Supporting Information

Engineering an Antibiotic to Fight Cancer: Optimization of the Novobiocin Scaffold to Produce Anti-Proliferative Agents

Huiping Zhao,^{1,†} Alison C. Donnelly,^{1,†} Bhaskar Reddy Kusuma,[†] Gary E. L. Brandt,[†] Douglas Brown,[§] Roger A. Rajewski,[^] George Vielhauer,[‡] Jeffrey Holzbeierlein,[‡] Mark S. Cohen, [‡] and Brian S. J. Blagg^{*,†}

Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045-7563, Biotechnology Innovation & Optimization Center, 2099 Constant Avenue, The University of Kansas, Lawrence, KS 66047-2535, Department of Pharmaceutical Chemistry, 2095 Constant Avenue, The University of Kansas, Lawrence, Kansas 66047-2535, and Department of Urology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3016, Kansas City, Kansas 66160

Table of Contents

Description	Page
Experimental details	S14-S107
¹ H NMR of 6b	S108
¹³ C NMR of 6b	S109
¹ H NMR of 6c	S110
¹³ C NMR of 6c	S111
¹ H NMR of 8b	S112
¹³ C NMR of 8b	S113
¹ H NMR of 8c	S114
¹³ C NMR of 8c	S115
¹ H NMR of 12b	S116
¹³ C NMR of 12b	S117
¹ H NMR of 12c	S118
¹³ C NMR of 12c	S119
¹ H NMR of 14a	S120
¹³ C NMR of 14a	S121
¹ H NMR of 14b	S122
¹³ C NMR of 14b	S123
¹ H NMR of 14c	S124
¹³ C NMR of 14c	S125
¹ H NMR of 15a	S126

¹³ C NMR of 15a	
¹ H NMR of 15b	
¹³ C NMR of 15b	
¹ H NMR of 15c	
¹³ C NMR of 15c	
¹ H NMR of 17a	
¹³ C NMR of 17a	S133
¹ H NMR of 17a	S134
¹³ C NMR of 17a	S135
¹ H NMR of 20a	S136
¹³ C NMR of 20a	
¹ H NMR of 20b	S138
¹³ C NMR of 20b	S139
¹ H NMR of 20c	S140
¹³ C NMR of 20c	S141
¹ H NMR of 21a	
¹³ C NMR of 21a	S143
¹ H NMR of 21c	S144
¹³ C NMR of 21c	S145
¹ H NMR of 23a	S146
¹³ C NMR of 23a	S147
¹ H NMR of 23b	S148
¹³ C NMR of 23b	S149

¹ H NMR of 23c	S150
¹³ C NMR of 23c	S151
¹ H NMR of 25a	S152
¹³ C NMR of 25a	S153
¹ H NMR of 25b	S154
¹³ C NMR of 25b	S155
¹ H NMR of 25c	S156
¹³ C NMR of 25c	S157
¹ H NMR of 27a	S158
¹³ C NMR of 27a	S159
¹ H NMR of 27a	S160
¹³ C NMR of 27a	S161
¹ H NMR of 30a	S162
¹³ C NMR of 30a	S163
¹ H NMR of 31a	S164
¹³ C NMR of 31a	S165
¹ H NMR of 33a	S166
¹³ C NMR of 33a	S167
¹ H NMR of 40a	S168
¹³ C NMR of 40a	S169
¹ H NMR of 40b	S170
¹³ C NMR of 40b	S171
¹ H NMR of 40c	S172

¹³ C NMR of 40c	S173
¹ H NMR of 41a	S174
¹³ C NMR of 41a	S175
¹ H NMR of 41b	S176
¹³ C NMR of 41b	S177
¹ H NMR of 41c	S178
¹³ C NMR of 41c	S179
¹ H NMR of 42a	S180
¹³ C NMR of 42a	S181
¹ H NMR of 42b	S182
¹³ C NMR of 42b	S183
¹ H NMR of 42c	S184
¹³ C NMR of 42c	S185
¹ H NMR of 43a	S186
¹³ C NMR of 43a	S187
¹ H NMR of 43b	S188
¹³ C NMR of 43b	S189
¹ H NMR of 43c	S190
¹³ C NMR of 43c	S191
¹ H NMR of 44a	S192
¹³ C NMR of 44a	S193
¹ H NMR of 44b	S194
¹³ C NMR of 44b	S195

¹ H NMR of 44c	S196
¹³ C NMR of 44c	S197
¹ H NMR of 45a	S198
¹³ C NMR of 45a	S199
¹ H NMR of 45b	S200
¹³ C NMR of 45b	S201
¹ H NMR of 45c	S202
¹³ C NMR of 45 c	S203
¹ H NMR of 48a	S204
¹³ C NMR of 48a	S205
¹ H NMR of 48b	S206
¹³ C NMR of 48b	S207
¹ H NMR of 48c	S208
¹³ C NMR of 48c	S209
¹ H NMR of 50a	S210
¹³ C NMR of 50a	S211
¹ H NMR of 51a	S212
¹³ C NMR of 51a	S213
¹ H NMR of 51b	S214
¹³ C NMR of 51b	S215
¹ H NMR of 51c	S216
¹³ C NMR of 51c	S217
¹ H NMR of 52a	S218

¹³ C NMR of 52a	S219
¹ H NMR of 52b	
¹³ C NMR of 52b	
¹ H NMR of 52c	
¹³ C NMR of 52c	
¹ H NMR of 53a	S224
¹³ C NMR of 53a	
¹ H NMR of 54a	S226
¹³ C NMR of 54a	S227
¹ H NMR of 55a	S228
¹³ C NMR of 55a	S229
¹ H NMR of 55b	S230
¹³ C NMR of 55b	
¹ H NMR of 55 c	
¹³ C NMR of 55 c	S233
¹ H NMR of 57a	S234
¹³ C NMR of 57a	
¹ H NMR of 57b	S236
¹³ C NMR of 57b	S237
¹ H NMR of 57c	S238
¹³ C NMR of 57c	S239
¹ H NMR of 59a	S240
¹³ C NMR of 59a	

¹ H NMR of 59b	. S242
¹³ C NMR of 59b	. S243
¹ H NMR of 59 c	. S244
¹³ C NMR of 59c	. S245
¹ H NMR of 60a	. S246
¹³ C NMR of 60a	. S247
¹ H NMR of 60b	. S248
¹³ C NMR of 60b	. S249
¹ H NMR of 60c	. S250
¹³ C NMR of 60c	. S251
¹ H NMR of 61a	. S252
¹³ C NMR of 61a	. S253
¹ H NMR of 61b	. S254
¹³ C NMR of 61b	. S255
¹ H NMR of 61c	. S256
¹³ C NMR of 61c	. S257
¹ H NMR of 64a	. S258
¹³ C NMR of 64a	. S259
¹ H NMR of 64b	. S260
¹³ C NMR of 64b	. S261
¹ H NMR of 64c	. S262
¹³ C NMR of 64c	. S263
¹ H NMR of 65a	. S264

¹³ C NMR of 65a	. S265
¹ H NMR of 65b	. S266
¹³ C NMR of 65b	. S267
¹ H NMR of 65c	. S268
¹³ C NMR of 65 c	. S269
¹ H NMR of 66a	. S270
¹³ C NMR of 66a	. S271
¹ H NMR of 66b	. S272
¹³ C NMR of 66b	. S273
¹ H NMR of 66c	. S274
¹³ C NMR of 66c	. S275
¹ H NMR of 67a	. S276
¹³ C NMR of 67a	. S277
¹ H NMR of 67b	. S278
¹³ C NMR of 67b	. S279
¹ H NMR of 67c	. S280
¹³ C NMR of 67c	. S281
¹ H NMR of 68a	. S282
¹³ C NMR of 68a	. S283
¹ H NMR of 68b	. S284
¹³ C NMR of 68b	. S285
¹ H NMR of 68c	. S286
¹³ C NMR of 68c	. S287

¹ H NMR of 69a	S288
¹³ C NMR of 69a	S289
¹ H NMR of 69b	S290
¹³ C NMR of 69b	S291
¹ H NMR of 69c	S292
¹³ C NMR of 69 c	S293
¹ H NMR of 70b	S294
¹³ C NMR of 70b	S295
¹ H NMR of 70c	S296
¹³ C NMR of 70c	S297
¹ H NMR of 71a	S298
¹³ C NMR of 71a	S299
¹ H NMR of 71b	S300
¹³ C NMR of 71b	S301
¹ H NMR of 71c	S302
¹³ C NMR of 71c	S303
¹ H NMR of 72a	S304
¹³ C NMR of 72a	S305
¹ H NMR of 72b	S306
¹³ C NMR of 72b	S307
¹ H NMR of 72c	S308
¹³ C NMR of 72c	S309
¹ H NMR of 73b	S310

¹³ C NMR of 73b	S311
¹ H NMR of 73c	S312
¹³ C NMR of 73c	\$313
¹ H NMR of 74b	S314
¹³ C NMR of 74b	\$315
¹ H NMR of 74c	S 316
¹³ C NMR of 74c	S 317
¹ H NMR of 75a	S318
¹³ C NMR of 75a	S319
¹ H NMR of 75b	S320
¹³ C NMR of 75b	S321
¹ H NMR of 75c	\$322
¹³ C NMR of 75c	\$323
¹ H NMR of 78a	S324
¹³ C NMR of 78a	\$325
¹ H NMR of 78b	S326
¹³ C NMR of 78b	\$327
¹ H NMR of 78c	S328
¹³ C NMR of 78c	S329
¹ H NMR of 79a	S330
¹³ C NMR of 79a	\$331
¹ H NMR of 79b	\$332
¹³ C NMR of 79b	S333

¹ H NMR of 79c	S334
¹³ C NMR of 79c	S335
¹ H NMR of 80a	S336
¹³ C NMR of 80a	S337
¹ H NMR of 80b	S338
¹³ C NMR of 80b	S339
¹ H NMR of 80c	S340
¹³ C NMR of 80c	S341
¹ H NMR of 81a	S342
¹³ C NMR of 81a	S343
¹ H NMR of 81b	S344
¹³ C NMR of 81b	S345
¹ H NMR of 81c	S346
¹³ C NMR of 81c	S347
¹ H NMR of 82a	S348
¹³ C NMR of 82a	S349
¹ H NMR of 82b	S350
¹³ C NMR of 82b	S351
¹ H NMR of 82c	S352
¹³ C NMR of 82c	S353
¹ H NMR of 83a	S354
¹³ C NMR of 83a	S355
¹ H NMR of 83b	S356

¹³ C NMR of 83b	
¹ H NMR of 83c	
¹³ C NMR of 83c	
¹ H NMR of 84a	
¹³ C NMR of 84a	
¹ H NMR of 84b	
¹³ C NMR of 84b	
¹ H NMR of 84c	S364
¹³ C NMR of 84c	S365

General. The purity of all compounds was determined to be >95% as determined by 1 H and 13 C NMRR spectra, unless otherwise noted. The most active 15 compounds were further verified for >95% purity based on HPLC analyses.

N-(7-hydroxy-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxy-[1,1'-

biphenyl]-3-carboxamide (6b): A solution of **10b** (174 mg, 0.35 mmol) in methanol (3.5 mL) at rt was treated with triethylamine (0.35 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 10:1, CH₂Cl₂:acetone) to afford **1b** as a yellow amorphous solid (158 g, 99%): ¹H NMR (CDCl₃, 500 MHz) δ 8.79 (s, 1H), 8.71 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.89 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.14–7.06 (m, 3H), 6.94–6.92 (m, 1H), 6.81 (s, 1H), 6.11 (s, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.7, 159.9, 159.7, 159.5, 146.2, 144.5, 144.2, 138.8, 131.1, 130.1, 129.3, 128.3, 126.3, 124.7, 122.2, 122.0, 115.4, 113.3, 112.3, 111.9, 111.1, 104.5, 56.5, 56.0, 55.5, 8.3; IR (film) *v_{max}* 3408, 2980, 2843, 2359, 2341, 1636, 1533, 1356, 1244, 1015, 918; HRMS (ESI⁺) *m/z*: [M + H⁺] calcd for C₂₆H₂₄NO₇, 462.1553; found, 462.1529.

