### SUPPLEMENTARY INFORMATION TO

# Mechanisms and kinetics of CO<sub>2</sub> uptake on bicontinuous mesoporous silica modified with n-propylamine

Zoltán Bacsik<sup>1</sup>, Nanna Ahlsten<sup>2</sup>, Asraa Ziadi<sup>2</sup>, Guoying Zhao<sup>1</sup>, Alfonso E. Garcia-Bennett<sup>3</sup>, Belén Martín-Matute<sup>2</sup>, Niklas Hedin<sup>1\*</sup>

<sup>1</sup>Department of Materials and Environmental Chemistry, Berzelii Center EXSELENT on Porous Materials, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

<sup>2</sup>Department of Organic Chemistry, Berzelii Center EXSELENT on Porous Materials, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

<sup>3</sup>Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden

niklas.hedin@mmk.su.se

## **Functionalization of AMS-6 with 3-aminopropyl triethoxysilane**

AMS-6 was dried in an oven for 20 h at 150 °C before modification. A suspension of AMS-6 (300 mg) in toluene (18 mL) was stirred at 50 °C for 30 min under argon in a closed tube. The tube was opened and water (68 µL, 3.78 mmol) was added dropwise to the mixture. After resealing the tube, the mixture was heated to 120 °C for 1.5 h, after which 3aminopropyltriethoxysilane (2.54 g, 11.4 mmol) was added to the mixture. When the addition was complete, the tube was closed and heated at 120 °C for 72 h. After cooling to room temperature, the tube was opened and the solid was filtered and washed with toluene (3 x 10 mL) and free residual 3-aminopropyltriethoxysilane was removed by soxhlet extraction in EtOH. The resulting solid was dried under reduced pressure over night. Anal. C,15.17; H, 3.67; N, 4.85. Functionalization with 3-aminopropylmethyldiethoxysilane was performed in a similar manner. Functionalization of **MCM-48** 3-aminopropyltriethoxysilane and 3aminopropylmethyldiethoxysilane were performed in a similar manner.

# Surface area of AMS-6 in a powder and pellet form

AMS-6. The adsorption isotherms measured on the powder and pellet were practically equivalent proving that no structural collapse of the pore system occurred due to the pellet pressing.



