Thionitroxides, RSNHO:: The Structure of the SNO Moiety in "S-Nitrosohemoglobin", a possible NO Reservoir and Transporter. Yi-Lei Zhao and K. N. Houk*

Supporting Information

Full citation for Gaussian software (ref. 9): Frisch, M. J., Trucks, G. W., Schlegel, H.

B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T. J.,

Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., V. Barone, B. M.,

M. Cossi, G. Scalmani, N. Rega,, G. A. Petersson, H. N., M. Hada, M. Ehara, K. Toyota,,

R. Fukuda, J. H., M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. K., X. Li, J.

E. Knox, H. P. Hratchian, J. B. Cross,, C. Adamo, J. J., R. Gomperts, R. E. Stratmann, O.

Yazyev,, A. J. Austin, R. C., C. Pomelli, J. W. Ochterski, P. Y. Ayala,, K. Morokuma, G.

A. V., P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. D., A. D. Daniels, M. C.

Strain,, O. Farkas, D. K. M., A. D. Rabuck, K. Raghavachari,, J. B. Foresman, J. V. O., Q.

Cui, A. G. Baboul, S. Clifford,, J. Cioslowski, B. B. S., G. Liu, A. Liashenko, P. Piskorz,,

I. Komaromi, R. L. M., D. J. Fox, T. Keith, M. A. Al-Laham,, C. Y. Peng, A. N., M.

Challacombe, P. M. W. Gill,, and B. Johnson, W. C., M. W. Wong, C. Gonzalez, and J. A.

Pople, (2003), Gaussian, Inc., Pittsburgh PA.

Fig. S1. The NO-modified protein, "S-nitroso-nitrosylhemoglobin" (PDB code: 1BUW from RCSB Protein Data Bank):

Fig. S2. The environments of SNO-Cys $\beta 1$ (top) and SNO-Cys $\beta 2$ (bottom) from 1BUW.

Fig. S4. The calculated structures of other stationary points not available in Fig. 3.

Table S1. All stationary points (appended to Table 1): Calculated geometrical parameters (in the gas phase), relative Energies, and solvation energies in aqueous solutions $[B3LYP(CPCM)/6-31+G*//CBS-QB3, \varepsilon = 78.39]$ for the four SNO species (RSNO, RS-N[•]-OH, RS-NH-O[•], and RS-NH-OH; R = Me) with DFT (B3LYP/CBSQB7), CBS-QB3, and G3 methods.

	Dihedral angle		Bond lengths		Relative Energies			Solvation
			(Å)		(kcal/mol)			ε=78.39
		C-S-N-O	N-O	S-N	DFT	CBS-	G3	(kcal/mol)
						QB3		
RSNO	1	0°	1.18	1.87	0.0	0.0	0.0	-1.2
	2	180°	1.19(2)	1.84(5)	1.2	1.1	-0.1	-0.9
	6^{\neq}	85°	1.15	2.04	13.2	11.6	—	-1.4
RS-N [•] -OH	3	180°	1.40	1.70	3.1	0.1	-0.5	-6.2
	8	17 [°]	1.40	1.69	4.2	1.6	0.7	-5.9
	9≠	0°	1.40	1.69	4.8	2.2		-6.0
	7^{\neq}	91°	1.38	1.74	9.9	7.7		-6.4
	10	161(1) ^o	1.38	1.71(1)	6.7	3.9	2.8	-7.1
	11 [≠]	0	1.38	1.71	9.2	6.7		-8.9
RS-NH-O•	4	63(1) [°]	1.26	1.74(1)	0.0	0.0	0.0	-6.6
	12^{\neq}	2°	1.26	1.80	2.1	2.5		-6.5
	13 [≠]	150	1.26	1.78	4.8	5.1		-8.7
RS-NH-OH	5	56°	1.45(1)	1.72	0.0	0.0	0.0	-6.6

	14	102(2) ^o	1.45(1)	1.73(1)	1.1	0.6	0.5	-7.2
	15^{\neq}	-136°	1.44	1.80	8.9	8.5		-8.3
	16 [≠]	17°	1.43	1.84	10.1	10.5		-7.0
	17	67(1) ^o	1.43	1.70	4.7	4.2	4.2	-9.9
	18	91(1) ^o	1.43(1)	1.73	2.7	2.0	1.9	-8.1
	19 [≠]	-143°	1.42	1.79	11.3	10.4		-10.0
	20^{\neq}	8°	1.41	1.83	14.4	14.4		-10.1
expl.		76°,88°	1.21(1)	1.76(1)				

*note: There are some other stationary points near these structures; they have very similar structure and energy as their neighbors have, like structures **8** and **9**, due to the easy flip of nitrogen lone-pair (or unpaired electron) configurations.