N-(7-hydroxy-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxy-[1,1'-biphenyl]-3carboxamide (6c): A solution of 12c (63 mg, 0.13 mmol) in methanol (1.3 mL) at rt was treated

with triethylamine (0.13 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 10:1, CH₂Cl₂:acetone) to afford **6c** as a yellow amorphous solid (57 mg, 99%): ¹H NMR (CDCl₃, 500 MHz) δ 8.82 (s, 1H), 8.66 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.88 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.19 (d, J = 8.5 Hz, 1H), 7.13–7.07 (m, 3H), 6.97–6.92 (m, 2H), 6.03 (bs, 1H), 4.13 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.7, 160.0, 159.5, 158.7, 150.4, 143.1, 138.7, 133.7, 131.2, 130.1, 129.4, 128.3, 126.1, 124.8, 123.3, 122.1, 121.7, 115.4, 114.1, 113.3, 113.1, 111.2, 62.1, 56.1, 55.5; IR (film) *v_{max}* 3348, 3038, 2970, 2847, 2093, 1643, 1014, 795; HRMS (ESI⁺) *m/z*: [M + H⁺] calcd for C₂₅H₂₂NO₇, 448.1396; found, 448.1381.

3-(((benzyloxy)carbonyl)amino)-6-methoxy-8-methyl-2-oxo-2H-chromen-7-yl acetate (**8b**): A solution of **7b**¹ (195 mg, 0.55 mmol) in anhydrous pyridine (3.0 mL) was treated with acetic anhydride (1.0 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 100:1, CH₂Cl₂:acetone) to afford **8b** as a colorless amorphous solid (216 mg, 99%): ¹H NMR ((CD₃)₂CO, 400 MHz) δ 8.31 (s, 1H), 8.22 (bs, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.42–7.33 (m, 3H), 7.25 (s, 1H), 5.26 (s, 2H), 3.89 (s, 3H), 2.33 (s, 3H), 2.22 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.6, 158.5, 153.2, 148.8, 142.6, 139.7, 135.6, 128.8 (2C), 128.7, 128.4 (2C), 124.0, 121.3, 120.6, 117.6, 106.2, 67.7, 56.3, 20.5, 9.3; IR (film) *v_{max}* 3306, 2924, 2853, 1759, 1703, 1531, 1393, 1205, 1088, 1026, 914, 764, 698; HRMS (ESI⁺) *m/z*: [M + H⁺] calcd for C₂₁H₂₀NO₇, 398.1240; found, 398.1258.

3-(((benzyloxy)carbonyl)amino)-8-methoxy-2-oxo-2H-chromen-7-yl acetate (8c): A solution of 7c¹ (60 mg, 0.18 mmol) in anhydrous pyridine (2.25 mL) was treated with acetic anhydride (0.75 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford 8c as a colorless amorphous solid (67 mg, 99%): ¹H NMR (CDCl₃, 500 MHz) δ 8.29 (s, 1H), 7.59 (s, 1H), 7.42–7.34 (m, 5H), 7.18 (d, J = 8.5 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 5.23 (s, 2H), 4.01 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.9, 157.6, 153.2, 144.0, 143.5, 139.5, 135.5, 128.8 (2C), 128.7, 128.4 (2C), 123.8, 121.8, 121.2, 119.8, 119.2, 67.8, 61.8, 20.8; IR (film) v_{max} 3409, 3352, 3312, 3088, 3038, 2945, 2837, 2359, 2332, 1765, 1710, 1533, 1383, 1366, 1238, 1202, 1045, 698; HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₂₀H₁₇NNaO₇, 406.0903; found, 406.0928.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2Hchromen-7-yl acetate (12b): Palladium on carbon (10%, 43 mg) was added to **8b** (216 mg, 0.54 mmol) in anhydrous THF (3.6 mL) and the solution was placed under an atmosphere of H₂. After 12 h, the solution was filtered through SiO₂ (40:1, CH₂Cl₂:acetone) and the eluent was concentrated to afford a yellow solid, which was used without further purification (142 mg, 99%).

A solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carbonyl chloride² (130 mg, 0.47 mmol), in anhydrous THF (2.7 mL), was added to a solution of the amine (123 mg, 0.47 mmol) and

anhydrous triethylamine (0.13 mL, 0.94 mmol) in anhydrous THF (2.7 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **12b** as a colorless amorphous solid (129 mg, 55%): ¹H NMR (CD₂Cl₂, 400 MHz) δ 8.84 (s, 1H), 8.80 (s, 1H), 7.97 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.92 (d, *J* = 2.5 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.16–7.11 (m, 3H), 7.01 (s, 1H), 6.97–6.95 (m, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 2.38 (s, 3H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.6, 165.8, 160.0, 159.5, 159.2, 148.9, 142.8, 140.0, 138.7, 131.2, 130.2, 129.3, 128.4, 126.0, 124.2, 123.3, 122.2, 120.6, 117.8, 115.4, 113.3, 111.2, 106.6, 56.4, 56.1, 55.5, 20.6, 9.3; IR (film) *v_{max}* 3404, 2926, 2853, 1765, 1713, 1670, 1603, 1522, 1385, 1242, 1204, 1180, 1094, 1022, 571; HRMS (ESI⁺) *m/z*: [M + H⁺] calcd for C₂₈H₂₆NO₈, 504.1658; found, 504.1625.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl acetate (12c): Palladium on carbon (10%, 5 mg) was added to **8c** (25 mg, 0.065 mmol) in anhydrous THF (0.44 mL) and the solution was placed under an atmosphere of H₂. After 12 h, the solution was filtered through SiO_2 (40:1, CH_2Cl_2 :acetone) and the eluent was concentrated to afford a vellow solid, which was used without further purification (16 mg, 99%).

A solution of 3',6-dimethoxy-[1,1'-biphenyl]-3-carbonyl chloride² (18 mg, 0.064 mmol), in anhydrous THF (0.37 mL), was added to a solution of the amine (16 mg, 0.064 mmol) and anhydrous triethylamine (18 μ L, 0.13 mmol), dissolved in anhydrous THF (0.37 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **12c** as a colorless amorphous solid (16 mg, 50%): ¹H NMR (CDCl₃, 500 MHz) § 8.83 (s, 1H), 8.75 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.13–7.02 (m, 4H), 6.94–6.92 (m, 1H), 4.04 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 169.0, 165.8, 160.1, 159.5, 158.3, 144.3, 143.7, 139.6, 138.6, 131.3, 130.2, 129.4, 128.4, 125.9, 124.0, 123.2, 122.3, 122.1, 120.0, 119.4, 115.4, 113.3, 111.2, 61.8, 56.0, 55.5, 20.9; IR (film) v_{max} 3398, 3097, 2993, 2926, 2853, 2357, 2339, 1765, 1666, 1599, 1520, 1456, 1362, 1244, 1202, 1078, 1022, 905, 802, 734; HRMS (ESI⁺) m/z: [M + 2H⁺] calcd for C₂₇H₂₅NO₈, 491.1580; found, 491.1537.

Representative procedure for Mitsunobu coupling with sugars:

3',6-dimethoxy-N-(8-methyl-2-oxo-7-((3aR,7aR)-2-oxotetrahydro-3aH-[1,3]dioxolo[4,5c]pyran-4-yloxy)-2H-chromen-3-yl)biphenyl-3-carboxamide (13a): Diisopropylazodicarboxylate (90 μ L, 0.46 mmol) was added slowly to a solution of phenol 6 (100 mg, 0.23 mmol), sugar F (48 mg, 0.28 mmol) and triphenylphosphine (122 mg, 0.46 mmol) in THF (3 mL) at rt. The resulting reaction mixture was stirred at rt for 2 h, quenched with water and extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified via column chromatography (SiO₂, 100:1, CHCl₃:MeOH) to afford

compound **13a** (117 mg, 88%) as a mixture of diastereomers.

Representative procedure for cyclic carbonate hydrolysis:

N-(7-((2R,3R,4R)-3,4-dihydroxytetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-

chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (14a): A solution of 13a (117 mg, 0.20 mmol) in THF:H₂O:MeOH (3:1:1, 2 mL) was treated with LiOH (26 mg, 0.61 mmol). The resulting reaction mixture was stirred at rt for 2 h, cooled to 0°C, then acidified to pH ~4 with 5% aqueous HCl. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified via column chromatography (SiO₂, 100:5, CH₂Cl₂:MeOH) to yield diastereomers 14a and 15a. Compound 14a (59 mg, 53%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (bs, 1H), 7.92 (dd, J = 2.3, 8.6 Hz, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.6 Hz, 1H), 7. 13 (d, J = 7.6 Hz, 1H), 7.09 (t, J = 2.4 Hz, 1H), 7.07 (d, J = 8.9 Hz, 1H), 6.94 (dd, J =1.9, 7.6 Hz, 1H), 5.48 (d, J = 3.1 Hz, 1H), 4.14 (m, 1H), 4.03 (dt, J = 3.3, 11.7 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.62 (dt, J = 3.7, 12.0 Hz, 1H), 2.77 (d, J = 9.3 Hz, 1H), 2.68 (d, J = 9.4 Hz, 1H), 2.40 (s, 3H), 2.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 160.0, 159.4, 156.1, 149.0, 138.5, 131.1, 130.0, 129.2, 128.2, 126.0, 125.9, 123.8, 122.4, 122.0, 115.2, 113.2, 112.3, 111.0, 99.4, 77.2, 68.4, 67.8, 55.9, 55.6, 55.3, 31.0, 8.7; IR (film) v_{max} 3303, 3288, 2921, 2851, 1705, 1672, 1604, 1526, 1504, 1485, 1367, 1240, 1132, 1074, 1051, 1024, 999 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₀H₂₉NNaO₉, 570.1740; found, 570.1744.

N-(7-((2S,3R,4R)-3,4-dihydroxytetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2Hchromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (15a): Compound **15a** (40 mg, 35%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 8.70 (s, 1H), 7.91 (dd, J = 2.4, 8.5 Hz, 1H), 7.89 (d, J = 2.3 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.12 (dt, J = 1.5, 7.6 Hz, 1H), 7.09 (m, 2H), 7.06 (d, J = 8.6 Hz, 1H), 6.93 (ddd, J = 0.6, 2.5, 8.3 Hz, 1H), 5.52 (d, J = 4.0 Hz, 1H), 4.26 (m, 1H), 3.95 (t, J = 3.7 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (m, 1H), 3.79 (m, 1H), 2.79 (bs, 1H), 2.53 (bs, 1H), 2.33 (s, 3H), 1.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.5, 159.4, 155.8, 149.1, 138.7, 131.1, 130.1, 129.3, 128.3, 126.0, 125.9, 124.2, 122.2, 122.1, 115.4, 115.0, 114.7, 113.2, 112.4, 111.8, 111.1, 98.8, 77.4, 70.0, 66.3, 60.0, 56.0, 55.4, 29.8, 8.5; IR (film) ν_{max} 3400, 3387, 2954, 2924, 2851, 1713, 1668, 1605, 1526, 1504, 1481, 1367, 1265, 1242, 1205, 1078, 1051, 1033, 1002, 999 cm⁻¹; HRMS (FAB) m/z; [M + Na⁺] calcd for C₃₀H₂₉NNaO₉, calcd 570.1740; found, 570.1733.

N-(7-((2R,3R,4R)-3,4-dihydroxytetrahydro-2H-pyran-2-yloxy)-8-methoxy-2-oxo-2Hchromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (14b): Compound 14b (36 mg, 38%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (s, 1H), 7.91 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.88 (d, *J* = 2.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 7.27 (d, *J* = 8.9 Hz, 1H), 7.12 (dt, *J* = 1.2, 7.9 Hz, 1H), 7.09 (m, 1H), 7.07 (d, *J* =

8.6 Hz, 1H), 6.93 (dd, J = 1.0, 2.9, 7.9 Hz, 1H), 5.40 (d, J = 4.8 Hz, 1H), 4.29 (m, 1H), 4.02 (s, 3H), 3.93 (m, 1H), 3.90 (s, 3H), 3.88 (m, 1H), 3.86 (s, 3H), 2.82 (bs, 1H), 2.38 (bs, 1H), 1.95 (m, 1H), 1.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 160.0, 159.4, 158.8, 150.9, 144.0, 138.6, 137.6, 131.1, 130.1, 129.3, 128.3, 125.9, 123.7, 122.8, 122.7, 122.1, 116.4, 115.4, 114.1, 113.3, 111.2, 100.5, 66.4, 62.1, 60.5, 56.0, 55.5, 29.8; IR (film) v_{max} 3411, 3301, 2989, 2985, 1716, 1668, 1605, 1524, 1502, 1483, 1462, 1436, 1365, 1274, 1247, 1182, 1118, 1070, 997 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₀H₂₉NNaO₁₀, calcd 586.1689; found, 586.1683.

