Supporting Information

Lignan Derivatives from *Krameria lappacea* Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro

Lisa Baumgartner,[†] Silvio Sosa,[‡] Atanas G. Atanasov,[§] Antje Bodensieck,[⊥] Nanang Fakhrudin,[§] Julia Bauer,[∥] Giorgia Del Favero,[‡] Cristina Ponti, [‡] Elke H. Heiss,[§] Stefan Schwaiger,[†] Angela Ladurner,^c Ute Widowitz,[⊥] Roberto Della Loggia,[‡] Judith M. Rollinger,[†] Oliver Werz, ^{∥,Δ} Rudolf Bauer,[⊥] Verena M. Dirsch,[§] Aurelia Tubaro,[‡] Hermann Stuppner^{†,}*

[†]Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Josef-Moeller-Haus, Innrain 52c, 6020 Innsbruck, Austria.

[‡] Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy [§]Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

¹Institute of Pharmaceutical Sciences, Pharmacognosy, Karl-Franzens University Graz, Universitätsplatz 4, 8010 Graz, Austria

Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany

^ADepartment of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany

1

*Corresponding author: Tel.: 0043-(0)512-507-5300. Fax: 0043-(0)512-507-2939. E-mail: <u>Hermann.Stuppner@uibk.ac.at</u>

1. IKK2 activity:

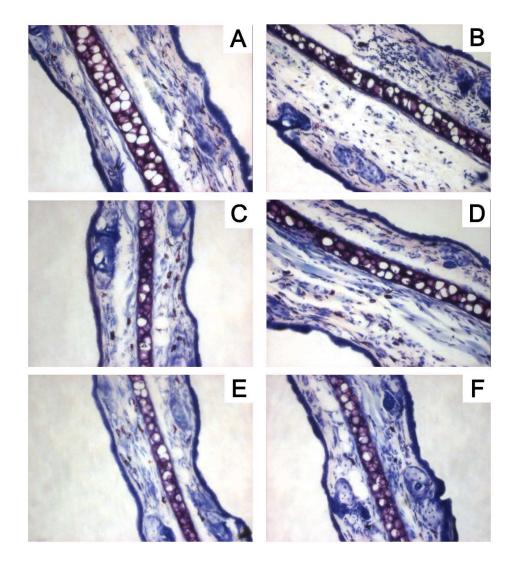
To measure the IKK2 activity we utilized the ELISA-based (K-LISATM) IKK2 enzymatic activity assay (Calbiochem, VWR, Austria) as previously described [1]. GST-I κ B α 50-amino acid peptide that includes Ser32 and Ser36 IKK2 phosphorylation sites, is used as a substrate and incubated for 30 min at 30 °C with purified human IKK2 in a glutathione-coated 96-well plate, allowing substrate phosphorylation and capture in a single step. The phosphorylated GST-I κ B α substrate was subsequently detected using anti-phospho I κ B α (Ser32/Ser36) as first antibody, followed by the HRP-conjugated secondary antibody. The color development of the HRP substrate was monitored at 450 nm on a GeniosPro plate reader (Tecan, Austria) and the absorbance intensity was used as a measure for the IKK2 activity.

2. PPARa-, PPARy- and GR-activation:

To estimate PPAR activation potential, PPAR-luciferase reporter gene assay was utilized as previously described [2]. HEK293 cells were transiently transfected with PPAR α , PPAR γ , or GR receptor expression plasmid, reporter plasmid (tk-PPREx3-luc, or 2xGRE-tk-luc, respectively), and green fluorescent protein plasmid (pEGFP-N1) as an internal control. The cells were harvested 6 h after the transfection and reseeded in 96-well plates (5 × 10⁴ cells/well). Transfected cells were treated with the investigated compounds, dissolved in DMSO. To account for potential effects of the solvent vehicle 0.1% DMSO served as vehicle control. As positive controls 50 nM GW7647, 5 μ M troglitazone, or 2.5 μ M dexamethasone were used to activate PPAR α , PPAR γ , or GR respectively. Treated cells were incubated for 18 h. After cell lysis, the luminescence of the firefly luciferase and the fluorescence of EGFP were quantified on a GeniosPro plate reader (Tecan, Salzburg, Austria). The luminescence signals were normalized to the EGFP-derived fluorescence to account for differences in cell number or transfection efficiency.

