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Best Supported Models for Each Species. There were 2–7 plausible
models in the confidence set for each species (Table S2) that were
averaged to create a composite model (Table S3), from which we
drew inferences. As noted in Results, we found that species hy-
droclimatic relationships were generally consistent with hypoth-
eses. We also found that brook trout was more common in and
near UVBs, whereas cutthroat trout was most common at an
intermediate distance from UVBs and brown trout was most
common far from UVBs (Table S3 and Fig. S1). The negative
relationship of brown trout to UVBs was inconsistent with our
hypothesis. Rainbow trout showed essentially no response to
UVBs in the composite model. All species were most common at
low slopes, but brown trout had the strongest slope response
(Table S3 and Fig. S1). Brook trout tended to be found in the
smallest streams, consistent with predictions. Brown trout and
rainbow trout were more common in larger streams, and cut-
throat trout showed little relationship with stream size except that
they were less common in the smallest streams (Table S3 and Fig.
S1). All nonnative species showed a modest positive relationship
with road presence, consistent with our hypothesis; however,
cutthroat trout showed no relationship with road presence, in-
stead of the hypothesized negative response (Table S3).

Model Performance Results. In-sample model performance ranged
from fair for brook trout (AUC ∼ 0.7) to good for brown trout
(AUC > 0.8), with cutthroat and rainbow trout intermediate
(Table S4). Classification accuracy (i.e., the proportion of true
presences and absences that were correctly predicted) ranged
from 64% to 76%. The cross-validated (transferability) perfor-
mance was lower for all models, as expected, but the difference
was small (≤5% absolute difference in classification accuracy).
Much of themodel error was at broader scales and reflected the

fact that nonnative trout were patchily introduced across the study
area and native cutthroat trout had been extirpated from some
regions due to past anthropogenic activities. In an effort to im-
prove error rates, we tested alternative model analysis method-
ologies (neural networks, Random Forests) but found that
although they had superior in-sample classification accuracy they
suffered from inferior transferability, and therefore might not
yield reliable forecasts. Thus, we concluded that our modeling
approach best captured the general relationships between pre-
dictor variables and species presence/absence. It is also worth
noting that as conditions become more extreme (e.g., as tem-
peratures increase well beyond a species’ optimum) predictions
become more certain. For example, despite the fact that brook
trout model performance is only fair under current conditions,
the confidence interval for suitable habitat in the 2080s is rela-
tively narrow because so few locations are even potentially
suitable. This is because many streams shift from predicted
30–40% occupancy (interpretable as a prediction of absence with
an error rate of 30–40%) to predicted 10–20% occupancy (still
a prediction of absence, but with an error rate of 10–20%).

Additional Fish Collection Dataset Notes. Because detection by
snorkeling can be less efficient than electrofishing (1), snorkeling
sites with fewer than four repeat visits were excluded from the
dataset. We also excluded sites with drainage area larger than
∼2,500 km2 because (i) our method for estimating flows (2) was
not intended for larger basins and (ii) detection probabilities for
individual species tend to be lower in sites on larger rivers (3).
Data from collections on the same stream within 50 m of one

another were considered to be from the same location and
treated as a single site. Cutthroat trout were detected at 5,055 of
the 9,890 sites, brook trout were detected at 2,820 sites, rainbow
trout were detected at 1,031 sites, and brown trout were detected
at 655 sites; 1,437 sites had none of these species. Historically,
cutthroat trout could have been present at any or all of the sites.
Within their respective ranges, all species were considered to be