N-(7-((2S,3R,4R)-3,4-dihydroxytetrahydro-2H-pyran-2-yloxy)-8-methoxy-2-oxo-2Hchromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (15b): Compound **15b** (21 mg, 22%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.70 (s, 1H), 7.87 (m, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 7.00–7.15 (m, 4H), 6.92 (d, *J* = 7.9 Hz, 1H), 5.56 (s, 1H), 4.17 (m, 1H), 4.04 (s, 3H), 4.01 (m, 2H), 3.88 (s, 3H), 3.85 (s, 3H), 3.57 (d, *J* = 10.5 Hz, 1H), 3.42 (m, 1H), 1.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 160.0, 159.4, 158.5, 150.3, 143.8, 138.6, 137.3, 131.1, 130.1, 129.3, 128.3, 125.8, 123.6, 122.8, 122.1, 116.2, 115.3, 114.0, 113.2, 111.1, 99.6, 68.4, 67.7, 62.2, 56.0, 55.5, 55.4, 31.3; IR (film) *v_{max}* 3400, 3386, 2935, 2896, 2839, 1707, 1670, 1605, 1521, 1500, 1367, 1274, 1245, 1120, 1081, 1054, 952 cm⁻¹; HRMS (FAB) *m*/*z*: [M + Na⁺] calcd for C₃₀H₂₉NNaO₁₀, calcd 586.1689; found, 586.1689.

N-(7-((2R,3R,4R)-3,4-dihydroxytetrahydro-2H-pyran-2-yloxy)-6-methoxy-8-methyl-2oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (14c): Compound **14c** (37 mg, 44%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.80 (s, 1H), 7.93 (dd, J = 2.4, 8.6 Hz, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.13 (dt, J = 1.5, 7.6 Hz, 1H), 7.10 (t, J = 2.5 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 6.94 (ddd, J = 0.9, 2.7, 8.0 Hz, 1H), 6.89 (s, 1H), 5.03 (d, J = 6.9 Hz, 1H), 4.28 (m, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 3.87 (s, 3H), 3.75–3.90 (m, 3H), 3.60 (bs, 1H), 2.64 (bs, 1H), 2.47 (s, 3H), 1.90 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.3, 159.2, 149.1, 146.0, 143.3, 138.5, 131.1, 130.0, 129.2, 128.2, 125.9, 123.6, 123.3, 122.1, 122.0, 116.3, 115.3, 113.1, 111.0, 106.3, 104.1, 71.8, 66.7, 61.1, 56.2, 55.9, 55.4, 30.1, 9.9; IR (film) v_{max} 3401, 3363, 3001, 2952, 1701, 1670, 1605, 1589, 1501, 1423, 1367, 1230, 1191, 1110, 1053, 997 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₁H₃₁NNaO₁₀, calcd 600.1841; found, 600.1846.

N-(7-((2S,3R,4R)-3,4-dihydroxytetrahydro-2H-pyran-2-yloxy)-6-methoxy-8-methyl-2oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (15c): Compound 15c (24 mg, 29%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.73 (s, 1H), 7.86–7.90 (m, 2H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.11 (dt, *J* = 1.5, 8.0 Hz, 1H), 7.08 (t, *J* = 2.4 Hz, 1H), 7.03 (d, *J* = 9.6 Hz, 1H), 6.92 (ddd, *J* = 1.2, 8.7 Hz, 1H), 6.81 (s, 1H), 5.20 (d, J = 3.3 Hz, 1H), 4.35 (td, J = 3.1, 11.5 Hz, 1H), 4.09 (s, 1H), 3.93 (d, J = 6.5 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.85 (s, 3H), 3.55 (dt, J = 4.4, 11.5 Hz, 1H), 3.19 (d, J = 5.2 Hz, 1H), 2.44 (s, 3H), 1.94 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.4, 159.1, 149.2, 146.1, 143.3, 138.6, 132.2, 132.1, 130.1, 129.2, 128.6, 128.3, 125.9, 123.6, 123.1, 116.2, 115.4, 113.1, 111.0, 106.3, 103.6, 69.2, 67.3, 56.8, 56.2, 55.9, 55.4, 30.6, 9.9; IR (film) v_{max} 3400, 3377, 2952, 2867, 1711, 1670, 1605, 1587, 1500, 1427, 1369, 1227, 1138, 1120, 1054, 997 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₁H₃₁NNaO₁₀, calcd 600.1844; found, 600.1846.

(R)-2-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7yloxy)tetrahydro-2H-pyran-3-yl benzoate (16a): Compound 16a was obtained as a colorless amorphous solid and carried on without further purification.

Sodium metal (20 mg, 0.86 mmol) was added to a solution of **16a** (110 mg, 0.17 mmol) in MeOH (5 mL) at 0 °C. The resulting reaction mixture was stirred for 5 min at 0 °C, then quenched with water and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified via column chromatography (SiO2, 100:1, CH₂Cl₂:MeOH) to afford **17a** and **18a** (62 mg, 64%) as a mixture diastereomers.

N-(7-((2R,3R)-3-hydroxytetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3yl)-3',6-dimethoxybiphenyl-3-carboxamide (17a): Compound 17a (35 mg, 36%) was obtained

as an amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (bs, 1H), 7.92 (dd, J = 2.4, 8.6 Hz. 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 8.1 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 8.8 Hz, 1H), 7.13 (dt, J = 1.2, 7.8 Hz, 1H), 7.09 (m, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.94 (ddd, J = 0.9, 2.6, 8.3 Hz, 1H), 5.55 (d, J = 3.2 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.70 (m, 1H), 3.61 (m, 1H), 2.41 (s, 3H), 2.06 (m, 1H), 1.91 (m, 2H), 1.80 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.5, 159.4, 156.0, 149.2, 138.7, 131.2, 130.1, 129.3, 128.3, 126.2, 126.0, 124.2, 122.3, 122.1, 115.4, 115.1, 114.7, 113.3, 112.2, 111.1, 97.6, 68.4, 60.5, 56.0, 55.5, 27.9, 24.2, 8.6; IR (film) v_{max} 3402, 2935, 2879, 2851, 1705, 1670, 1605, 1527, 1500, 1367, 1242, 1207, 1180, 1126, 1068, 987, 970 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₀H₂₉NNaO₈, calcd 554.1791; found, 554.1788.

N-(7-((2S,3R)-3-hydroxytetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3yl)-3',6-dimethoxybiphenyl-3-carboxamide (18a): Compound **18a** (27 mg, 28%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.71 (bs, 1H), 7.92 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.89 (d, *J* = 2.3 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.08–7.14 (m, 3H) .7.07 (d, *J* = 8.8 Hz, 1H), 6.93 (ddd, *J* = 0.7, 2.6, 8.3 Hz, 1H), 5.16 (d, *J* = 4.6 Hz, 1H), 3.92 (m, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.62 (m, 1H), 2.38 (s, 3H), 2.23 (m, 2H), 1.90 (m, 1H), 1.74 (m, 1H), 1.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.5, 159.4, 156.1, 149.2, 138.7, 131.2, 130.1, 129.3, 128.3, 126.2, 124.2, 122.3, 122.1, 115.4, 115.2, 114.7, 113.3, 112.1, 111.1, 100.4, 67.8, 63.4, 56.0, 55.5, 27.5, 22.1, 21.9, 8.6; IR (film) *v_{max}* 3404, 2923, 2845, 1711, 1670, 1606, 1526, 1502, 1369, 1242, 1205, 1178, 1115, 1057, 995, 974 cm⁻¹; HRMS (FAB) *m*/*z*: [M + Na⁺] calcd for C₃₀H₂₉NNaO₈, calcd 554.1791; found, 554.1803.

(R)-3',6-dimethoxy-N-(8-methyl-2-oxo-7-(4-(triisopropylsilyloxy)tetrahydro-2H-pyran-2yloxy)-2H-chromen-3-yl)biphenyl-3-carboxamide (19a): Compound 19a (158 mg, 78%) was obtained as a colorless amorphous solid and used without further purification.

Tetrabutylammonium fluoride (0.5 mL, 0.50 mmol) was added dropwise to a solution of **19a** (158 mg, 0.23 mmol) in THF (4 mL) at rt. The resulting reaction mixture was stirred at rt for 1 h, then quenched with water and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified via column chromatography (SiO₂, 100:1, CH₂Cl₂:MeOH) to afford **20a** and **21a** (120 mg, 72%) as a mixture of diastereomers.

N-(7-((2R,4R)-4-hydroxytetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (20a): Compound **20a** (68 mg, 41%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.71 (s, 1H), 7.92 (dd, J = 2.4, 8.6 Hz, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 7.12 (m, 1H), 7.09 (m, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.93 (ddd, J = 0.8, 2.6, 8.27 Hz, 1H), 5.77 (t, J = 2.8 Hz, 1H), 4.37 (m, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.81 (d, J = 2.5 Hz, 1H), 3.80 (t, J = 2.1 Hz, 1H), 2.35 (s, 3H), 2.33 (m, 1H), 2.01 (m, 1H), 1.80 (m, 1H),

1H), 1.70 (m, 1H), 1.64 (bs, 1H): ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.6, 159.5, 156.1, 149.2, 138.7, 131.2, 130.1, 129.3, 128.3, 126.2, 125.8, 124.4, 122.1, 122.0, 115.4, 114.8, 114.3, 113.3, 111.7, 111.1, 96.8, 63.9, 59.8, 56.0, 55.5, 39.5, 34.9, 8.5; IR (film) v_{max} 3477, 2967, 2923, 1713, 1668, 1606, 1525, 1502, 1369, 1242, 1205, 1178, 1114, 1057, 974 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₀H₂₉NNaO₈, calcd 554.1791; found, 554.1794.

N-(7-((2S,4R)-4-hydroxytetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3yl)-3',6-dimethoxybiphenyl-3-carboxamide (21a): Compound **21a** (52 mg, 31%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.71 (s, 1H), 7.92 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.89 (d, *J* = 2.4 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 7.14 (d, *J* = 8.7 Hz, 1H), 7.12 (m, 1H), 7.09 (m, 1H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.93 (ddd, *J* = 0.8, 2.5, 8.5 Hz, 1H), 5.55 (t, *J* = 3.4 Hz, 1H), 4.15 (m, 2H), 3.90 (s, 3H), 3.86 (s, 3H), 3.64 (dt, *J* = 4.4, 12.1 Hz, 1H), 2.86 (d, *J* = 6.4 Hz, 1H), 2.37 (s, 3H), 2.23 (dt, *J* = 3.6, 14.1 Hz, 1H), 2.10 (m, 1H), 1.99 (m, 1H), 1.77 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.5, 159.4, 156.2, 149.1, 138.7, 131.2, 130.1, 129.3, 128.3, 126.1, 125.9, 124.1, 122.3, 122.1, 115.4, 114.9, 114.7, 113.3, 112.0, 111.1, 97.6, 64.1, 57.3, 56.0, 55.5, 37.2, 32.7, 8.7; IR (film) *v_{max}* 3443, 2964, 2923, 1712, 1667, 1606, 1525, 1502, 1370, 1247, 1205, 1178, 1114, 1057, 974 cm⁻¹; HRMS (FAB) *m/z*: [M + Na⁺] calcd for C₃₀H₂₉NNaO₈, calcd 554.1791; found, 554.1800.

