
Supplemental Material

Below we provide further details on the two stages of the MuSE exploration. Additional results on
higher-energy conformational ensembles obtained for the proteins in this study are also presented.

Updating Temperature in MC-SA

The initial temperature T0 for the MC-SA scheme is determined from a desired acceptance probabil-
ity associated with generated conformations. Initially, a coarse-grained conformation whose energy
is δE = 10 kcal/mol higher than that of the previously generated conformation is accepted with
a probability of 0.5. This acceptance probability corresponds to e−δE/(kBT0) = 0.5, which gives an
initial temperature T0 of ∼ 7261 K (kB denotes the Boltzmann constant). The final temperature
Tf is set to 300 K. The temperature T0 is progressively lowered k times according to a propor-

tional cooling schedule that updates the MC temperature as in Ti+1 = Ti ·
Tf

T0

1
k+1 until Tk = Tf .

Temperatures for each 0 ≤ i ≤ k are shown in Figure 1(a).

(a) (b)

Figure 1: (a) shows the temperatures during the MC-SA. (b) shows through a histogram the
population of configurations for trimers in the local database.

Compiling a Local Database of Trimer Configurations

MuSE compiles and maintains a local fragment database during the coarse-grained exploration in
the first stage. A PDB subset of nonredundant protein structures (as of July 2007) is obtained
through the PISCES server (Wang and Dunbrack, 2003). Chosen proteins have ≤ 40% sequence
similarity, ≤ 2.5 Å resolution if the structure is obtained through X-ray crystallography, or R-factor
≤ 0.2 if obtained through NMR. The 6, 056 protein chains in this subset are split into all possible
overlapping fragments of three consecutive amino acids. For each 3-aa sequence (trimer), the local
database maintains the list of configurations (6 backbone dihedral angles) populated by the trimer
over all protein chains (a total of 10, 072, 004 trimer configurations).
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Figure 1(b) shows that the populations of different trimers are very heterogeneous. However,
all possible 203 trimers are populated, and only 70/8, 000 have less than 10 configurations. Low
populations for this small percentage of trimers are associated with bulky amino acids that are
energetically penalized for being neighbors in a protein chain. It is worth pointing out that for
all the protein sequences in this study, no trimers have less than 21 configurations in the local
database.

Coarse-grained Energy Function

The coarse-grained energy function is a linear combination of non-local terms: E = ELennard−Jones+
EH−Bond + Econtact + Ewater + Eburial + ERg. ELennard−Jones is a slightly modified version of the 12-6
Lennard-Jones potential employed in AMBER9 (Case et al., 2006). The modification is introduced
to allow for a soft penetration of vdw spheres. EH−Bond is a hydrogen-bonding term implemented
as in (Gong et al., 2005). Econtact, Ewater, and Eburial are implemented as in (Papoian et al., 2004).
These three terms, taken from the AMW function proposed by the Wolynes lab for structure predic-
tion (Prentiss et al., 2006), allow for water-mediated interactions in coarse-grained representations.
The terms rely on Cβ positions that are computed from the backbone of a conformation in MuSE

as in (Milik et al., 1997). The ERg term penalizes a conformation by (Rg−Rggoal)
2 when its Rg is

above Rggoal.

Randomly Choosing Trimers in Each MC Move

Each of the N−2 moves in a cycle of an MC simulation in MuSE chooses a trimer randomly over
the sequence of N amino acids. If instead, each move proceeds in order down the sequence, it is
easy to get stuck trying to find acceptable configurations for the chosen trimer. Randomly picking
trimers over the sequence allows getting out of such “local minima.”

Length of a Monte Carlo Simulation

The duration of an MC simulation is determined by monitoring the convergence of averages in each
of the terms of the coarse-grained energy values obtained during the simulation. If the averages
converge to the same value in two successive windows of w cycles, the simulation terminates. For the
proteins in this work, averages are measured every 500 cycles, and convergence is usually reached
after 1, 000 cycles. An MC simulation is therefore carried for NMC = 2, 000 cycles.

Determining Goal Radii of Gyration for Different Levels of Confinement

Inspection of native structures assumed by diverse proteins in the PDB reveals that one single radius
of gyration cannot be imposed during the search. Traditionally, structure prediction methods bias
towards native-like conformations with ideal radii of gyration R0 = 2.83×N0.34 (Gong et al., 2005,
Papoian et al., 2004, Prentiss et al., 2006). This value, close to that predicted by theory (Fleming
and Rose, 2005), biases assembly towards collapsed conformations. MuSE instead aims to capture
diverse functional states of proteins: non-collapsed conformations (assumed by proteins such as
CaM) should not be discarded if they are energetically feasible. For this reason, each temperature
in the MC-SA launches many MC simulations that employ different goal radii of gyration to allow
for the possibility of non-collapsed conformations.

