Calcineurin Selectively Docks With The Dynamin Ixb Splice Variant To Regulate Activity-Dependent Bulk Endocytosis

Jing Xue¹, Mark E. Graham¹, Aimee E. Novelle¹, Nancy Sue¹, Noah Gray², Mark A. McNiven², Karen J. Smillie³, Mike Cousin³, and Phillip J. Robinson^{1*}

Supplementary Data

Tables 1-3. *Identification of CaN catalytic and regulatory subunits and calmodulin by mass spectrometry.*

Tandem mass spectrometry data from LC-MSMS analysis of SDS-PAGE Coomassie stained bands matched to protein sequences. The mascot.dll 1.6vb21 script was used to export data to Mascot v2.2 (Matrix Science, UK) and the database was the International Protein Index Rat v3.54 (39925 sequences; 20363545 residues). Peptides with a Mascot score less than 35 were excluded. Peptides are separated into lists of common and isoform specific sequences. The percentage of the protein sequence covered by the mass spectrometry data is shown below each Table. Oxidised Met and deamidated Asn/Gln are underlined.

Tryptic peptide and adjacent residues	Sequence Position	Precursor m/z and	Charge	Mascot Score	Mascot Expect
		Error (ppm)			
Peptides specific to alpha isoforms (1 and 2):					
K.LSTTDRVVK.A	11-19	509.8 (-17)	2+	39	0.027
K.AVPFPPSHR.L	20-28	504.3 (-20)	2+	42	0.01
R.LTAKEVFDNDGKPR.V	29-42	530.6 (6)	3+	58	0.00024
K.EVFDNDGKPR.V	33-42	588.8 (0)	2+	53	0.001
R.LEESVALR.I	56-63	458.8 (-12)	2+	62	0.00014
R.IITEGASILR.Q	64-73	536.8 (-26)	2+	75	0.000063
R.IITEGASILRQEK.N	64-76	486.6 (10)	3+	51	0.00014
K.TLFLLR.G	143-148	381.7 (-13)	2+	43	0.0089
K.TQEHFTHNTVR.G	244-254	457.2	3+	47	0.0031
K.GLTPTG <u>M</u> LPSGVLSGGK.Q	425-441	794.4 (-7)	2+	90	0.0000001
K.ITSFEEAK.G	457-464 ² 467-474 ¹	462.7	2+	42	0.009
K.ITSFEEAKGLDR.I	$457-468^2$ $467-478^1$	455.9 (-9)	3+	48	0.0026
R.RDA <u>M</u> PSDANLNSINK.A	$477-491^2$ $487-501^1$	554.6 (5)	3+	57	0.00035
R.DA <u>M</u> PSDANL <u>N</u> SINK.A	478-491 ² 488-501 ¹	753.8	2+	78	0.0000025
Peptides common to both alpha (1 and 2) and beta isoforms:					
K.LFEVGGSPANTR.Y	$101-112^{\alpha}$ 110-121 ^β	624.3 (-72)	2+	70	0.00005
R.YLFLGDYVDR.G	$113-122^{\alpha}$ 122-131 ^β	630.8 (-12)	2+	63	0.000087
K.SQTTGFPSLITIFSAPNYLDVYNNK.A	$294-318^{\alpha}$ $303-327^{\beta}$	930.8	3+	40	0.0013
K.YENNV <u>M</u> NIR.Q	$324-332^{\alpha}$ 333 241 ^{β}	584.8	2+	61	0.00013
R.EESESVLTLK.G	$415-424^{\alpha}$ $425-434^{\beta}$	567.8	2+	50	0.0018
Peptides specific to alpha isoform 1.					
K.QTL <u>Q</u> SATVEAIEADEAIK.G	442-459	640.0	3+	54	0.00064

Supplementary Table 1. CaN catalytic subunit identification by MS from the 58 kDa protein in Fig 1B.