N-(7-((2R,4R)-4-hydroxytetrahydro-2H-pyran-2-yloxy)-8-methoxy-2-oxo-2H-chromen-3yl)-3',6-dimethoxybiphenyl-3-carboxamide (20b): Compound **20b** (36 mg, 66%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl3) δ 8.68 (s, 1H), 8.59 (s, 1H), 7.78 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.75 (d, *J* = 2.4 Hz, 1H), 7.23 (t, *J* = 7.9 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 6.97 (m, 3H), 6.80 (dd, *J* = 2.2, 7.9 Hz, 1H), 5.58 (t, *J* = 3.0 Hz, 1H), 4.04 (bs, 1H), 3.98 (dt, *J* = 3.0, 11.9 Hz, 2H), 3.91 (s, 3H), 3.77 (s, 3H), 3.73 (s, 3H), 3.47 (dd, *J* = 3.1, 11.9 Hz, 1H), 2.04 (m, 1H), 1.86 (s, 1H), 1.67 (m, 2H). ¹H NMR (125 MHz, CDCl3) δ 165.7, 160.0, 159.5, 158.8, 150.1, 144.1, 138.7, 137.3, 131.2, 130.1, 129.3, 128.3, 126.0, 123.8, 122.8, 122.7, 122.1, 116.0, 115.4, 114.0, 138.8, 113.3, 111.2, 97.5, 63.5, 62.0, 56.6, 56.0, 55.5, 36.2, 32.4; IR (film) v_{max} 3403, 2937, 2848, 1708, 1670, 1606, 1527, 1502, 1367, 1242, 1205, 1113, 1109, 1057, 996, 974 cm⁻¹; HRMS (FAB) *m/z*: [M + Na⁺] calcd for C₃₀H₂₉NNaO₉, calcd 570.1740; found, 570.1733.

N-(7-((2R,4R)-4-hydroxytetrahydro-2H-pyran-2-yloxy)-6-methoxy-8-methyl-2-oxo-2Hchromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (20c): Compound **20c** (36 mg, 38%) was obtained as a colorless amorphous solid.¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.76 (s, 1H), 7.92 (dd, *J* = 2.5, 8.6 Hz, 1H), 7.89 (d, *J* = 2.4 Hz, 1H), 7.37 (t, *J* = 8.2 Hz, 1H), 7.12 (dt, *J* = 1.5, 7.61 Hz, 1H), 7.09 (t, *J* = 2.5 Hz, 1H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.93 (ddd, *J* = 1.5, 2.5, 8.5 Hz, 1H), 6.86 (s, 1H), 5.33 (t, *J* = 3.5 Hz, 1H), 4.40 (m, 1H), 4.11 (m, 1H), 3.90 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.56 (dt, *J* = 4.8, 11.9 Hz, 1H), 2.99 (bs, 1H), 2.45 (s, 3H), 2.12–2.25 (m, 2H), 1.93 (m, 1H), 1.75 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 160.0, 159.5, 159.4, 150.1, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 143.4, 138.7, 131.2, 130.2, 129.4, 128.4, 126.1, 123.7, 123.5, 122.2, 121.0, 116.1, 115.4, 146.2, 148.4, 146.2, 148.4, 146.2, 148.4, 126.1, 123.7, 123.5, 122.4, 128.4, 126.1 113.3, 111.2, 106.6, 101.9, 64.4, 58.3, 56.3, 56.1, 55.6, 37.5, 33.0, 10.1; IR (film) v_{max} 3398, 2999, 2935, 2833, 1701, 1670, 1602, 1527, 1500, 1483, 1400, 1358, 1275, 1242, 1207, 1180, 1078, 1053, 1022, 916 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₁H₃₁NNaO₉, calcd 584.1897; found, 584.1899.

N-(7-((2S,4R)-4-hydroxytetrahydro-2H-pyran-2-yloxy)-6-methoxy-8-methyl-2-oxo-2Hchromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (21c): Compound **21c** (29 mg, 29%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.75 (s, 1H), 7.92 (dd, J = 2.4, 8.5 Hz, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.12 (dt, J = 1.5, 7.8 Hz, 1H), 7.09 (t, J = 2.7 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.93 (ddd, J = 1.2, 2.6, 8.6 Hz, 1H), 6.85 (s, 1H), 5.64 (t, J = 2.9 Hz, 1H), 4.35 (m, 1H), 4.13 (dt, J = 2.7, 11.1 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H), 3.82 (dt, J = 3.6, 11.1 Hz, 1H), 2.46 (m, 1H), 2.42 (s, 3H), 2.02 (m, 1H), 1.77 (td, J = 3.5, 10.3 Hz, 1H), 1.67 (m, 1H), 1.59 (d, J = 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 160.0, 159.5, 159.5, 150.1, 146.5, 143.5, 138.7, 131.2, 130.1, 129.3, 128.3, 126.1, 123.8, 123.2, 122.1, 120.5, 115.7, 115.4, 113.3, 111.1, 106.7, 101.4, 63.9, 60.7, 56.2, 56.0, 55.5, 39.7, 34.9, 9.8; IR (film) ν_{max} 3401, 2992, 2847, 1709, 1670, 1605, 1527, 1501, 1367, 1242, 1205, 1182, 1113, 1057, 997, 974 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₁H₃₁NNaO₉, calcd 584.1897; found, 584.1903.

methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (23a): Compound 22 (237 mg, 82%) was obtained as a colorless amorphous solid and used without further purification.

Pyridinium *p*-toluenesulfonate (16 mg, 0.16 mmol) was added to a solution of **22** (230 mg, 0.33 mmol) in methanol (4 mL) at rt. The reaction mixture was stirred at rt for 48 h, quenched with saturated sodium bicarbonate, then solvent was removed. The residue was diluted with water and extracted with ethyl acetate (3 x 5 mL), and then the combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na_2SO_4 and concentrated. The crude residue) was carried on to deprotection without further purification.

Palladium on carbon (10%, 30 mg) was added to the crude intermediate in ethanol (5 mL) and the solution was placed under an atmosphere of H₂. After 48 h, the solution was purified via column chromatography (SiO₂, 100:8, CH₂Cl₂:MeOH) to yield triol **23a** as a colorless amorphous solid (112 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 8.67 (s, 1H), 7.91 (d, *J* = 2.4 Hz, 1H), 7.89 (m, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.07–7.14 (m, 3H), 7.04 (d, *J* = 8.8 Hz, 1H), 6.92 (ddd, *J* = 0.9, 2.7, 8.2 Hz, 1H), 5.57 (d, *J* = 3.6 Hz, 1H), 4.16 (m, 2H), 3.88 (s, 3H), 3.85 (s, 3H), 3.84 (m, 1H), 3.75 (m, 1H), 3.67 (d, *J* = 10.9 Hz, 1H), 3.55 (m, 1H), 3.26 (d, *J* = 8.7 Hz, 1H), 2.99 (d, *J* = 7.5 Hz, 1H), 2.32 (s, 3H), 1.90 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 160.0, 159.4, 159.3, 156.2, 149.0, 138.7, 131.1, 130.1, 129.3, 128.4, 126.0, 124.0, 122.4, 122.1, 115.5, 115.4, 115.1, 113.2, 112.4, 111.1, 99.3, 73.0, 68.0, 67.6, 65.0, 64.9, 56.0, 55.4, 33.7, 8.7; IR (film) *v_{max}* 3398, 3352, 2923, 2871, 2852, 1708, 1629, 1605, 1577, 1527, 1500, 1483, 1431, 1369, 1245, 1207, 1124, 1076, 985 cm⁻¹; HRMS (FAB) *m/z*: [M + Na⁺] calcd for C₃₁H₃₁NNaO₁₀, calcd 600.1846; found, 600.1840.

N-(7-((2R,3R,4R,6S)-3,4-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-8methoxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (23b): Compound **23b** (26 mg, 57%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 8.65 (s, 1H), 7.83 (dd, J = 2.4, 8.6 Hz, 1H), 7.81 (d, J = 2.4 Hz, 1H), 7.30 (t, J = 8.2Hz, 1H), 7.16 (d, J = 8.9 Hz, 1H), 6.94–7.07 (d, J = 2.4, 8.9 Hz, 1H), 7.05 (dt, J = 1.7, 8.2 Hz, 1H), 7.02 (t, J = 2.6 Hz, 1H), 7.00 (d, J = 8.6 Hz, 1H), 6.86 (ddd, J = 0.9, 2.6, 8.3 Hz, 1H), 5.60 (d, J = 3.4 Hz, 1H), 4.16 (m, 1H), 4.09 (m, 1H), 3.98 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.72 (m, 1H), 3.60 (bs, 1H), 3.56 (t, J = 4.1 Hz, 1H), 3.50 (m, 1H), 3.27 (d, J = 9.5 Hz, 2H), 1.88 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.3, 158.4, 150.0, 143.7, 138.5, 137.5, 131.0, 130.0, 129.2, 128.3, 125.7, 123.5, 122.9, 122.8, 122.0, 116.4, 115.3, 114.0, 113.1, 111.0, 99.7, 68.0, 67.6, 65.1, 64.8, 61.8, 55.9, 55.4, 32.8; IR (film) ν_{max} 3402, 3390, 2937, 2837, 1714, 1670, 1605, 1527, 1502, 1483, 1461, 1367, 1274, 1246, 1207, 1180, 1081, 1051, 976 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₁H₃₁NNaO₁₁, calcd 616.1794; found, 616.1786.

N-(7-((2R,3R,4R,6S)-3,4-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-6methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (23c): Compound 23c (33 mg, 63%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.69 (s, 1H), 7.84 (d, *J* = 2.4, 8.4 Hz, 2H), 7.82 (d, *J* = 2.4 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.05 (dt, *J* = 1.8, 8.2 Hz, 1H), 7.02 (t, *J* = 2.2 Hz, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 6.87 (dd, J = 2.7, 8.7 Hz, 1H), 6.79 (s, 1H), 5.25 (d, J = 4.1 Hz, 1H), 4.58 (m, 1H), 4.15 (m, 1H), 4.01 (d, J = 6.4 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.70 (m, 2H), 3.56 (m, 1H), 3.08 (d, J = 6.3 Hz, 1H), 2.41 (s, 3H), 1.94 (m, 1H), 1.77 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.3, 159.0, 148.9, 146.2, 143.3, 138.5, 131.0, 130.0, 129.2, 128.3, 125.7, 123.7, 123.0, 122.0, 121.1, 116.3, 115.3, 113.1, 111.0, 106.3, 104.0, 68.7, 67.0, 65.6, 64.5, 56.1, 55.9, 55.4, 32.3, 10.0; IR (film) v_{max} 3400, 3390, 2938, 2844, 1713, 1670, 1606, 1529, 1500, 1483, 1460, 1369, 1273, 1247, 1205, 1180, 1081, 1051, 976 cm⁻¹; HRMS (FAB) *m/z*: [M + Na⁺] calcd for C₃₂H₃₃NNaO₁₁, calcd 630.1951; found, 630.1953.

N-(7-((2S)-3,4-dihydroxytetrahydrofuran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-

3',6-dimethoxybiphenyl-3-carboxamide (25a): Compound **24a** (98 mg, 80%) was obtained as a colorless amorphous solid and used without further purification.

A solution of **24a** (90 mg, 0.16 mmol) in THF:H₂O:MeOH (3:1:1, 3 mL) was treated with LiOH (20 mg, 0.48 mmol), then stirred at rt for 2 h. The resulting reaction mixture was stirred at rt for 2 h, cooled to 0°C, then acidified to pH ~4 with 5% aqueous HCl. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified via column chromatography (SiO₂, 100:5, CH₂Cl₂:MeOH) to yield diol **25a** as a colorless amorphous solid (72 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 8.76 (s, 1H), 8.70 (s, 1H), 7.90 (dd, *J* = 2.4, 8.5 Hz, 1H), 7.88 (d, *J* = 2.3 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 7.12 (dt, *J* = 1.2, 7.8 Hz, 1H), 7.09 (t, *J* = 2.4 Hz, 1H) 7.08 (d, *J* =

8.8 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H), 6.93 (dd, J = 2.4, 8.3 Hz, 1H), 5.68 (s, 1H), 4.59 (m, 1H), 4.46 (d, J = 4.7 Hz, 1H), 4.23 (dd, J = 5.0, 10.0 Hz, 1H), 4.00 (dd, J = 3.2, 10.0 Hz, 1H) 3.89 (s, 3H), 3.86 (s, 3H), 3.33 (bs, 1H), 2.88 (bs, 1H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.8, 159.4, 159.3, 156.0, 149.0, 138.6, 131.0, 129.9, 129.2, 128.2, 125.9, 125.7, 124.3, 122.0, 121.9, 115.3, 115.0, 114.3, 113.1, 111.9, 111.0, 106.5, 76.5, 73.2, 70.7, 55.9, 55.3, 8.4; IR (film) v_{max} 3409, 3401, 2938, 2838, 1712, 1670, 1605, 1526, 1483, 1367, 1274, 1246, 1205, 1181, 1054, 1020, 972 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₂₉H₂₇NNaO₉, calcd 556.1584; found, 556.1692.

