for the leave-one-out pro-
cedure forN samples belonging to two classes is to train and test an
SVM using leave-one-out cross-validation, i.e., to train the SVM
on all but one sample and to test the resulting model using the
omitted sample. The test sample is assigned a decision value using
the trained SVM model and is put back into the training set; then
the next sample is left out and used as a test sample. The procedure
is repeated until each sample has been assigned a decision value
once using all other samples as training set. The decision values for
all samples are used to create an ROC curve, and the area under
the curve (AUC) is calculated. The obtained area serves as an
estimation of the expected area for this sample set.
Backward variable elimination. To reduce the number of antibodies
used for the classification, we combined the leave-one-out pro-
cedurewithabackward-eliminationprocess for theantibodies.This
process also produces a ranking of the antibodies with the purpose
of assigning low ranks to randomly correlated antibodies.
The process is described in Fig.S3, which illustrates steps 1–7

discussed here. Starting withM antibodies,M datasets are created.
In each dataset one antibody is replaced with a constant value,
which is the average value of that antibody across all samples
(step 1). To evaluate each antibody’s importance for classification
in the current dataset, an SVM leave-one-out procedure (as de-
scribed above) is made for each of theM datasets. Subsequently,M
ROC curves are created using the SVM output, and the dataset
from which the ROC area generated had the smallest decrease
(which could be negative) compared with the original is identified.
The antibody set to a constant value in that dataset is identified
and eliminated (step 2). The datasets now containM−1 antibodies,
and therefore M−1 new datasets are created, each having one of
the remaining antibodies replaced with its average. The leave-one-
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out testing procedure together with the SVM evaluation using
constant antibodies is repeated, in effect eliminating the next an-
tibody carrying the least information. The procedure is continued
until only one antibody remains, resulting in a rank order for each
antibody’s importance in the classification of the samples currently
in the dataset (step 3). This information can be used to build an-
tibody subpanels of any desired length (step 4). To evaluate the
predicting power of such an antibody panel, it is not possible to test
a new model using the same samples in an unbiased way. Fur-
thermore, randomly correlated antibodies still may obtain a high
rank. Therefore, an additional leave-one-out loop (step 5a) is
added in which one sample is removed before the initiation of the
backward-elimination procedure, which therefore can be used as
a test sample (step 5b). This outermost loop is iterated, leaving out
each sample as a test set once and using the remaining samples to
produce an antibody rank list. This rank list then will be used to
pick a subpanel of antibodies with the highest rank and to train
a single SVMmodel, which is tested on the test sample. The result
of the outermost leave-one-out process is a list of decision values
for all samples for any given subpanel length. The corresponding
ROC area serves as a test of the performance using antibody
subpanels of the given size, a test that can be used to estimate the
number of antibodies required to make an adequate classification
in the dataset.
Consensus antibody signature. The backward-elimination procedure
results in the same number of antibody rank lists as the number of

samples. To produce a single ranking order, the information from
each run is concatenated into a consensus list by assigning each
antibody a score (step 6) based on its average survival in the
elimination rounds, where the antibody with the highest average
survival is ranked as the most important. Finally, a new SVM is
trained using the 21 antibodies with the best scores and is tested on
the new, independent, dataset (step 7).
Analysis of sample size. The observed decision values from the SVM
analysis displayed an SD of 1.13 and a delta value (the difference
between mean values) between the groups of 1.14. A statistical
power analysis with the alpha level (level of significance) set to 0.05
was performed to estimate the number of patients required in a
second dataset (the prevalidation cohort). The analysis was per-
formed, using the function “power.t.test” in R (decision values
assumed normally distributed as suggested by Shapiro–Wilk test-
ing) and showed that each group must contain a minimum of 8.7
patients (total of 17.4 patients) to reach a power of 80%. The 26
patients subsequently included in our prevalidation set yielded a
statistical power of 93%.
Kaplan–Meier Analysis. The SVM decision value was used to divide
the test cohort into two groups: a low-risk group (decision value≤0)
with 20 patients and a high-risk group (decision value >0) with 18
patients. With a total follow-up time of 5 y, Kaplan–Meier esti-
mates of the tumor recurrence function for the two groups were
used (Fig. S5). To indicate the significant difference between the
two groups, a log rank test was used.
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Fig. S1. SVM analysis for prediction of metastatic breast cancer using the 12-mo samples. Analyte velocities were fed to an SVM, which, using a leave-one-out
cross-validation procedure, was calibrated to classify the patients. (Upper) The analysis yielded an AUC of 0.75. (Lower) The heat map shows all analytes
displaying a Wilcoxon P value of <0.05, with red indicating an increase and green indicating a decrease in biomarker velocity.
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Fig. S2. Analysis of false-discovery rate and analyte velocity. (A) The number of patients with higher biomarker signals for the second sample was identified
for each antibody. The antibodies were sorted accordingly and plotted (red), with the antibody with increasing signal in the fewest patients to the left. The
first and second samples then were recombined randomly, treating the second sample as the first and vice versa, for a random set of patients. The number of
patients with higher signal in the “second” sample was identified again, to achieve an estimation of the false-positive rate (FPR) of the analysis. This procedure
was repeated 10,000 times. A heatmap indicates the frequency of patients increasing signals for each antibody rank in the permtation analysis, where white
indicates nonexisting and dark-blue the most common. The average value for each antibody rank is plotted as a yellow line. From this analysis it is evident that
the true combination of the first and second samples gives a result that clearly diverges from the yellow line describing the FPR, not only in the tails of the plot
but even more so in the middle, indicating a general up-regulation. Plots show the velocity for Lewis X (B), IL-16 (C), and CD40 (D) during the first 3–6 mo after
surgery, with average CV measurements of 3.5%, 3.1%, and 3.5%, respectively. The signal velocity for these analytes was clearly positive for patients eventually
developing metastatic breast cancer.
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Fig. S3. To reduce the number of antibodies used for the classification, the leave-one-out procedure was combined with a backward-elimination process. This
elimination is depicted schematically; numbers refer to steps described in SI Materials and Methods.
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Fig. S4. The effectiveness of the backward-elimination strategy for signature optimization. The performance of the identified 21-biomarker signature was
compared with that of 1,000 randomly selected signatures. All signatures were trained in the discovery cohort and subsequently tested and evaluated using the
patients in the prevalidation cohort. The performance of the random signatures, represented by ROC AUC, was plotted (black) together with that of the
original signature (red). The candidate signature outperformed 99.6% of the random signatures.
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Fig. S5. A Kaplan–Meier plot demonstrating how the velocity-driven biomarker signature classified the patients into high- and low-risk groups.
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