truly absent at sites where they were not detected, even though it
is possible that they could have been present but not detected.
Although methods exist to incorporate imperfect detection in
occupancy modeling (4), doing so in a multilevel modeling
framework is complex (5), and we judged it to be of limited
benefit for the reasons we explain here. Our dataset consisted of
samples collected using multipass electrofishing (one or more
surveys) and snorkeling (four or more surveys). Past studies have
shown that multipass electrofishing capture efficiency (i.e.,
chance of detecting a single individual) of the species considered
here is ∼40–60% (6). This translates to a detection probability of
92–98% if as few as five individual fish are actually present at
a site (detection probabilities for four snorkeling visits are com-
parable). Therefore, in our dataset only sites with very low
abundances of fish were likely to be incorrectly labeled as ab-
sences, which we contend is reasonable because sites with very few
individuals are not likely to represent optimal habitat or persistent
populations for that species. A more significant concern is that
covariates of interest (e.g., temperature) could be biased because
capture efficiencies and occurrence probability respond to the
same variables. Using published relationships between capture
efficiency and temperature, slope and stream size (3, 6, 7), we
calculated that the potential for bias was extremely small, as de-
tection probability would not drop below 90% unless fish abun-
dances were <5 (a possible exception was detection in large rivers,
which was why we excluded such locations). Otherwise, the
principal consequence of ignoring incomplete detection is to
underestimate the magnitude of covariates (8), which implies only
that our hypothesis tests are somewhat conservative.

Explanatory Variables: Methods of Calculation and Hypotheses
Underlying Variable Selection. We selected 12 abiotic variables
including measures of temperature (2 metrics), winter high flow
(4 metrics), proximity to unconfined valley bottoms (2 metrics),
mean flow (2 metrics), stream slope, and the presence/absence of
roads (Table S5).
In-stream temperature data were not broadly available, so we

used air temperature as a surrogate (9–11). For consistency, we
used the same air temperature dataset as was used in the VIC
modeling (described below); these were gridded data in-
terpolated from National Climatic Data Center Cooperative
Observer stations (12). We developed site-specific temperatures
based on the site’s difference in elevation from the mean eleva-
tion for the cell, using a lapse rate of −6.0 C × km−1 (10). We
calculated the mean summer temperature for July 15th to August
31st, averaged across the 20 y from October 1977 through Sep-
tember 1997 (i.e., slightly preceding or contemporaneous with
fish collection data), abbreviated ptemp; we also calculated the
mean temperature in the drainage above the point (dtemp). We
hypothesized that all trout species would have a unimodal re-
sponse to temperature; that is, they would not be found in sites
that were too hot or too cold. Based on previous studies, we
hypothesized that brook trout and cutthroat trout would tend to
be found at colder temperatures than rainbow trout and brown
trout (13–15).
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We derived estimates of winter high flow frequency from the
VIC simulations run for the Great Basin and the Columbia,
Colorado, and Upper Missouri river basins (12). Simulations on
a daily time step from 1915 through 2006 were performed at
1/16th-degree spatial resolution (∼5 km), except in the Great
Basin where simulations were performed at 1/8th-degree spatial
resolution. We routed simulated runoff and base flow using a
simple approach (2) to produce daily hydrographs for stream
segments in the 1:100K National Hydrography Database (NHD)
Plus dataset (http://www.horizon-systems.com/nhdplus/). From
these hydrographs, we calculated four metrics: w2, w1.5, w99,
and w95. The first two measured the probability of a 2-y or 1.5-y
recurrence interval flow event (respectively) during the winter.
Flows of this magnitude are sufficiently large to mobilize bed
material, potentially damaging redds and crushing embryos or
alevins (16, 17). The latter two metrics, w99 and w95, were the
number of days during winter that were among the highest 1%
and 5% (respectively) of flows for the year. These were assumed
to be flows with velocity sufficient to displace and kill newly
emerged fry (18), but not necessarily destroy embryos in redds.
Winter was considered to be December 1st through February
28th, and metrics were averaged across the same 20-y period as
temperature metrics. Although winter weather can extend well
beyond February for much of the region, we used an early cutoff
to ensure we excluded the beginning of the spring flood in all
areas. We hypothesized that fall spawning trout species (brook
trout and brown trout) would display a negative response to
winter high flows, but spring spawning species (rainbow trout and
cutthroat trout) would not (18–21).
Unconfined valley bottoms (UVBs) are locations where the