| Reference         | Adsorbent*                                             | IR<br>technique           | Sample<br>preparation    | Model gas                                                       | Assignation, compounds (wavenumber<br>in cm <sup>-1</sup> )<br>(No water present)                                                                        | Assignation, compounds (wavenumber<br>in cm <sup>-1</sup> ) (In the presence of water)                                                                                                                             |
|-------------------|--------------------------------------------------------|---------------------------|--------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tsuda,<br>1992    | silica gel/APTES                                       | Simple IR<br>(no in situ) | No preparation           | $CO_2$ in $N_2$                                                 | Ammonium carbamate (1580, 1330)                                                                                                                          | -                                                                                                                                                                                                                  |
| Chang,<br>2003    | SBA-15/APTES                                           | DRIFT                     | He flow, 25 °C,<br>1h    | 4 % CO <sub>2</sub> in He,<br>2.5 % H <sub>2</sub> O            | bidentate bicarbonate (1634), bidentate<br>carbonate (1575, 1390), monodentate<br>bicarbonate (1493, 1432), monodentate<br>carbonate (1335)              | The same as in dry experiments.                                                                                                                                                                                    |
| Khatri,<br>2005   | SBA-15/ <i>N</i> -(2-<br>aminoethyl)-3-<br>aminopropyl | DRIFT                     | He flow, 30 °C,<br>2h    | 10% CO <sub>2</sub> , 4%<br>H <sub>2</sub> O in He              | -                                                                                                                                                        | bidentate bicarbonate (1628), bidentate<br>carbonate (1541), monodentate<br>bicarbonate (1470, 1422), monodentate<br>carbonate (1337), carbamic acid (1287),<br>non-discussed band at around 1700 cm <sup>-1</sup> |
| Khatri,<br>2006   | SBA-15/APTES                                           | DRIFT                     | N/A                      | 10 % CO <sub>2</sub> and 4 % D <sub>2</sub> O in Ar             | -                                                                                                                                                        | Bicarbonates and carbonates (shifted<br>band position due to hydrogen/deuterium<br>isotope change)                                                                                                                 |
| Fisher,<br>2009   | B Zeolite/TEPA                                         | DRIFT                     | He flow, 135<br>°C, 0.5h | 10 % CO <sub>2</sub> in Ar                                      | bidentate carbonate (1564, 1390),<br>monodentate bicarbonate (1470)<br>monodentate carbonate (1313)                                                      | -                                                                                                                                                                                                                  |
| Tanthana,<br>2010 | TEPA/SiO <sub>2</sub>                                  | DRIFT                     | Ar flow, 55 °C           | 15% CO <sub>2</sub> , 4%<br>H <sub>2</sub> O in air             | -                                                                                                                                                        | $CO_2$ -H <sub>2</sub> N- (2627), carbamic acid (1680),<br>carbamate (1520), carboxylate (1430),<br>carboxylate and carbamate (1315)                                                                               |
| Hao, 2010         | Silica<br>(AMS)/APTES                                  | N/A                       | N/A                      | N/A                                                             | NH stretch in carbamate (3410), $NH_3^+$ def in carbamate (1632), C=O stretch in carbamate (1563), NCOO (1484),                                          | -                                                                                                                                                                                                                  |
| Leal, 1995        | Silica gel/APTES                                       | Transm.                   | 150 °C, 2 h              | 10 Torr dry and humid $CO_2$                                    | Carbamate (1411), bicarbonate (1385)                                                                                                                     | The ratio of carbamate $(1411)$ and bicarbonate $(1385)$ changes compare to dry CO <sub>2</sub>                                                                                                                    |
| Huang,<br>2003    | MCM-48/APTES                                           | Transm.                   | He-flow, N/A             | 5% CO <sub>2</sub> in He                                        | Bicarbonate (1382)((after Leal et al.)),<br>C=O asym. Stretch (1432, 1485) in<br>carbamate, C-O stretch and $NH_3^+$ def.<br>(1560), $NH_3^+$ def (1635) | Higher overall intensity of the same bands as in case of dry CO <sub>2</sub>                                                                                                                                       |
| Wang,<br>2009     | SBA-15/PEI                                             | Transm.                   | He flow, 80 °C,<br>2h    | For moist CO <sub>2</sub><br>runs:<br>preadsorption of<br>water | $NH_3^+$ def (1630) and C=O stretch (1520)<br>and NCOO (1410, 1320) in carbamate,<br>chemisorbed CO <sub>2</sub> (2450, 2160)                            | Slightly higher uptake, same bands as in case of dry CO <sub>2</sub> , no bicarbonate formation observed                                                                                                           |

**Table S1.** Identification of the species formed by the reaction of  $CO_2$  and immobilized amine groups with in situ IR spectroscopy