N-(7-((2S)-3,4-dihydroxytetrahydrofuran-2-yloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (25b): Compound **25b** (39 mg, 68%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.73 (s, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.90 (s, 1H), 7.38 (t, *J* = 8.4 Hz, 1H), 7.28 (d, *J* = 9.2 Hz, 1H), 7.24 (s, 1H), 7.15 (t, *J* = 10.4 Hz, 1H), 7.11 (s, 1H), 7.08 (d, *J* = 8.2 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 5.67 (d, *J* = 4.1 Hz, 1H), 4.30 (m, 3H), 4.13 (d, *J* = 10.1 Hz, 1H), 4.07 (s, 3H), 3.91 (s, 3H), 3.88 (s, 3H), 3.52 (bs, 1H), 3.14 (bs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.4, 158.5, 150.0, 143.7, 138.6, 138.0, 131.1, 130.0, 129.2, 128.2, 125.8, 123.5, 122.9, 122.7, 122.0, 116.5, 115.4, 115.3, 113.2, 111.1, 101.6, 74.7, 73.2, 69.4, 62.1, 55.9, 55.3; IR (film) *v_{max}* 3479, 3406, 2938, 2837, 1713, 1670, 1605, 1525, 1481, 1367, 1274, 1244, 1207, 1180, 1053, 1020, 972 cm⁻¹; HRMS (FAB) *m*/z: [M + Na⁺] calcd for C₂₉H₂₇NNaO₁₀, calcd 572.1533; found, 572.1523.

N-(7-((2S)-3,4-dihydroxytetrahydrofuran-2-yloxy)-6-methoxy-8-methyl-2-oxo-2H-

chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (25c): Compound 25c (44 mg, 81%) was obtained as a colorless amorphous solid.¹H NMR (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.71 (s, 1H), 8.00 (dt, J = 2.3, 8.6 Hz, 1H), 7.94 (t, J = 2.3 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H), 7.20 (s, 1H) , 7.14 (s, 1H), 7.14 (dt, J = 2.4, 10.4 Hz, 1H), 6.95 (dd, J = 2.4, 8.3 Hz, 1H), 5.66 (s, 1H), 4.65 (m, 1H), 4.33 (d, J = 4.5 Hz, 1H), 4.24 (m, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 3.84 (s, 3H), 3.78 (dd, J = 5.2, 8.9 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 160.4, 159.3, 150.8, 145.8, 144.0, 139.9, 131.4, 130.8, 129.9, 129.3, 127.0, 124.4, 124.2, 124.1, 122.7, 121.3, 116.6, 116.2, 113.5, 112.3, 110.2, 107.9, 76.6, 73.7, 71.1, 56.5, 56.3, 55.5, 9.5; IR (film) v_{max} 3400, 3375, 2937, 2840, 1707, 1670, 1602, 1577, 1526, 1500, 1483, 1458, 1382, 1242, 1207, 1180, 1095, 1081, 1022, 960 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₀H₂₉NNaO₁₀, calcd 586.1689; found, 586.1697.

N-(7-((2R)-3-hydroxytetrahydrofuran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (27a): Compound 26a (144 mg, 88%) was obtained as a colorless amorphous solid and used without further purification.

TBAF (1.0 M in THF, 0.4 mL, 0.4 mmol) was added dropwise to a solution of **27a** (130 mg, 0.2 mmol) in THF (3 mL) at rt. The resulting mixture was stirred at rt for 1 h, quenched with

water and extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified via column chromatography (SiO₂, 100:1, CH₂Cl₂:MeOH) to yield **27a** and **28a** (97 mg, 74%) as a mixture of diastereomers in a 7:6 ratio, respectively. Compound 27a (52 mg, 40%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl3) δ 8.80 (s, 1H), 8.72 (s, 1H), 7.93 (dd, J = 2.4, 8.5 Hz, 1H), 7.91 (d, J =2.3 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.33 (d, J = 8.6 Hz, 1H), 7.13 (dt, J = 3.4, 4.0 Hz, 3H), 7.09 (d, J = 8.6 Hz, 1H), 6.95 (dd, J = 2.2, 7.9 Hz, 1H), 5.69 (s, 1H), 4.61 (t, J = 4.7 Hz, 1H), 4.25 (dd, J = 8.0, 16.0 Hz, 1H), 4.14 (td, J = 4.1, 8.9 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 2.46 (dt, J = 4.1, 8.9 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 36.8. 13.6 Hz, 1H), 2.29 (s, 3H), 2.24 (d, J = 5.3 Hz, 1H), 2.05 (m, 1H); ¹³C NMR (125 MHz, CDCl3) & 165.7, 159.9, 159.6, 159.5, 156.1, 149.2, 138.7, 131.2, 129.3, 128.3, 126.2, 125.8, 125.2, 124.4, 122.1, 122.1, 115.4, 115.2, 114.3, 113.3, 112.1, 111.2, 106.6, 76.1, 67.8, 56.0, 55.5, 32.5, 8.5; IR (film) v_{max} 3404, 2951, 2939, 2902, 1712, 1670, 1649, 1629, 1605, 1527, 1502, 1481, 1369, 1265, 1207, 1105, 1065, 1033, 993, 962 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₂₉H₂₇NNaO₈, calcd 540.1634; found, 540.1622.

N-(7-((2S)-3-hydroxytetrahydrofuran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (28a): Compound **28a** (45 mg, 34%) was obtained as a colorless amorphous solid.¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 8.70 (bs, 1H), 7.91 (dd, *J* = 2.4, 8.5 Hz, 1H), 7.89 (d, *J* = 2.4 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 8.7 Hz, 1H), 7.08–7.14 (m, 3H), 7.06 (d, *J* = 8.7 Hz, 1H), 6.93 (ddd, *J* = 0.9, 2.6, 8.4 Hz, 1H), 5.66 (s, 1H), 4.58 (t, *J* = 5.1 Hz, 1H), 4.24 (q, *J* = 8.2 Hz, 1H), 4.11 (dt, *J* = 4.3, 9.1 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 2.43 (m, 1H), 2.28 (d, J = 4.1 Hz, IH), 2.26 (s, 3H), 2.02 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.6, 159.4, 156.0, 149.2, 138.7, 131.1, 130.0, 129.3, 128.3, 126.1, 125.8, 124.4, 122.1, 122.0, 115.4, 115.1, 114.3, 113.3, 112.1, 111.1, 106.5, 76.1, 67.8, 56.0, 55.5, 32.4, 8.5; IR (film) ν_{max} 3400, 2948, 2942, 2889, 1711, 1668, 1649, 1605, 1527, 1505, 1484, 1370, 1267, 1204, 1106, 1067, 1034, 993, 963 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₂₉H₂₇NNaO₈, calcd 540.1634; found, 540.1627.

N-(7-((2R)-4-hydroxytetrahydrofuran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (30a): Compound 29a (160 mg, 82%) was obtained as a colorless amorphous solid and used without further purification.

TBAF (1.0M in THF, 0.5 mL, 0.5 mmol) was added dropwise to solution of **29a** (157 mg, 0.25 mmol) in THF (4 mL) at rt. The reaction mixture was stirred at rt for 1 h, quenched with water and extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄, filtered and concentrated. The crude residue was purified via column chromatography (SiO₂, 100:1, CH₂Cl₂:MeOH) to yield **30a** and **31a** (96 mg, 75%) as a mixture of diastereomers in a 4:3 ratio, respectively. Compound **30a** (55 mg, 43%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 8.71 (bs, 1H), 7.91 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.89 (d, *J* = 2.4 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 7.12 (dt, *J* = 1.78, 8.0 Hz, 1H), 7.09 (t, *J* = 2.6 Hz, 1H), 7.1 (d, *J* = 8.8 Hz, 1H), 6.93 (ddd, *J* = 0.8, 2.6, 8.3 Hz, 1H), 6.03 (dd, *J* = 2.7, 5.6 Hz, 1H), 4.73 (m, 1H), 4.11 (dd, *J* = 4.3, 9.9 Hz, 1H), 3.95 (dt, *J* = 1.4, 9.9 Hz, 1H),

3.90 (s, 3H), 3.86 (s, 3H), 2.54 (ddd, J = 3.0, 6.3, 14.6 Hz, 1H), 2.41 (m, 1H), 2.30 (s, 3H), 2.29 (bs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.4, 156.7, 149.2, 138.7, 131.1, 130.1, 129.3, 128.3, 126.2, 125.8, 125.2, 124.4, 122.1, 122.1, 115.4, 115.2, 114.4, 113.3, 112.4, 111.1, 102.9, 75.1, 71.6, 56.0, 55.5, 43.1, 8.5; IR (film) v_{max} 3404, 2923, 2845, 1711, 1670, 1606, 1526, 1502, 1369, 1242, 1205, 1178, 1115, 1057, 995, 974 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₂₉H₂₇NNaO₈, calcd 540.1634; found, 540.1629.

N-(7-((2S)-4-hydroxytetrahydrofuran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (31a): Compound **31a** (41 mg, 32%) was obtained as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 8.72 (bs, 1H), 7.91 (dd, J = 2.5, 8.6 Hz, 1H), 7.89 (d, J = 2.3 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.35 (d, J = 8.6 Hz, 1H), 7.16 (d, J = 8.6 Hz, 1H), 7.12 (dt, J = 1.5, 7.7 Hz, 1H), 7.09 (t, J = 2.6 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.93 (ddd, J = 0.8, 2.6, 8.4 Hz, 1H), 5.59 (d, J = 4.3 Hz, 1H), 4.47 (m, 1H), 4.18 (dt, J = 4.1, 8.9 Hz, 1H), 3.98 (q, J = 8.3 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 2.45 (d, J = 9.8 Hz, 1H), 2.39 (m, 1H), 2.36 (s, 3H), 2.09 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 159.9, 159.4, 153.9, 149.1, 138.7, 131.1, 130.1, 129.3, 128.3, 126.1, 125.9, 125.1, 124.1, 122.4, 122.1, 115.6, 115.4, 114.9, 113.2, 113.2, 111.1, 100.6, 73.0, 66.6, 56.0, 55.4, 31.7, 8.7; IR (film) v_{max} 3400, 2925, 2845, 1707, 1670, 1605, 1527, 1500, 1367, 1242, 1205, 1180, 1113, 1077, 1034, 987, 974 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₂₉H₂₇NNaO₈, calcd 540.1634; found, 540.1632.

N-(7-((2R,3R,4R)-3,4-dihydroxyoxepan-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (33a): Compound **32a** (180 mg, 78%) was obtained as a colorless amorphous solid and used without further purification.