		(11)			
Peptides specific to alpha isoform 2:					
K.QTLQSAIK.G	442-449	444.8	2+	64	0.000088
		(-31)			
Peptides specific to beta isoform:					
R.IINEGAAILR.R	73-82	535.3	2+	66	0.000035
		(-15)			
K.GLTPTG <u>M</u> LPSGVLAGGR.Q	435-451	800.4	2+	52	0.0011
		(-20)			
R.QTLQSATVEAIEAEK.A	452-466	639.7	3+	38	0.025
		(-3)			

Calcineurin catalytic subunit alpha Isoform 1: 38% coverage

1	MSEPKAIDPK	LSTTDRVVKA	VPFPPSHRLT	AKEVFDNDGK	PR VDILKAHL
51	MKEGR leesv	ALRIITEGAS	ILRQEK NLLD	IDAPVTVCGD	IHGQFFDLMK
101	LFEVGGSPAN	TRYLFLGDYV	DRGYFSIECV	LYLWALKILY	PK TLFLLR GN
151	HECRHLTEYF	TFKQECKIKY	SERVYDACMD	AFDCLPLAAL	MNQQFLCVHG
201	GLSPEINTLD	DIRKLDRFKE	PPAYGPMCDI	LWSDPLEDFG	NEK TQEHFTH
251	NTVR GCSYFY	SYPAVCDFLQ	HNNLLSILRA	HEAQDAGYRM	YRK SQTTGFP
301	SLITIFSAPN	YLDVYNNK AA	VLK YENNVMN	IR QFNCSPHP	YWLPNFMDVF
351	TWSLPFVGEK	VTEMLVNVLN	ICSDDELGSE	EDGFDGATAA	ARKEVIRNKI
401	RAIGKMARVF	SVLR eesesv	LTLKGLTPTG	MLPSGVLSGG	KQTLQSATVE
451	AIEADEAIKG	FSPQHK ITSF	EEAKGLDR IN	ERMPPR RDAM	PSDANLNSIN
501	KALASETNGT	DSNGSNSSNI	Q		

Calcineurin catalytic subunit alpha Isoform 2: 36% coverage

1	MSEPKAIDPK	LSTTDRVVKA	VPFPPSHRLT	AKEVFDNDGK	PR VDILKAHL
51	MKEGR leesv	ALRIITEGAS	ilrqek NLLD	IDAPVTVCGD	IHGQFFDLMK
101	LFEVGGSPAN	TRYLFLGDYV	DRGYFSIECV	LYLWALKILY	PK TLFLLR GN
151	HECRHLTEYF	TFKQECKIKY	SERVYDACMD	AFDCLPLAAL	MNQQFLCVHG
201	GLSPEINTLD	DIRKLDRFKE	PPAYGPMCDI	LWSDPLEDFG	NEK TQEHFTH
251	NTVR GCSYFY	SYPAVCDFLQ	HNNLLSILRA	HEAQDAGYRM	YRK SQTTGFP
301	SLITIFSAPN	YLDVYNNK AA	VLK YENNVMN	IR QFNCSPHP	YWLPNFMDVF
351	TWSLPFVGEK	VTEMLVNVLN	ICSDDELGSE	EDGFDGATAA	ARKEVIRNKI
401	RAIGKMARVF	SVLR eesesv	LTLKGLTPTG	MLPSGVLSGG	KQTLQSAIK G
451	FSPQHK ITSF	EEAKGLDR IN	ERMPPR RDAM	PSDANLNSIN	K ALASETNGT
501	DSNGSNSSNI	Q			

Calcineurin catalytic subunit beta Isoform: 20% coverage

1	MAAPEPARAA	PPPPPPPPP	LGADRVVKAV	PFPPTHRLTS	EEVFDMDGIP
51	RVDVLKNHLV	KEGRVDEEIA	LR IINEGAAI	LR REKTMIEV	EAPITVCGDI
101	HGQFFDLMK l	FEVGGSPANT	RYLFLGDYVD	R GYFSIECVL	YLWVLKILYP
151	STLFLLRGNH	ECRHLTEYFT	FKQECKIKYS	ERVYEACMEA	FDSLPLAALL
201	NQQFLCVHGG	LSPEIHTLDD	IRRLDRFKEP	PAFGPMCDLL	WSDPSEDFGN
251	EKSQEHFSHN	TVRGCSYFYN	YPAVCEFLQN	NNLLSIIRAH	EAQDAGYRMY
301	RK SQTTGFPS	LITIFSAPNY	LDVYNNK AAV	LK YENNVMNI	R QFNCSPHPY
351	WLPNFMDVFT	WSLPFVGEKV	TEMLVNVLSI	CSDDELMTEG	EDQFDVGSAA
401	ARKEIIRNKI	RAIGKMARVF	SVLR eesesv	LTLKGLTPTG	MLPSGVLAGG
451	RQTLQSATVE	AIEAEK AIRG	SSPPHRICSF	EEAKGLDRIN	ERMPPRKDAV
501	QQDGFNSLNT	AHTTENHGTG	NHSAQ		