Very long unconfined MC simulations are carried out at the highest temperature T0 from slightly
perturbed extended conformations. The distribution of Rg values among generated conformations
is analyzed to determine the average radius 〈Rg〉. 〈Rg〉 is 23.4 Å for calbindin D9k and 33.4 Å for
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both CaM and ADK. Then, m = 11 different values are specified for Rggoal as follows: Rggoal = ∞
(meaning no confinement is imposed), Rggoal = 〈Rg〉, and 9 more values are selected for Rggoal

at consecutive ∆Rg = 1.4 Å decrements from 〈Rg〉. Using this scheme, in the most confined MC
simulation for calbindin D9k, Rggoal = 10.8Å, which matches the value predicted from theory for a
chain of 76 amino acids (Fleming and Rose, 2005).

Seeding Monte Carlo Simulations

Conformations obtained at temperature Ti are collected in the ensemble ΩTi
. Conformations with

energies no higher than the average energy 〈ETi
〉 over ΩTi

are retained in the ensemble Ω∗

Ti
. This

energetic criterion ensures that conformations selected as seeds for the next MC simulations will
come from low-energy regions in the coarse-grained energy landscape.

A structural analysis is conducted over Ω∗

Ti
to identify “basins” in the coarse-grained energy land-

scape. Conformations are binned by radii of gyration to yield m = 11 sub-ensembles Ω∗

Ti,Rgoal
for

each of the selected values of Rggoal. A conformation C with Rg(C) is placed in a specific bin Rggoal

if |Rg(C) − Rggoal| ≤ δRg, where δRg = min{∆Rg,
√

RggoalTi+1} (∆Rg is the difference between
two consecutive Rggoal values, as discussed above). This binning limits the expected increase in
energy by the confinement penalty at the next temperature Ti+1 to 1.0 kcal/mol.

Conformations to seed MC simulation at the next temperature Ti+1 and with a confinement radius
Rgoal are now chosen from the ensemble Ω∗

Ti,Rgoal
. Conformations in Ω∗

Ti,Rgoal
are clustered according

to lRMSD with the Leader clustering algorithm (Jain et al., 1987). Conformations are binned in
a specific cluster if they are within an lRMSD radius crad from the cluster centroid. In this work,
crad = 2.0 Å. The obtained clusters with more than npop = 5 conformations are ordered according
to their populations and the centroids for the nc = 100 most populated clusters are chosen∗. If
less than nc clusters meet this cutoff, the rest of the conformations are chosen from Ω∗

Ti,Rgoal
to

maximize their lRMSD from those already selected. This strategy identifies geometrically distinct
conformations in the absence of highly-populated ones.

The resulting nc conformations capture distinct “basins” in the coarse-grained landscape. However,
due to inherent approximations in the coarse-grained energy function, it is not guaranteed that these
basins remain low-energy minima in all-atom detail. An energetic analysis is then performed, which
first adds all-atom detail to the nc conformations as in (Heath et al., 2007). The resulting all-atom
nc conformations are then energetically minimized with the AMBER ff03 force field (Duan et al.,
2003) using the GB implicit solvation model (Still et al., 1990). The minimization uses a conjugate
gradient descent that checks for convergence in energy. The correlation between coarse-grained
energies and all-atom energies of conformations after the minimization is computed to associate
the following score to each conformation: (1−R) · ǫ + R · dEall−atom, where R denotes the Pearson
correlation coefficient, ǫ denotes the residual errors in the least squares fit between the coarse-
grained and all-atom energies, and dEall−atom denotes the difference between all-atom energies and
the minimum all-atom energy obtained. Picking conformations with the lowest score ensures that,
when the correlation is high, conformations whose all-atom energies best match their coarse-grained
energies are chosen as seeds. Otherwise, conformations with lowest all-atom energies become more
probable to be selected. A total of ns = 5 conformations are considered as seeds for each value of
Rggoal at each temperature.

This selection strategy takes into account the uncertainty in the coarse-grained energy function
that may affect the determination of basins. Since the coarse-grained energy function integrates
out all DOFs besides backbone heavy atoms, it is important to regularly estimate whether basins

∗The centroid of a cluster is the lowest-energy conformation populating the cluster.
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in the coarse-grained landscape remain low-energy regions when adding all-atom detail. Once the
ns seed conformations are selected, the extra DOFs (side chains) are removed and the resulting
coarse-grained conformations are used to start the MC simulations at the next temperature.