| Zheng,     | SBA-15/Ethylene   | Transm. | Ar flow, 135 °C             | Pure CO <sub>2</sub> and               | $NH_2^+$ , NH def, C-N (1576) in                                           | The same bands as in case of dry $CO_2$  |
|------------|-------------------|---------|-----------------------------|----------------------------------------|----------------------------------------------------------------------------|------------------------------------------|
| 2005       | diamine           |         |                             | CO <sub>2</sub> / 2 % H <sub>2</sub> O | intramolecular carbamate                                                   |                                          |
| Hiyoshi,   | SBA-15/APTES      | Transm. | He flow, 150                | 3% CO <sub>2</sub> , in He,            | NH stretch (3439) and $NH_3^+$ (1630) and                                  | The same bands as in case of dry $CO_2$  |
| 2005       |                   |         | °C, 1h                      | and 3% CO <sub>2</sub> , 2 %           | C=O stretch (1563) and NCOO (1488) in                                      |                                          |
|            |                   |         |                             | H <sub>2</sub> O in He                 | carbamate                                                                  |                                          |
| Knöfel,    | Amorph.           | Transm. | Evacuation <10 <sup>-</sup> | Pure $CO_2(?)$                         | NH stretch (3435), $NH_3^+$ (1626), $COO^-$                                | -                                        |
| 2009       | Silica/APTES      |         | <sup>7</sup> mbar, 160 °C,  |                                        | asym (1545), $NH_3^+$ (1487) bend and                                      |                                          |
|            |                   |         | overnight                   |                                        | COO <sup>-</sup> sym (1381) in carbamate, C=O                              |                                          |
|            |                   |         |                             |                                        | stretch in carbamic acid (1680) Faster                                     |                                          |
|            |                   |         |                             |                                        | formation of carbamic acid observed.                                       |                                          |
| Bacsik,    | Mesocaged         | Transm. | Evacuation <10 <sup>-</sup> | 100 % CO <sub>2</sub>                  | Physisorbed linear CO <sub>2</sub> (2340); NH                              | -                                        |
| 2010       | silica/APTES      |         | <sup>6</sup> Torr, 140 °C,  |                                        | stretch (3440), NH <sub>3</sub> <sup>+</sup> (1626), COO <sup>-</sup> asym |                                          |
|            |                   |         | 6h                          |                                        | (1567), NH <sub>3</sub> <sup>+</sup> (1500) NCOO <sup>-</sup> (1381) in    |                                          |
|            |                   |         |                             |                                        | carbamate; C=O stretch in carbamic acid                                    |                                          |
|            |                   |         |                             |                                        | (~1701)                                                                    |                                          |
| Danon,     | SBA-15/APTES      | DRIFT   | Evacuation <10 <sup>-</sup> | Pure $CO_2$ , 20                       | Physisorbed linear $CO_2$ (2340); $NH_3^+$                                 | -                                        |
| 2011       | with different    |         | <sup>7</sup> Torr, 100 °C   | Torr                                   | (1625), COO <sup>-</sup> asym (1564), NH <sub>3</sub> <sup>+</sup> (1485-  |                                          |
|            | surface coverages |         |                             |                                        | 1550) NCOO <sup>-</sup> (1335-1430) in carbamate;                          |                                          |
|            | _                 |         |                             |                                        | C=O stretch in carbamic acid (~1701)                                       |                                          |
| This study | MCM-48/APTES      | Transm. | Evacuation <10 <sup>-</sup> | 20 V/V% CO <sub>2</sub> in             | NH str. (3440), NH <sub>3</sub> <sup>+</sup> (1630), COO <sup>-</sup> asym | Carbamic acid silyl ester does not form; |
|            | AMS-6/APTES       |         | <sup>6</sup> Torr, 140 °C,  | $N_2$ , the same                       | (1564), NH <sub>3</sub> <sup>+</sup> (1484) bend. and COO <sup>-</sup>     | the ammonium carbamate ion par           |
|            |                   |         | 6h                          | saturated with                         | sym (1433), C=O stretch in H-bonded                                        | formation is enhanced in the present of  |
|            |                   |         |                             | H <sub>2</sub> O                       | carbamic acid (1680-1700), C=O stretch                                     | water.                                   |
|            |                   |         |                             |                                        | (1715) in carbamic acid silyl ester (See                                   |                                          |
|            |                   |         |                             |                                        | Table 2 in the paper for more details)                                     |                                          |

\* In many studies there are more than one adsorbent investigated, here we refer the selected one(s) (silica support/amine)

## FIGURES



**Figure S1A.** Pore volume distribution in unmodified AMS-6, AMS-6/APMDES and AMS-6/APTES. The pore volume distribution (BJH model, desorption) is shifted towards smaller average pore dimensions as the degree of functionalization is increasing.



**Figure S1B.** Pore volume distribution in unmodified MCM-48, MCM-48/APMDES and MCM-48/APTES. The pore volume distribution (BJH model, desorption) is shifted towards smaller average pore dimensions as the degree of functionalization is increasing.



**Figure S2.** FTIR spectra of the a) AMS-6, b) AMS-6/APMDES and c) AMS-6/APTES. The spectra were measured in vacuum ( $<10^{-6}$  Torr) after pretreatment (140 °C,  $<10^{-6}$  Torr, 6 h) of the self-supporting pellets. An empty cell was used as background.



**Figure S3.** FTIR spectra of AMS-6 material a) measured in near vacuum conditions (<10<sup>-6</sup> Torr) after heat treatment at 140 °C, b) contacted with 760 Torr of pure CO<sub>2</sub>, c) after subtraction of the corresponding gaseous reference spectrum for CO<sub>2</sub> and (d) the corresponding gaseous reference spectrum for CO<sub>2</sub>.