A solution of 32a (172 mg, 0.29 mmol) in THF:H₂O:MeOH (3:1:1, 5 mL) was treated with LiOH (37 mg, 0.88 mmol) at rt. The reaction mixture stirred at rt for 2 h, cooled to 0°C, then acidified to pH ~4 with 5% aqueous HCl. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were washed with saturated sodium chloride solution, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified via column chromatography (SiO₂, 100:5, CH₂Cl₂:MeOH) to vield diol **33a** (118 mg, 68%) as a colorless amorphous solid. ¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H), 8.65 (s, 1H), 7.85 (dd, J = 2.5, 8.6 Hz, 1H), 7.82 (d, J = 2.6 Hz, 1H), 7.30 (t, J = 8.2 Hz, 1H), 7.29 (d, J = 9.0 Hz, 1H), 7.05 (dt, J = 1.2, 9.1 Hz, 1H), 7.03 (t, J = 1.2, 9.1 Hz, 1H), 7.03 (2.4 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.99 (d, J = 8.8 Hz, 1H), 6.86 (ddd, J = 0.9, 2.7, 8.3 Hz, 1H), 5.39 (d, J = 2.7 Hz, 1H), 4.22 (m, 1H), 3.95 (dd, J = 3.1, 8.8 Hz, 2H), 3.83 (s, 3H), 3.79 (s, 3H), 3.58 (dd, J = 3.1, 10.5 Hz, 1H), 2.88 (d, J = 5.3 Hz, 1H), 2.32 (s, 3H), 2.20 (d, J = 6.5 Hz, 1H), 2.10 (m, 1H), 1.87 (m, 1H), 1.76 (m, 1H), 1.65 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.8, 159.3, 155.8, 149.0, 138.6, 131.1, 130.0, 129.2, 128.2, 126.0, 125.8, 123.9, 122.4, 122.0, 116.2, 115.6, 115.3, 114.9, 113.1, 112.7, 111.0, 98.8, 75.8, 71.5, 65.3, 55.9, 55.3, 29.9, 25.7, 8.7; IR (film) v_{max} 3402, 3350, 2931, 2877, 2834, 1697, 1670, 1606, 1531, 1504, 1369, 1238, 1207, 1182, 1097, 1076, 995, 970 cm⁻¹; HRMS (FAB) m/z: [M + Na⁺] calcd for C₃₁H₃₁NO₉Na, calcd 584.1897; found, 584.1884.

Representative procedure for Mitsunobu coupling with sugar mimics:

N-(7-(5,5-dimethylcyclohex-2-enyloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (40a). Diisopropylazodicarboxylate (231 mg, 1.14 mmol) was added to a solution of allylic alcohol **37** (72 mg, 0.57 mmol), phenol **6a** (247 mg, 0.57 mmol) and triphenylphosphine (299 mg, 1.14 mmol) in anhydrous THF (10 mL). After 2 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 100:1, CH₂Cl₂:acetone) to afford compound **40a** as a colorless amorphous solid (143 mg, 47 %). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (s, 1H), 7.95–7.92 (m, 2H), 7.40–7.28 (m, 2H), 7.16–7.07 (m, 3H), 6.96–6.93 (m, 2H), 5.92–5.85 (m, 2H), 4.95 (m, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 2.32 (s, 3H), 2.07–1.67 (m, 4H), 1.09 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.9, 159.7, 159.5, 157.9, 149.6, 138.8, 131.1, 130.5, 130.1, 129.3, 128.3, 126.3, 125.7, 125.0, 124.6, 122.2, 121.6, 115.4, 115.2, 113.32, 113.28, 111.1, 110.4, 73.0, 56.0, 55.5, 41.6, 39.2, 30.7, 30.5, 27.2, 8.5. IR (film) v_{max} 3405, 3031, 2950, 2927, 2868, 1710, 1672, 1605, 1524, 1500, 1367, 1267, 1242, 1205, 1180, 1101, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₃H₃₄NO₆, 540.2386; found 540.2382.

N-(7-(5,5-dimethylcyclohex-2-enyloxy)-8-methoxy-2-oxochromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (40b). Compound **40b** was obtianed as a white amorphorous solid (32 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.64 (s, 1H), 7.85–7.81 (m, 2H), 7.29 (t, *J* = 8.1 Hz, 1H), 7.14 (d, *J* = 8.7 Hz, 1H), 7.06–6.99 (m, 3H), 6.91 (d, *J* = 8.7 Hz, 1H), 6.87–6.85 (m, 1H), 5.83–5.75 (m, 2H), 4.89 (m, 1H), 3.91 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 1.96–1.61 (m, 4H), 0.99 (s, 3H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 159.0, 152.6, 144.3, 138.6, 137.4, 131.0, 130.4, 130.0, 129.2, 128.2, 126.0, 124.8, 124.0, 122.4, 122.1, 122.0, 115.2, 114.5, 113.2, 1112.8, 111.0, 74.0, 61.5, 55.9, 55.3, 41.4, 39.0, 30.9, 30.6, 26.7. IR (film) ν_{max} 3402, 3085, 3025, 2920, 2847, 1714, 1670, 1603, 1522, 1500, 1367, 1278, 1246, 1148, 1099, 1082, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₃H₃₃NO₇Na, 578.2155; found 578.2150.

N-(7-(5,5-dimethylcyclohex-2-enyloxy)-6-methoxy-8-methyl-2-oxochromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (40c). Compound **40c** was obtianed as a white amorphorous solid (73 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.75 (s, 1H), 7.95– 7.90 (m, 2H), 7.36 (t, *J* = 8.2 Hz, 1H), 7.14–7.05 (m, 3H), 6.93 (d, *J* = 8.1 Hz 1H), 6.84 (s, 1H), 5.82–5.78 (m, 2H), 4.76 (m, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 2.38 (s, 3H), 2.09–1.67 (m, 4H), 1.04 (s, 3H), 0.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.4, 159.3, 150.4, 147.8, 143.5, 138.6, 131.0, 130.0, 129.2, 129.0, 128.2, 126.6, 126.1, 123.8, 122.8, 122.0, 120.8, 115.3, 115.1, 113.1, 111.0, 106.5, 78.1, 56.0, 55.9, 55.3, 42.4, 39.1, 31.3, 30.9, 26.2, 9.9. IR (film) *v_{max}* 3406, 3084, 3028, 2999, 2943, 2899, 2864, 1697, 1672, 1605, 1580, 1535, 1501, 1371, 1279, 1234, 1207, 1180, 1099, 1016 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₄H₃₅NO₇Na, 592.2311; found 592.2324.

yl)biphenyl-3-carboxamide (41a). Compound 41a was obtianed as a white amorphorous solid (180 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (s, 1H), 7.94–7.92 (m, 2H), 7.40–7.33 (m, 2H), 7.16–7.07 (m, 3H), 6.97–6.95 (m, 2H), 6.08–5.92 (m, 2H), 4.86 (m, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 2.35 (s, 3H), 2.33–2.28 (m, 1H), 2.09–1.60 (m, 4H), 1.07 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.9, 159.7, 159.5, 157.8, 149.6, 138.8, 133.7, 131.1, 130.1, 129.3, 128.3, 126.3, 125.7, 124.6, 124.4, 122.1, 121.6, 115.4 (2C), 113.4, 113.3, 111.1, 110.8, 71.4, 56.0, 55.5, 36.6, 33.9, 24.1, 21.7, 8.6. IR (film) v_{max} 3402, 3032, 2980, 2906, 2826, 1713, 1676, 1607, 1554, 1375, 1251, 1093 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₂H₃₂NO₆, 516.2230; found 526.2229.

3',6-dimethoxy-N-(8-methoxy-7-(5-methylcyclohex-2-enyloxy)-2-oxochromen-3yl)biphenyl-3-carboxamide (41b). Compound **41b** was obtianed as a white amorphorous solid (38 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.64 (s, 1H), 7.85–7.81 (m, 2H), 7.29 (t, *J* = 8.3 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 7.06–7.02 (m, 3H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.87–6.85 (m, 1H), 6.01–5.99 (m 1H), 5.87–5.83 (m, 1H), 4.80 (m, 1H), 3.91 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 2.19–2.15 (m, 1H), 2.10–1.98 (m, 2H), 1.64–1.57 (m, 1H), 1.44–1.38 (m, 1H). 0.95 (d, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 159.0, 152.6, 144.2, 138.6, 137.6, 133.8, 131.0, 130.0, 129.2, 128.2, 126.0, 124.1, 124.0, 122.4, 122.05, 122.00, 115.2, 114.5, 113.2, 113.1, 111.0, 72.2, 61.5, 55.9, 55.3, 36.3, 33.8, 23.9, 12.5. IR (film) *v_{nax}* 3398, 3085, 3028, 2947, 2908, 2833, 1713, 1672, 1605, 1574, 1522, 1502, 1462, 1367, 1275, 11246, 1207, 1180, 1024 cm⁻¹. HRMS (ESI⁺) m/z: $[M + Na^+]$ calcd for C₃₂H₃₁NO₇Na, 564.1999; found 564.1983.

3',6-dimethoxy-N-(6-methoxy-8-methyl-7-(5-methylcyclohex-2-enyloxy)-2-oxochromen-3yl)biphenyl-3-carboxamide (41c). Compound **41c** was obtianed as a white amorphorous solid (64 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.68 (s, 1H), 7.86–7.83 (m, 2H), 7.30 (t, *J* = 8.3 Hz, 1H), 7.07–6.99 (m, 3H), 6.87–6.85 (m, 1H), 6.78 (s, 1H), 5.95–5.91 (m, 1H), 5.80–5.74 (m, 1H), 4.67 (bs, 1H), 3.83 (s, 6H), 3.79 (s, 3H), 2.30 (s, 3H), 2.22–2.15 (m, 2H), 1.97–1.65 (m, 1H), 1.65–1.54 (m, 1H), 1.36–1.25 (m, 1H), 0.95 (d, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.8, 159.5, 159.3, 150.5, 147.6, 143.5, 138.6, 133.0, 131.0, 130.0, 129.2, 128.2, 126.1, 125.5, 123.9, 122.8, 122.0, 120.9, 115.2, 115.0, 113.1, 111.0, 106.5, 75.5, 56.0, 55.9, 55.3, 37.1, 34.0, 23.9, 21.7, 9.7. IR (film) ν_{max} 3408, 3084, 3028, 2943, 2899, 2867, 1697, 1672, 1605, 1580, 1531, 1501, 1371, 1234, 1207, 1178, 1099, 1016 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₃H₃₄NO₇, 556.2335; found 556.2325.

N-(7-(cyclohex-2-enyloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3carboxamide (42a). Compound **42a** was obtained as a colorless amorphous solid (103 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (s, 1H), 7.95–7.92 (m, 2H), 7.40–7.28 (m, 2H), 7.16–7.07 (m, 3H), 6.97–6.93 (m, 2H), 6.03–5.90 (m, 2H), 4.88 (m, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 2.33 (s, 3H), 2.30–2.24 (m, 2H), 2.06–1.90 (m, 3H), 1.81–1.72 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.9, 159.7, 159.5, 157.8, 149.6, 138.8, 132.8, 131.1, 130.1, 129.3, 128.3, 126.3, 126.0, 125.7, 124.6, 122.2, 121.6, 115.4, 115.3, 113.4, 113.3, 111.1, 110.8, 72.1, 56.0, 55.5, 28.7, 25.3, 19.1, 8.6. IR (film) v_{max} 3404, 3041, 2934, 2835, 1709, 1670, 1605, 1526, 1502, 1369, 1267, 1244, 1205, 1180, 1101, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₀NO₆, 512.2073; found 512.2077.

N-(7-(cyclohex-2-enyloxy)-8-methoxy-2-oxochromen-3-yl)-3',6-dimethoxybiphenyl-3carboxamide (42b). Compound **42b** was obtianed as a white amorphorous solid (44 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.74 (s, 1H), 7.94–7.92 (m, 2H), 7.39 (t, *J* = 8.2 Hz, 1H), 7.22 (d, *J* = 8.3 Hz, 1H), 7.15–7.08 (m, 3H), 7.00–6.95 (m, 2H), 6.03–5.90 (m, 2H), 4.91 (m, 1H), 4.01 (s, 3H), 3.92 (s, 3H), 3.88 (s, 3H), 2.19–2.16 (m, 1H), 2.09–1.91 (m, 3H), 1.71– 1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.8, 159.3, 159.0, 152.5, 144.2, 138.6, 137.5, 132.9, 131.1, 130.0, 129.2, 128.2, 126.0, 125.6, 124.0, 122.4, 122.1, 122.0, 115.3, 114.6, 113.2 (2C), 111.0, 72.9, 61.5, 55.9, 55.3, 28.5, 25.1, 18.9. IR (film) *v_{max}* 3398, 3083, 3025, 2949, 2918, 2906, 2870, 1713, 1672, 1603, 1574, 1522, 1502, 1462, 1366, 1277, 1248, 1207, 1145, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₁H₂₉NO₇Na 550.1842; found 550.1844.