Tryptic peptide and adjacent residues	Sequence Position	Precursor	Charg	Mascot Score	Mascot Expect
	1 USILIOII	Error	C	Score	Ехресс
		(ppm)			
K.KLDLD <u>N</u> SGSLSVEEF <u>M</u> SLPELQQNPLVQR.	29 - 57	826.7	4+	57	0.00032
V		(41)			
K.LDLDNSGSLSVEEF <u>M</u> SLPELQQNPLVQR.V	30 - 57	1058.86	3+	77	0.0000024
		(0)			
K.EFIEGVSQFSVK.G	74 - 85	685.34	2+	73	0.0000079
		(-17)			
R.IYD <u>M</u> DKDGYISNGELFQVLK.M	98 - 117	788.71	3+	82	0.000001
		(-6)			
K. <u>MM</u> VG <u>N</u> NLKDTQLQQIVDK.T	118 - 135	703.34	3+	43	0.0079
		(-8)			
K.DTQLQQIVDK.T	126 - 135	594.32	2+	66	0.000043
		(11)			
K.TIINADKDGDGR.I	136 - 147	425.55	3+	37	0.038
		(1)			

Supplementary Table 2. Calcineurin subunit B (regulatory) isoform 1 and/or 2 (all peptides are common to both isoforms) identification by LC-MSMS from the 19 kDa protein in Fig 1C.

Calcineurin subunit B regulatory isoform 1: 53% coverage

1 MGNEASYPLE MCSHFDADEI KRLGKRFKKL DLDNSGSLSV EEFMSLPELQ

- 51 **QNPLVQR**VID IFDTDGNGEV DFK**EFIEGVS QFSVK**GDKEQ KLRFAFR**IYD**
- 101 MDKDGYISNG ELFQVLKMMV GNNLKDTQLQ QIVDKTIINA DKDGDGRISF
- **151** EEFCAVVGGL DIHKKMVVDV

Tryptic peptide and adjacent residues	Sequence Position	Precursor m/z and Error (ppm)	Charge	Mascot Score	Mascot Expect
K.EAFSLFDKDGDGTITTK.E	15 - 31	615.63 (-6)	3+	91	0.0000002
K.ELGTV <u>M</u> R.S	32 - 38	411.21 (-12)	2+	40	0.02
K.DTDSEEEIR.E	79 - 87	547.23 (-7)	2+	49	0.002
K.DTDSEEEIREAFR.V	79 - 91	532.91 (-8)	3+	44	0.0057
R.VFDKDGNGYISAAELR.H	92 - 107	585.62 (-9)	3+	54	0.00054
R.EADIDGDGQVNYEEFVQ <u>MM</u> TAK	128 - 149	841.36 (-4)	3+	54	0.00049

Supplementary Table 3. Calmodulin identification by LC-MSMS from the 21 kDa protein in Fig 1C.

Calmodulin: 50% coverage

1 MADQLTEEQI AEFK**EAFSLF DKDGDGTITT KELGTVMR**SL GQNPTEAELQ

51 DMINEVDADG NGTIDFPEFL TMMARKMKDT DSEEEIREAF RVFDKDGNGY

101 ISAAELRHVM TNLGEKLTDE EVDEMIREAD IDGDGQVNYE EFVQMMTAK

Supplementary Figure Legends

Supplementary Fig S1: CaN binding to dynIxb-PRD increases in the presence of Ca^{2+} . Synaptosomal lysates were incubated with GST-dynI-PRD (either xa or xb) coupled to GSH-sepharose beads in the presence of 0.2 mM Ca^{2+} . Bound proteins were separated by SDS-PAGE and stained with Coomassie blue. The protein bound to dynIxb-PRD at about 58 kDa (A), 19 kDa (B), and 21 kDa(B), were identified by MS as the A and B subunits of protein phosphatase 2B (calcineurin, CaNA, and CaNB) and calmodulin (CaM).