Spectra were measured at room temperature and the background spectrum was recorded in the empty cell. The changes in the OH-stretchings could not be detected when using this particular background spectrum.



**Figure S4.** In situ FTIR spectrum of the adsorbed species on AMS-6 equilibrated with 400 Torr pure  $CO_2$  saturated with water (2.1 V/V %). No carbonates or bicarbonates were observed.



**Figure S5.** In situ FTIR spectra for AMS-6/APMDES and AMS-6/APTES contacted with 100 Torr of pure CO<sub>2</sub>.



**Figure S6.** Differential IR spectra of the two major species form at different reaction rates during the adsorption of  $CO_2$  on AMS-6/APMDES material: a) represents mainly silylpropylcarbamate. It is the difference spectrum of adsorbed species at 50 Torr  $CO_2$  (20 V/V% in N<sub>2</sub>) measured after 2 and 25 minutes (equilibrium); b) represents mainly propylammonium propylcarbamate and hydrogen bonded carbamic acid. It is the difference spectrum of the 50 Torr equilibrium spectrum and the difference spectrum Figure 8a (residual).



**Figure S7A. ADSORPTION** AMS-6/APMDES, **DRY** CO<sub>2</sub> in N<sub>2</sub>, 2, 10, 25, 50, 100, 200, 400, 600, 760 Torr pressures (from bottom to top).



Figure S7B. DESORPTION AMS-6/APMDES DRY 20 %  $CO_2$  in  $N_2$  pressure 760, 600, 400,

200, 100, 50, 25, 10, 1 Torr, 30 min evacuation (from top to bottom)



Figure S7C. ADSORPTION AMS-6/APMDES, HUMID  $CO_2$  in  $N_2$ , 2, 10, 26, 50, 100, 200,

400, 600, 760 Torr pressures (from bottom to top)



Figure S7D. DESORPTION AMS-6/APMDES HUMID 20 %  $CO_2$  in  $N_2$  pressure 760, 600,

400, 200, 100, 50, 25, 10, 2 Torr, 30 min evacuation, after heat treatment (from top to bottom)



Figure S8A. ADSORPTION MCM-48/APMDES DRY 20 % CO<sub>2</sub> in N<sub>2</sub> pressure 1, 10, 25, 50,



Figure S8B. DESORPTION MCM-48/APMDES DRY 20 % CO<sub>2</sub> in N<sub>2</sub> pressure 760, 600, 400,

200, 100, 50, 10, 1 Torr, 30 min evacuation, after heat treatment (from top to bottom)



Figure S8C. ADSORPTION MCM-48/APMDES HUMID 20 % CO2 in N2 pressure 8, 30, 54,



Figure S8D. DESORPTION MCM-48/APMDES HUMID 20 %  $CO_2$  in  $N_2$  pressure 760, 600,

400, 200, 100, 50, 10, 1 Torr, 30 min evacuation, (from top to bottom)



Figure S9A. ADSORPTION AMS-6/APTES DRY 20 %  $CO_2$  in  $N_2$  pressure 5.6, 13, 27, 55,



**Figure S9B. DESORPTION** AMS-6/APTES **DRY** 20 % CO<sub>2</sub> in N<sub>2</sub> pressure 760, 600, 400, 200, 100, 50, 25, 10, 2 Torr, 30 min evacuation, heat treatment (from top to bottom)



Figure S9C. ADSORPTION AMS-6/APTES HUMID 20 % CO2 in N2 pressure 1, 10, 25, 50,



Figure S9D. DESORPTION AMS-6/APTES HUMID 20 %  $CO_2$  in  $N_2$  pressure 760, 600,

400, 200, 100, 50, 24, 10, 1 Torr, 30 min evacuation, heat treatment (from top to bottom)



Figure S10A. ADSORPTION MCM-48/APTES DRY 20 %  $CO_2$  in  $N_2$  pressure 1, 5, 10, 25, 50,



Figure S10B. DESORPTION MCM-48/APTES DRY 20 % CO<sub>2</sub> in N<sub>2</sub> pressure 760, 600,