Exploring Conformational Space Around an Energy Minimum

The second stage in MuSE employs the Protein Ensemble Method (PEM) to explore the all-
atom conformational space around an energy minimum. PEM allows MuSE to generate more
low-energy all-atom conformations around a minimum. PEM has been proposed in (Shehu et al.,
2006) and applied to various proteins in (Shehu et al., 2007) to explore equilibrium fluctuations
around a representative equilibrium conformation. The lowest-energy conformation in each pseudo
free-energy minimum is used as the representative conformation for PEM in the second stage.

PEM defines consecutive fragments of length l = 30 and overlap of δl = 5 amino acids over the
backbone of the representative conformation. The length l ensures that large fluctuations will
be explored around the conformation. The overlap δl ensures that fluctuations will be consistent
for neighboring fragments. An ensemble of low-energy all-atom conformations is obtained for
each fragment, maintaining the rest of the backbone fixed as in the reference conformation. This
ensemble is obtained by first using a coarse-grained level of detail to address geometric constraints
imposed by a fixed backbone and then employing all-atom detail for energetic considerations. The
resulting ensemble of all-atom low-energy conformations obtained with PEM allows MuSE to add
more structural detail to an energy minimum.

Nonlinear Dimensionality Reduction of All-atom Conformational Space

MuSE employs Scalable Isomap (ScIMAP) to project the high-dimensional space populated by
low-energy all-atom conformations onto a low-dimensional space. Proposed in (Das et al., 2006) and
tested in (Plaku et al., 2007, Shehu et al., 2008), ScIMAP analyzes nonlinear surfaces associated
with protein simulation data. ScIMAP first computes a nearest-neighbors graph G where each
conformation is connected to its nearest neighbors. The distance between two conformations is then
measured as the length of the shortest path that connects the conformations in G. The shortest-
path distances between L conformations selected as landmarks and the remaining conformations
are stored in a matrix M . The top eigenvectors of M provide an orthogonal basis that MuSE

uses to project the computed all-atom conformations onto few global coordinates that capture the
structural variability among conformations. Different number of landmarks (3000-5000) and nearest
neighbors (30-50) have been tested to ensure accuracy and robustness of the obtained projections.

Calculation of Pseudo Free-Energy Values on Low-dimensional Space

Pseudo free-energy values are calculated on the low-dimensional conformational space obtained by
ScIMAP. The calculations are carried out using a modified version of the weighted histogram
method (WHAM) (Ferrenberg and Swendsen, 1988, 1989). The modification takes into account
that the resulting low-energy all-atom conformations in MuSE do not come from a single constant
temperature simulation at a given resolution; that is, the conformations do not define a canonical
ensemble. First, a grid with uniform cell size is imposed on the low-dimensional space that spans
conformations. The potential energy associated with conformations whose projections fall on a
particular cell is averaged in order to smooth out noise originating from the different resolutions,
the force field, or the solvation model used. The population of each grid cell is used to associate
an entropy value to the cell and so obtain a pseudo free-energy value for each cell. Energy values
calculated this way are then used to color-code the grid for visualization purposes and to reveal
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(a) (b) (c)

Figure 2: Figure shows higher-energy conformational ensemble obtained for calbindin D9k in (a),
CaM in (b) and ADK in (c). The lowest-energy conformations within each ensemble are drawn in
opaque, superimposing the remaining conformations in an ensemble in transparent.

regions of the grid with lowest pseudo free-energy values. Different grid cell sizes have been tried
in the calculations to ensure accuracy and consistency of the results.

Higher-energy Conformational Ensembles

Figure 2 shows some of the higher-energy conformational ensembles obtained by MuSE for the
proteins in this work. The ensemble shown for calbindin D9k in Figure 2(a) corresponds to the
region {10 ≤ x ≤ 20, 2 ≤ y ≤ 8} in the 2D pseudo free-energy landscape obtained for the protein
(x and y refer to the two axes) and shown in the Results section of the paper. This ensemble
displays an orientation of the EF-hand helices that is very different from that associated with the
lowest energy minima obtained for calbindin D9k. Figure 2(b) shows a higher-energy ensemble
obtained for CaM that corresponds to the region {5 ≤ x ≤ 10, 5 ≤ y ≤ 10} in the 2D pseudo
free-energy landscape obtained for CaM. The ensemble contains collapsed conformation where the
central linker is bent as in the collapsed state of CaM. The ensemble shown for ADK in Figure 2(c)
contains higher-energy conformations corresponding to the region {−35 ≤ x ≤ −25,−15 ≤ y ≤ 0}
in the 2D pseudo free-energy landscape obtained for ADK. This ensemble also contains collapsed
conformations. The issue of whether these ensembles are yet to be observed in experiment or
are spurious consequences of approximations of the method is discussed in the Discussion and

Conclusion section of the paper.
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