3. Free radical scavenging activity:

To determine free radical scavenging activity in a cell free system a 96-well format DPPH assay was performed. DPPH was dissolved in 80% ethanol and used in a final concentration of 250 μ M per well. The test samples were first dissolved in 100 % DMSO and diluted to 0.335% DMSO in 200 μ l overall assay volume. Absorbance was measured at 550 nm after 30 min in a Tecan/SUNRISETM photometer. The known radical scavenger ascorbic acid was used as a positive control.


[1] Noha, S.; Atanasov, A. G.; Schuster, D.; Markt, P.; Fakhrudin, N.; Heiss, E. H.; Schrammel, O.; Rollinger, J. M.; Stuppner, H.; Dirsch, V. M.; Wolber, G. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 577-583.

[2] Fakhrudin, N.; Ladurner, A.; Atanasov, A. G.; Heiss, E. H.; Baumgartner, L.; Markt, P.;
Schuster, D.; Ellmerer E.-P.; Wolber, G.; Rollinger, J..M.; Stuppnner, H.; Dirsch, V. M. *Mol. Pharmacol.* 2010, 77, 559-566.

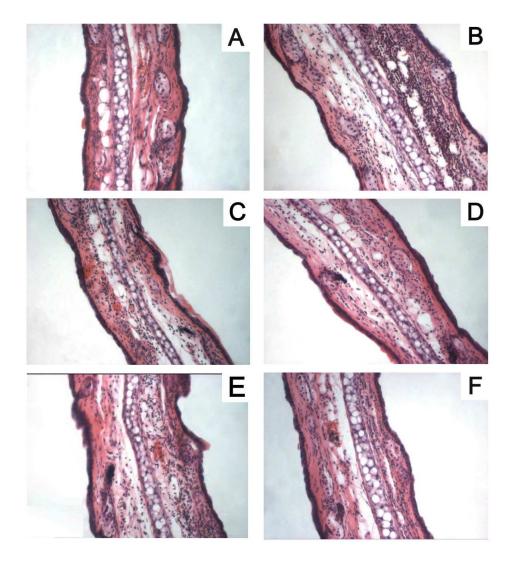

substance	dose (µmol/cm ²)	edema		cell infiltrate	
		AUC (mg x h) Mean \pm S.E.	% reduction	AUC (EU x h) Mean \pm S.E.	- % reduction
control		136.6 ± 4.0		1659.7 ± 87.6	
5	0.40	$72.6 \pm 6.3*$	47	$1129.3 \pm 56.5*$	32
7	0.40	$75.6 \pm 2.9*$	45	$1041.8 \pm 53.0*$	37
indomethacin	0.40	$103.3 \pm 3.8*$	24	967.7 ± 48.1*	42
hydrocortisone	0.04	$42.8 \pm 2.4*$	69	815.4 ± 44.9*	51

Table S1. Effect of Compounds 5 and 7, Indomethacin and Hydrocortisone on the GlobalEdematous Response and Leukocyte infiltrate up to 48 h.

AUC = area under the curve; EU = enzyme units; * p<0.05 at the analysis of variance, as compared to controls.

Figure S1. Sections of mouse ears 3 h after the induction of the croton oil dermatitis (A: untreated ear; B: control; C: $0.4 \ \mu mol/cm^2$ compound **5**; D: $0.4 \ \mu mol/cm^2$ compound **7**; E: $0.4 \ \mu mol/cm^2$ indomethacin; F: $0.04 \ \mu mol/cm^2$ hydrocortisone). Giemsa staining, 25 x magnification.

Figure S2. Sections of mouse ears 24 h after the induction of the croton oil dermatitis (A: untreated ear; B, control; C: $0.4 \ \mu mol/cm^2$ compound **5**; D: $0.4 \ \mu mol/cm^2$ compound **7**; E: $0.4 \ \mu mol/cm^2$ indomethacin; F: $0.04 \ \mu mol/cm^2$ hydrocortisone). Hematoxylin and eosin staining, 25 x magnification.