400, 200, 100, 50, 10, 2 Torr, 30 min evacuation, heat treatment (from top to bottom)

![](_page_25_Figure_0.jpeg)

Figure S10C. ADSORPTION MCM-48/APTES HUMID 20 % CO<sub>2</sub> in N<sub>2</sub> pressure 1, 5, 13, 25,

![](_page_26_Figure_0.jpeg)

Figure S10D. DESORPTION MCM-48/APTES HUMID 20 % CO<sub>2</sub> in N<sub>2</sub> pressure 760, 600,

400, 200, 100, 50, 10, 2 Torr, 30 min evacuation, heat treatment (from top to bottom)

![](_page_27_Figure_0.jpeg)

**Figure S11A.** The IR spectra of remained species on MCM-48/APTES after a) dry and b) moist CO<sub>2</sub> adsorption and heat (140 °C, 6h) regeneration; c) poly (N-methyl acryl amide) reference spectrum

![](_page_27_Figure_2.jpeg)

**Figure S11B.** IR spectra of the fresh (a) MCM-48/APTES and after 3 (b) and 6 (c) cycles of  $CO_2$  uptake. A spectrum in from an empty cell was used when recording the single beam spectrum for further use as a background spectrum.

#### **References in the supplementary information**

- Hicks, J. C.; Drese, J. H.; Fauth, D. J.; Gray, M. L.; Qi, G. G.; Jones, C. W. J. Am. Chem. Soc. **2008**, *130*, 2902-2903.
- Gray, M. L.; Soong, Y.; Champagne, K. J.; Pennline, H. W.; Baltrus, J.; Stevens Jr., R. W.; Khatri, R.; Chuang, S. S. C. *Int. J. Environ. Technol. Manage.* **2004**, *4*, 82-88.
- Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy Fuels 2003, 17, 468-473.
- Harlick, P. J. E.; Sayari, A. Ind. Eng. Chem. Res. 2007, 46, 446-458.
- Serna-Guerrero, R.; Dana, E.; Sayari, A. Ind. Eng. Chem. Res. 2008, 47, 9406-9412.
- Danon, A.; Stair, P. C.; Weitz, E. J. Phys. Chem. C DOI: 10.1021/jp200914v
- Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. Y. S. J. Phys. Chem. B 2005, 109, 6287-6293.
- Hiyoshi, N.; Yogo, K.; Yashima, T. Microporous Mesoporous Mater. 2005, 84, 357-365.
- Bacsik, Z.; Atluri, R.; Garcia-Bennett, A. E.; Hedin, N. Langmuir 2010, 26, 10013-10024.
- Knöfel, C.; Martin, C.; Hornebecq, V.; Llewellyn, P. L. J. Phys. Chem. C 2009, 113, 21726-21734.
  - Tsuda, T.; Fujiwara, T.; Taketani, Y.; Saegusa, T. Chem. Lett. 1992, 2161-2164.
  - Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. *Energy Fuels* **2003**, *17*, 468-473.
  - Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Energy Fuels 2006, 20, 1514-1520.
  - Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Ind. Eng Chem. Res. 2005, 44, 3702-3708.
- Fisher II, J. C.; Tanthana, J.; Chuang, S. S. C. *Environ. Prog. Sustainable Energy* **2009**, *28*, 589-598.

Tanthana, J.; Chuang, S. S. C. ChemSusChem 2010, 3, 957-964.

Hao, S. Y.; Xiao, Q. A.; Yang, H.; Zhong, Y. J.; Pepe, F.; Zhu, W. D. *Microporous Mesoporous Mater.* **2010**, *132*, 552-558.

Leal, O.; Bolivar, C.; Ovalles, C.; Garcia, J. J.; Espidel, Y. Inorg. Chim. Acta 1995, 240, 183-189.

Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Ind. Eng. Chem. Res. 2003, 42, 2427-2433.

Wang, X. X.; Schwartz, V.; Clark, J. C.; Ma, X. L.; Overbury, S. H.; Xu, X. C.; Song, C. S. J. *Phys. Chem. C* **2009**, *113*, 7260-7268.

Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L. *Ind. Eng. Chem. Res.* **2005**, *44*, 3099-3105.