N-(7-(cyclohex-2-enyloxy)-6-methoxy-8-methyl-2-oxochromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (42c). Compound 42c was obtianed as a white amorphorous solid (59 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.77 (s, 1H), 7.94– 7.92 (m, 2H), 7.38 (t, J=7.9, 1H), 7.15–7.06 (m, 3H), 6.95 (d, J=8.1, 1H), 6.85 (s, 1H), 5.97–5.88 (m, 2H), 4.77 (bs, 1H), 3.91 (s, 6H), 3.87 (s, 3H), 2.40 (s, 3H), 2.19–2.15 (m, 1H), 2.04–1.81 (m, 4H), 1.66–1.63(m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.4, 159.3, 150.5, 147.5, 143.5, 138.6, 131.9, 131.0, 130.0, 129.2, 128.2, 127.1, 126.1, 123.9, 122.8, 122.0, 120.9, 115.3, 115.0, 113.1, 111.0, 106.5, 76.1, 56.0, 55.9, 55.3, 29.2, 25.2, 19.0, 9.8. IR (film) *v_{max}* 3403, 3086, 3021, 2935, 2867, 1709, 1670, 1603, 1580, 1524, 1501, 1383, 1242, 1207, 1180, 1094, 1051, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₂H₃₁NO₇Na, 564.1999; found 564.1990.

Representative procedure for olefin dihydroxylation:

N-(7-((1R,2R,3R)-2,3-dihydroxy-5-methylcyclohexyloxy)-8-methyl-2-oxo-2H-chromen-3yl)-3',6-dimethoxybiphenyl-3-carboxamide (43a). A solution of **40a** (40 mg, 0.074 mmol) in acetone (3 mL) was treated with *N*-Methylmorpholine-*N*-oxide (17.6 mg, 0.15 mmol), followed by an aqueous solution of OsO₄ (4%, 47 μL). After 12 h, the solvent was removed and the residue was purified via column chromatography (SiO₂, 20:1, CH₂Cl₂:acetone) to afford compound **43a** as a white amorphorous solid (34 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.72 (s, 1H), 7.95–7.92 (m, 2H), 7.41–7.33 (m, 2H), 7.16–7.08 (m, 3H), 6.97–6.94 (m, 2H), 4.80–4.70 (m, 1H), 4.26 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.78–3.75 (m, 1H), 2.90 (bs, 1H), 2.50 (bs, 1H), 2.48 (s, 3H), 1.90–1.84 (m, 2H), 1.51–1.39 (m, 2H), 1.23 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 160.0, 159.6, 159.5, 157.4, 149.5, 138.8, 131.2, 130.2, 129.4, 128.4, 126.2, 125.9, 124.5, 122.2, 121.8, 115.4, 115.2, 113.7, 113.3, 111.2, 110.5, 76.6, 74.2, 69.6, 56.1, 55.5, 41.8, 41.2, 32.2, 31.1, 29.3, 8.6. IR (film) *v_{max}* 3485, 3402, 2928, 2891, 1710, 1664, 1605, 1531, 1495, 1404, 1371, 1353, 1258, 1095, 1045 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₃H₃₅NO₈Na, 596.2260; found 596.2263.

N-(7-(2,3-dihydroxy-5,5-dimethylcyclohexyloxy)-8-methoxy-2-oxochromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (**43b**). Compound **43b** was obtianed as a white amorphorous solid (28 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H), 8.65 (s, 1H), 7.85 (dd, *J* = 8.6, 2.4, 1H), 7.82 (d, *J* = 2.4 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.16 (d, *J* = 8.8 Hz, 1H), 7.06–7.04 (m, 1H), 7.02–7.01 (m, 2H), 6.90 (d, *J* = 8.8 Hz, 1H), 6.88–6.85 (m, 1H), 4.51–4.47 (m, 1H), 4.18–4.17 (m, 1H), 3.96 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 3.77–3.74 (m, 1H), 3.24 (bs, 1H), 2.37 (bs, 1H), 1.89–1.85 (m, 1H), 1.76–1.72 (m, 1H), 1.45–1.37 (m, 2H), 1.14 (s, 3H), 0.94 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.3, 158.7, 152.7, 144.1, 138.6, 137.8, 131.1, 130.0, 129.2, 128.2, 125.9, 123.7, 122.8, 122.5, 122.0, 115.5, 115.3, 114.4, 113.1, 111.0, 79.5, 74.8, 69.8, 61.9, 55.9, 55.3, 42.3, 41.6, 32.7, 32.3, 28.6. IR (film) *v_{max}* 3480, 3407, 2930, 2870, 1713, 1670, 1605, 1524, 1502, 1461, 1367, 1277, 1244, 1207, 1180, 1049, 1035 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₃H₃₅NO₉Na, 612.2210; found 612.2203.

N-(7-(2,3-dihydroxy-5,5-dimethylcyclohexyloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (43c). Compound **43c** was obtianed as a white amorphorous solid (52 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.77 (s, 1H), 7.94– 7.90 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.14–7.04 (m, 3H), 6.96–6.93 (m 1H), 6.89 (s, 1H), 4.40– 4.39 (m, 1H), 4.20 (m, 1H), 4.09 (s, 1H), 3.95 (s, 3H), 3.91 (s, 3H), 3.87 (s, 3H), 3.80–3.77 (m, 1H), 2.67 (s, 1H), 2.41 (s, 3H), 1.82–1.73 (m, 2H), 1.53–1.40 (m, 2H), 1.07 (S, 3H), 0.97 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.32, 159.26, 149.4, 146.9, 143.6, 138.6, 131.1, 130.0, 129.2, 128.2, 125.9, 123.5, 123.2, 122.0, 121.0, 115.5, 115.3, 113.1, 111.0, 106.5, 81.8, 75.8, 70.0, 56.1, 55.9, 55.3, 43.7, 41.3, 33.5, 32.3, 28.0, 10.0. IR (film) ν_{max} 3497, 3404, 2955, 2930, 2860, 1716, 1670, 1602, 1580, 1524, 1501, 1464, 1382, 1277, 1245, 1207, 1137, 1074 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₄H₃₇NO₉Na, 626.2366; found 626.2369.

N-(7-((1R,2R,3R)-2,3-dihydroxy-5-methylcyclohexyloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (44a). Compound **44a** was obtianed as a white amorphorous solid (21 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.70 (s, 1H), 7.93–7.89 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0, 1H), 7.14–7.06 (m, 3H), 6.95–6.93 (m, 2H), 4.77–4.76 (m, 1H), 4.10–4.05 (m, 2H), 3.90 (s, 3H), 3.86 (s, 3H), 2.69 (bs, 1H), 2.29 (s, 3H), 2.11 (bs, 1H), 1.93–1.86 (m, 1H), 1.85–1.71 (m, 2H), 1.56–1.51 (m, 1H), 1.45–1.38 (m, 1H), 0.96 (d, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 160.0, 159.7, 159.5, 156.8, 149.6, 138.8, 131.2, 130.2, 129.4, 128.4, 126.2, 125.9, 124.5, 122.2, 121.8, 115.5, 115.0, 113.6, 113.3, 111.2, 109.9, 76.2, 69.5, 69.0, 56.1, 55.5, 36.7, 32.4, 25.5, 21.9, 8.6. IR (film) *v_{max}* 3471, 3407, 2950, 2927, 2869, 1713, 1681, 1605, 1526, 1495, 1404, 1371, 1353, 1259, 1076 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₂H₃₃NO₈Na, 582.2104; found 582.2097.

N-(7-(2,3-dihydroxy-5-methylcyclohexyloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (**44b**). Compound **44b** was obtianed as a white amorphorous solid (28 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 8.64 (s, 1H), 7.85– 7.81 (m, 2H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 8.8 Hz, 1H), 7.06–6.99 (m, 3H), 6.90–6.87 (m, 2H), 4.66–4.64 (m, 1H), 4.09–4.04 (m, 1H), 4.00–3.98 (m, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 2.47 (bs, 1H), 1.89 (m, 1H), 1.77–1.67 (m, 2H), 1.51–1.54 (m, 1H), 1.39–1.31 (m, 1H), 0.92–0.90 (d, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.8, 159.3, 158.9, 151.86, 144.3, 138.6, 137.4, 131.1, 130.0, 129.2, 128.2, 125.9, 123.8, 122.6, 122.3, 122.0, 115.3, 114.9, 113.1, 112.8, 111.0, 77.6, 69.5, 68.7, 61.6, 55.9, 55.3, 36.4, 32.5, 25.3, 21.7. IR (film) *v_{max}* 3462, 3404, 2930, 2868, 1713, 1670, 1605, 1576, 1524, 1502, 1462, 1367, 1277, 1246, 1207, 1180, 1049, 1024 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₂H₃₃NO₉Na, 598.2053; found 598.2053.

N-(7-(2,3-dihydroxy-5-methylcyclohexyloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (**44c**). Compound **44c** was obtianed as a white amorphorous solid (42 mg, 93%). ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 8.76 (s, 1H), 7.94–7.90 (m, 2H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.14–7.09 (m, 3H), 6.95–6.93 (m, 1H), 6.86 (s, 1H), 4.48–4.45 (m, 1H), 4.24–4.22 (m, 1H), 4.06–4.05 (m, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.87 (s, 3H), 2.56 (bs, 1H), 2.07–2.05 (m, 1H), 1.99 (bs, 1H), 1.83–1.75 (m, 2H), 1.52–1.44 (m, 2H). 1.02–1.01 (d, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 160.0, 159.6, 159.5, 150.1, 147.7, 143.6, 138.8, 131.3, 130.2, 129.4, 128.4, 1126.2, 123.9, 123.2, 122.2, 120.3, 115.5, 115.4, 113.3, 111.2, 106.7, 82.1, 71.0, 69.2, 56.2, 56.1, 55.5, 36.6, 34.2, 26.0, 22.0, 9.9. IR (film) *Vmax* 3512, 3404,

2957, 2930, 2860, 1716, 1670, 1602, 1580, 1523, 1464, 1383, 1277, 1246, 1207, 1074 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₃H₃₅NO₉Na, 612.2210; found 612.2192.

N-(7-((1R,2R,3R)-2,3-dihydroxycyclohexyloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (45a). Compound **45a** as a colorless amorphous solid (41 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.72 (s, 1H), 7.95–7.91 (m, 2H), 7.41– 7.32 (m, 2H), 7.16–7.08 (m, 3H), 6.98–6.94 (m, 2H), 4.65–4.55 (m, 1H), 4.23–4,22 (m, 1H), 3.92 (s, 3H), 3.86 (s, 3H), 3.85 (m, 1H), 2.34 (s, 3H), 2.11–2.08 (m, 1H), 1.95–1.90 (m, 1H), 1.63–1.50 (m, 3H), 1.45–1.42 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 160.0, 159.7, 159.6, 157.4, 149.5, 138.8, 131.3, 130.2, 129.4, 128.4, 126.3, 125.8, 124.4, 122.2, 122.0, 115.5 (2C), 114.0, 113.4, 111.24, 111.15, 78.5, 74.5, 69.7, 56.1, 55.5, 29.9, 28.6, 18.4, 8.6. IR (film) v_{max} 3484, 3405, 2949, 2843, 1707, 1639, 1601, 1547, 1531, 1454, 1377, 1274, 1265, 1051, 1014 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₂NO₈, 546.2128; found 546.2127.

N-(7-(2,3-dihydroxycyclohexyloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (**45b**). Compound **45b** was obtianed as a white amorphorous solid (41 mg, 87%). ¹H NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 8.64 (s, 1H), 7.85–7.81 (m, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 7.06–6.99 (m, 3H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.87–6.86 (m, 1H), 4.32 (m, 1H), 4.14 (m, 1H), 3.96 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 3.73–3.71 (m, 1H), 3.35 (bs, 1H), 2.41 (bs, 1H), 2.10 (m, 1H), 1.85 (m, 1H), 1.67 (m, 1H),

1.56 (m, 1H), 1.50–1.40 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.9, 159.3, 158.7, 152.7, 144.0, 138.5, 137.8, 131.1, 130.0, 129.2, 128.2, 125.9, 123.7, 122.7, 122.5, 122.0, 115.6, 115.3, 114.9, 113.1, 111.0, 81.5, 74.8, 69.6, 61.9, 55.9, 55.8, 55.3, 29.6, 18.3. IR (film) v_{max} 3458, 3407, 2930, 2858, 1709, 1668, 1603, 1524, 1501, 1367, 1267, 1244, 1101, 1076, 1018 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₁H₃₁NO₉Na, 584.1897; found 584.1904.