path of the stream is not laterally constrained by rock (as it is in
canyons), and generally characterized by low slope, wetlands, and
in some cases glacial deposits. We included two metrics of UVBs:
a binary classification of whether a site was within a UVB (vbpres)
and a measure of distance in kilometers to the nearest UVB
(vbdist). Unconfined valley bottoms were delineated according
to an algorithm that identified relatively flat areas adjacent to
streams (22), using 30-m digital elevation models. Because UVBs

appear to be preferred spawning and rearing locations for fall-
spawning trout species, possibly due to groundwater connectivity
or moderated winter high flows (23–26), we hypothesized that
fall-spawning species would be more frequently encountered in
and near UVBs, whereas spring-spawning species would not.
Stream slope values were from the NHDPlus dataset and were

derived for stream segments from 30-m DEMs. We hypothesized
that all trout species would show a negative relationship with
increasing stream slope, possibly because of high frequency of
dispersal barriers or unfavorable physical characteristics such as
high velocities (23, 27, 28).
For mean stream flow we considered two metrics: mean annual

flow (mflow) and mean summer flow (sflow), both derived from
the VIC-modeled flow dataset described previously. Mean annual
flow was the mean daily flow, averaged across the full year, and
then averaged across the same 20-y period used for temperature
metrics. The sflow variable was the same but calculated only for
the summer, which was defined as the period between the decline
of the spring flood peak and September 30th; the calculation of the
spring flood decline was made independently for each year for
each stream segment (2). Mean stream flow primarily served as an
index of stream size. We hypothesized that brook trout would
tend to occupy smaller streams, based on past studies (23, 29, 30).
For other species, we made no specific hypotheses but allowed for
the possibility that responses could be unimodal, with lower oc-
currence probability in streams that were too small and too large.
The road variable was calculated as a value of 1 if the 2000

TIGER/Line road database (www.census.gov/geo/www/tiger) in-
dicated a road within 1 km of the stream segment on which the
site was located, and 0 otherwise. We hypothesized that native
cutthroat trout were less likely to occur in regions with roads
near streams (road; Table 1) because roads may reduce habitat
quality and connectivity and facilitate introductions of nonnative
species (31, 32). In contrast, we hypothesized that nonnative
brook trout would show a positive relationship with roads, due to
greater probability of introductions (legal or illegal) of this species
in locations accessible by road (33).
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Fig. S1. Occurrence probability of trout species as a function of predictor variables (abbreviations defined in Methods and Table S4). Heavy lines indicate
mean values; fine lines indicate 90% confidence intervals.
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Table S1. Model-averaged parameter estimates for biotic predictor variables in composite cutthroat model

Parameter estimate for response of cutthroat to

Cutthroat lineage Brook Brook-w Rainbow Rainbow-w Brown Brown-w

Westslope −0.30 ± 0.11 −0.45 ± 0.07 −0.35 ± 0.11 −0.32 ± 0.15 −1.38 ± 0.34 NS
Lahontan/Yellowstone −1.16 ± 0.09 NS NS −0.49 ± 0.11 −0.36 ± 0.15 NS

Biotic responses were tested at both the subwatershed scale (variables with the “-w” suffix) and the site scale (no suffix). NS = variable not
supported.

Table S2. Differences in AIC (AIC − AICmin) and Akaike weights (wi) for the confidence set of models for each species

Model ΔAIC wi

Cutthroat trout
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw*west + rbt + brn*west 0 0.42
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw + rbt + brn*west 0.7 0.29
ptemp + ptemp2 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw*west + rbt + brn*west 3.0 0.09
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw*west + rbt + bm 3.5 0.07
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + brk*west + brkw + rbtw*west + rbt + brn*west 4.2 0.05
ptemp + ptemp2 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw + rbt + brn*west 4.3 0.05
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw + rbt + brn + brnw 5.8 0.02

Brook trout
ptemp + ptemp2 + w2 + vbdist + vbdist2 + slope + mflow + mflow2 + road 0 0.91
ptemp + ptemp2 + w2 + vbdist + slope + mflow + mflow2 + road 0.6 0.09