Supplementary Fig S2: Mapping the CaN binding site within the dynIxb-PRD. (A) The penetratin-tagged peptide mimetic of the short variant, dynIxb₈₄₂₋₈₅₁ was synthesized and used for competition studies. Synaptosomal lysates were incubated with GST-dynIxb-PRD immobilized on GSH-sepharose beads in the absence or presence of 5-250 µM of the peptide, and in presence of 0.2 mM Ca²⁺. Binding of CaN and CaM was detected by western blot analysis with anti-CaNA, CaNB, and CaM antibodies. (B) CaN binding to GST-dynIxb-PRD is unaffected by pseudo-phosphorylation at the phosphobox. Pull-down experiments were performed with GST-DynIxb-PRD mutated at Ser-774 and Ser-778 in its phospho-box region. Both phospho-deficient mutations of the serines to alanine or phospho-mimetic mutations to glutamic acid were utilised. CaN binding was analysed by western blot with anti-CaNA antibodies. (C) CaN binding to GST-dynIxb-PRD is blocked by prebinding of syndapin to PRD. His-tagged full-length syndapin expressed in bacterial cell lysates was incubated with GST-DynIxb-PRD coupled GSH-sepharose beads for 1 hour. These syndapin bound GST-DynIxb-PRD beads were used to pull down proteins from synaptosomal lysate. CaNA binding was analysed by western blot with anti-CaNA antibodies. All results in A-C are representative of two independent experiments.

Supplementary Fig S3: The CaN-dynIxb interaction does not regulate KCl-evoked dephosphorylation of three other dephosphins, synaptojanin (SJ), AP180, and amphiphysin I. (A) Rat brain synaptosomes were metabolically labelled with ³²Pi, washed, and incubated with or without either 100 µM PRITIS peptide, or 30 µM CsA for 15 min. Synaptosomes were then stimulated with 41 mM KCl for 10 s. After lysis, synaptojanin was pulled-down with GSTamphiphysin I-SH3 bound to GSH-sepharose beads, and separated by SDS-PAGE. Protein in the 160 kDa region showing SJ visualized by Coomassie blue staining demonstrates even sample loading (A, upper panel). Phosphorylated SJ was visualized by autoradiography of quadruplicate samples (A, lower panel). (B) Following the pull-down from Fig. 3, two additional dephosphins, AP180 and amphiphysin I, were extracted by a second sequential pull-down with GST-αadaptin-ear domain bound to GSH-sepharose beads of the same lysates. Proteins in the 120 kDa and 180 kDa regions showing amphiphysin I and AP180 individually visualized by Coomassie blue staining demonstrate even sample loading (B, upper panel). Phosphorylated amphiphysin I and AP180 were visualized by autoradiography of triplicate samples (B, lower panel). (C) Rat brain synaptosomes were labelled with ³²Pi, washed, and incubated with or without either 100 µM PRITIS, 100 µM ARATAS peptide, or 30 µM CsA for 15 min. After lysis, dynIxa and xb were pulled-down with GST-amphiphysin I-SH3 bound to GSH-sepharose beads, and separated by a 12% SDS-PAGE containing 0.08% bis-arylamide (C, upper panel), phosphorylated dynIxa and xb were visualized by autoradiography of triplicate samples (C, lower panel). (D) AP180 and amphiphysin I were extracted and visualized as (B), upper panel is Coomassie blue stained

gel showing even sample loading, and lower panel is an autoradiograph of phosphorylated proteins from triplicate samples. All results are representative of least two independent experiments.

Supplementary Fig S4: DynIxa and xb are present in cerebellar granule neurons. (A) 14day-old primary cultured rat brain cerebellar granule neurons were lysed and the lysate was incubated with GST-AmpI-SH3 coated GSH-sepharose beads. Bound proteins were separated by a 12% SDS-PAGE containing 0.08% bis-acrylamide at pH 9.2 {{20615}} and visualized by Coomassie blue staining, and protein bands were excised from the gel and identified by LC-MS/MS (Obitrap Velos mass spectrometry). (B) Dynamin I was either pulled down by GSTamphiphysin I-SH3 bound to GSH-sepharose beads or immunoprecipitated (IP) with antisera against dynamin I (Hudy-1) from cerebellar granule neuron lysates. Bound proteins were analysed by western blot and the first lane shows a sample of the input lysate prior to pull down. All results are representative of least two independent experiments.

Suppl Fig. S1 – Xue et al.

Suppl Fig. S2 – Xue et al.

Suppl Fig. S3 – Xue et al.

Western blot