Rainbow trout
wtemp + wtemp2 + w99 + slope + mflow + mflow2 + road 0 0.63
wtemp + wtemp2 + w99 + mflow + mflow2 + road 2.4 0.19
wtemp + wtemp2 + w99 + vbdist + mflow + mflow2 + road 2.5 0.18

Brown trout
ptemp + ptemp2 + w95 + vbdist+ slope + mflow + mflow2 + road 0 0.61
ptemp + ptemp2 + w95 + vbdist+ slope + mflow + mflow2 1.4 0.31
ptemp + ptemp2 + w95 + vbdist + slope + mflow + road 4.0 0.08

Parameters that differ among models are highlighted in bold. Only candidate models with ΔAIC ≤ 6 are shown.

Table S3. Parameter estimates (means ±1 SE) for all predictor variables in the composite model for each species

Trout Intercept Temperature Winter high flow Valley bottom distance Slope Stream size/flow Road presence

Cutthroat ptemp ptemp2 w99 vbdist vbdist2 Slope sflow sflow2 NS
1.24 ± 0.20 −0.59 ± 0.12 −0.88 ± 0.13 −0.20 ± 0.11 0.74 ± 0.09 −0.50 ± 0.08 −0.34 ± 0.08 0.41 ± 0.11 −0.21 ± 0.09

Brook ptemp ptemp2 w2 vbdist vbdist2 Slope mflow mflow2 road
−0.85 ± 0.14 −0.66 ± 0.12 −1.20 ± 0.12 −0.98 ± 0.14 −0.62 ± 0.09 0.18 ± 0.08 −0.29 ± 0.07 0.34 ± 0.09 −0.85 ± 0.09 0.39 ± 0.07

Rainbow wtemp wtemp2 w99 vbdist NS Slope mflow mflow2 road
−2.14 ± 0.19 −0.32 ± 0.16 −0.89 ± 0.18 0.58 ± 0.11 −0.02 ± 0.14 −0.16 ± 0.16 1.20 ± 0.15 0.33 ± 0.12 0.38 ± 0.11

Brown ptemp ptemp2 w95 vbdist NS Slope mflow mflow2 road
−2.66 ± 0.30 1.90 ± 0.28 −1.44 ± 0.26 −1.15 ± 0.22 0.58 ± 0.14 −1.62 ± 0.21 1.28 ± 0.19 0.20 ± 0.03 0.20 ± 0.18

Variable abbreviations (e.g., “ptemp” and “wtemp”) are defined in Methods and listed in SI Table S4. Variables have been standardized by subtracting
the mean and dividing by 2SD. NS = variable not supported.

Table S4. Performance statistics for the top-ranked models for each species

Trout
In-sample

AUC
In-sample

classification accuracy
Cross-validated

AUC
Cross-validated

classification accuracy

Cutthroat 0.758 69% 0.709 65%
Brook 0.680 64% 0.653 61%
Rainbow 0.746 69% 0.659 64%
Brown 0.822 76% 0.786 74%

AUC is the area under the curve of the receiver operator characteristic plot. Cross-validated values were calculated with sites
assigned to five geographically distinct units.
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Table S5. Metrics used as abiotic predictor variables in multilevel logistic regression models of species occurrences.
Range and mean are from the model-building dataset

Group Metric Abbreviation Units Range Mean

Temperature Mean summer air temp. at site ptemp C 9.8–27.3 17.1
Mean summer air temp. in drainage dtemp C 9.5–26.7 16.4

Winter High Flow Winter high flow (2 y flow) w2 Probability 0–3.6 0.12
Winter high flow (1.5 y flow) w1.5 Probability 0–13.3 0.36
Winter high flow (99% annual flow) w99 Frequency 0–4.5 0.28
Winter high flow (95% annual flow w95 Frequency 0–9.65 0.85

Mean Flow Mean annual flow mflow ft3*s−1 0–2233 25.8
Mean summer flow sflow ft3*s−1 0–923 9.57

UVB UVB (binary) vbpres — 0/1 0.22
UVB distance vbdist km 0–31 5.11

Slope Stream slope slope — 0–0.53 0.05
Road Road presence (binary) road — 0/1 0.71
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