N-(7-(2,3-dihydroxycyclohexyloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (45c). Compound **45c** was obtianed as a white amorphorous solid (39 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.67 (s, 1H), 7.84– 7.81 (m, 2H), 7.29 (t, *J* =7.9 Hz, 1H), 7.06–7.01 (m, 2H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.84–6.84 (m, 1H), 6.77 (s, 1H), 4.14–4.12 (m, 1H), 4.12–4.10 (m, 1H) 3.96 (bs, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H), 3.73–3.71 (dd, *J* = 8.9, 2.9 Hz, 1H), 2.63 (bs, 1H), 2.30 (s, 3H), 1.88–1.83 (m, 2H), 1.55–1.39 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 159.8, 159.3, 159.2, 149.4, 146.7, 143.4, 138.6, 131.0, 130.0, 129.2, 128.2, 125.9, 123.4, 123.2, 122.0, 121.1, 115.5, 115.3, 113.1, 111.0, 106.3, 83.7, 75.6, 69.4, 56.0, 55.9, 55.3, 30.5, 29.4, 18.4, 9.9. IR (film) *v_{max}* 3463, 3408, 2937, 2860, 1717, 1672, 1601, 1524, 1502, 1383, 1339, 1236, 1205, 1182, 1051 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₂H₃₃NO₉Na, 598.2053; found 598.2054.

Tert-butyl 5-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yloxy)-5,6-dihydropyridine-1(2H)-carboxylate (47a). Compound 47a was obtained as a light

yellow amorphous solid (1.57 g, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.72 (s, 1H), 7.94–7.90 (m, 2H), 7.40–7.36 (m, 2H), 7.14–6.93 (m, 3H), 6.96–6.94 (m, 2H), 6.02–5.80 (m, 2H), 4.87 (m, 1H), 4.20–3.99 (m, 2H), 3.91 (s, 3H), 3.87 (s, 3H), 3.77–3.42 (m, 2H), 2.32 (s, 3H), 1.49 (s, 3H), 1.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.5, 159.3, 156.9, 154.6, 149.4, 138.6, 131.0, 130.0, 129.2, 128.8, 128.2, 126.1, 125.6, 125.3, 124.4, 124.2, 122.0, 121.8, 115.2, 113.8, 113.1, 111.0, 110.1, 80.2, 70.0, 69.5, 55.9, 55.3, 44.9, 43.7, 43.0, 28.4, 22.0, 21.8, 8.4. IR (film) ν_{max} 3400, 3067, 2976, 2935, 2837, 1705, 1670, 1605, 1526, 1500, 1367, 1244, 1205, 1180, 1103, 1024 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₅H₃₇N₂O₈, 613.2550; found, 613.2533.

Tert-Butyl 5-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methoxy-2-oxo-2Hchromen-7-yloxy)-5,6-dihydropyridine-1(2H)-carboxylate (**47b**). Compound **47b** was obtained as a light yellow amorphorous solid (236 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.70 (s, 1H), 7.93–7.89 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.14– 7.07 (m, 3H), 6.95–6.93 (m, 1H), 6.03–5.98 (m, 2H), 4.89 (m, 1H), 4.11–4.01 (m, 1H), 3.99 (s, 3H), 3.98–3.95 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.84–3.72 (m, 2H), 1.48–1.46 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.8, 159.3, 158.8, 154.6, 151.8, 144.2, 138.6, 137.7, 131.1, 130.0, 129.2, 129.0, 128.2, 126.0, 125.0, 124.3, 123.8, 122.4, 122.0, 115.2, 113.7, 113.4, 113.1, 111.0, 80.3, 70.9, 70.0, 61.5, 55.9, 55.3, 43.6, 28.4. IR (KBr) ν_{max} 3425, 3070, 2959, 2930, 2872, 2860, 1728, 1693, 1680, 1600, 1462, 1381, 1273, 1122, 1072 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₅H₃₆N₂O₉Na, 651.2318; found, 651.2321.

Tert-butyl 5-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-chromen-7-yloxy)-5,6-dihydropyridine-1(2H)-carboxylate (**47c**). Compound **47c** was obtained as a light yellow amorphorous solid (154 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.76 (s, 1H), 7.94–7.90 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.10–7.07 (m, 2H), 6.94 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.86 (s, 1H), 5.95–5.83 (m 2H), 4.85 (m, 1H), 4.06–3.96 (m, 1H), 3.92 (s, 3H), 3.92 (s, 3H), 3.87 (s, 3H), 2.36 (s, 3H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.8, 159.3 (2C), 154.9, 150.1, 146.7, 143.4, 138.6, 131.0, 130.0, 129.2, 128.2, 127.4, 126.0, 125.1, 123.6, 123.0, 122.0, 120.8, 115.3, 113.1, 111.0, 106.4. 80.1, 73.4, 56.0, 55.9, 55.3, 28.4, 21.7, 9.4. IR (KBr) ν_{max} 3398, 3090, 3074, 2964, 2931, 2849, 2837, 1701, 1676, 1664, 1603, 1521, 1483, 1413, 1242, 1170 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₆H₃₈N₂O₉Na, 665.2475; found, 665.2468.

Representative procedure for Boc deprotection:

3',6-dimethoxy-N-(8-methyl-2-oxo-7-(1,2,3,6-tetrahydropyridin-3-yloxy)-2H-chromen-3-yl)biphenyl-3-carboxamide (48a): A solution of compound **48a** (470 mg, 0.78 mmol) in methylene chloride (20 mL) was treated with TFA (2 mL). The solution was stirred at rt overnight and concentrated to dryness, then the residue was purified via column chromatography (SiO₂, 10:1, CH₂Cl₂:MeOH) to afford compound **48a** as a white amorphorous solid (349 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.72 (s, 1H), 7.92–7.90 (m, 2H), 7.38–7.29

(m, 2H), 7.14–7.04 (m, 3H), 6.94–6.88 (m, 2H), 6.10–5.99 (m, 2H), 4.70 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.46–3.31 (m, 2H), 2.32 (m, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 159.7, 159.4, 159.3, 157.2, 149.4, 138.6, 133.3, 130.9, 130.0, 129.2, 128.2, 126.1, 125.6, 124.4, 124.2, 122.0, 121.7, 115.3, 115.1, 113.6, 113.1, 111.0, 110.5, 69.4, 55.9, 55.3, 47.7, 44.8, 8.5. IR (film) ν_{max} 3400, 3083, 3008, 2968, 2837, 1703, 1668, 1601, 1523, 1504, 1367, 1201, 1132, 1105 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₂₉N₂O₆, 513.2026; found, 513.2024.

3',6-dimethoxy-N-(8-methoxy-2-oxo-7-(1,2,3,6-tetrahydropyridin-3-yloxy)-2H-chromen-3-yl)biphenyl-3-carboxamide (48b). Compound **48b** was obtained as a white amorphorous solid (61 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.73 (s, 1H), 7.94–7.91 (m, 2H), 7.38 (t, *J* =7.9 Hz, 1H), 7.22 (d, *J* = 8.7 Hz, 1H), 7.14–7.07 (m, 3H), 6.98 (d, *J* = 8.7 Hz, 1H), 6.94 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.14–6.04 (m, 2H), 5.06 (m, 1H), 4.01 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.84–3.72 (m, 2H), 3.60 (m, 1H), 3,48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 159.9, 159.3, 158.4, 150.6, 144.0, 138.6, 138.3, 131.0, 130.0, 129.2, 128.2, 126.0, 125.8, 124.9, 123.3, 122.9, 122.7, 122.0, 116.5, 115.5, 115.3, 113.1, 111.0, 68.3, 61.9, 55.9, 55.2, 44.7, 41.7. IR (KBr) v_{max} 3404, 2956, 2849, 1677, 1608, 1527, 1458, 1439, 1369, 1205, 1140 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₂₉N₂O₇, 529.1975; found, 529.1979.

3',6-dimethoxy-N-(6-methoxy-8-methyl-2-oxo-7-(1,2,3,6-tetrahydropyridin-3-yloxy)-2Hchromen-3-yl)biphenyl-3-carboxamide (48c). Compound **48c** was obtained as a light brown amorphorous solid (371 mg, 79%). ¹H NMR (400 MHz, DMSO-*d*₆) 9.64 (s, 1H), 9.06 (s, 1H), 8.00–7.92 (m, 2H), 7.39–7.33 (m, 2H), 7.24 (d, J = 8.0 Hz, 1H), 7.12–7.10 (m, 2H), 6.96 (d, J =8.0 Hz, 1H), 6.17–6.05 (m, 2H), 4.72 (m, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.80 (s, 3H), 3.73-3.69 (m, 2H), 3.45–3.42 (m, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.6, 159.6, 159.4, 158.5, 149.7, 146.5, 143.8, 139.1, 130.5, 129.9, 129.6 (2C), 127.8, 126.1, 126.0, 125.5, 123.5, 122.2, 119.8, 115.8, 115.7, 113.0, 112.0, 108.0, 71.2, 56.6, 56.3, 55.6, 45.0, 41.7, 9.8. IR (KBr) ν_{max} 3418, 3004, 2984, 2841, 1685, 1664, 1604, 1529, 1433, 1381, 1242, 1138 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₁N₂O₇, 543.2131; found, 543.2130.

N-(7-(1-acetyl-1,2,3,6-tetrahydropyridin-3-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (50a). A solution of compound **48a** (45 mg, 0.088 mmol) in pyridine (3 mL) was treated with acetic anhydride (1 mL) and stirred at rt for 2 h. After 2 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 4:1, CH₂Cl₂:acetone) to afford compound **50a** as a white amorphorous solid (43 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (s, 1H), 7.94–7.91 (m, 2H), 7.39–7.29 (m, 2H), 7.15–7.08 (m, 3H), 7.00–6.92 (m, 2H), 6.12–5.96 (m, 2H), 4.91–4.89 (m, 1H), 4.51–4.34 (m, 1H), 4.09–4.03 (m, 1H), 3.93–3.90 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.76–3.51 (m, 1H), 2.30 (3H), 2.17 (3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 165.69, 165.65, 160.00, 159.95, 159.6, 159.5, 157.0, 156.6, 149.6, 149.5, 138.79, 138.77, 131.22, 131.19, 130.9, 130.1, 129.3, 128.3, 127.5, 126.8, 126.3, 126.2, 125.89, 125.85, 124.4, 124.1, 123.6, 122.2, 122.1, 115.6, 115.5, 115.46, 115.41, 114.21, 114.17, 113.33, 113.30, 111.2, 111.0, 110.2, 70.1, 69.6, 56.1, 55.5, 47.9, 45.7, 42.5, 41.9, 21.9, 21.4, 8.54, 8.51. IR (film) v_{max} 3409, 3049, 2933, 2839, 1712, 1686, 1628, 1605, 1526, 1433, 1373, 1246, 1136, 1097, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₂H₃₀N₂O₇Na, 577.1950; found, 577.1947.

Representative procedure for synthesis of compounds 51a-c.

3',6-dimethoxy-N-(8-methyl-7-(1-methyl-1,2,3,6-tetrahydropyridin-3-yloxy)-2-oxo-2Hchromen-3-yl)biphenyl-3-carboxamide (51a). A solution of compound **49a** (249 mg, 0.49 mmol) in THF (3 mL) was treated with potassium carbonate (132 mg, 0.97 mmol) at 0°C, followed by methyl iodide (30 μ L, 0.49 mmol). The reaction was quenched with saturated ammonium chloride solution, and extracted with methylene chloride (2 x 30 mL). The combined organic layers were dried over magnesium sulfate, concentrated to dryness and purified via column chromatography (SiO₂, 10:1, CH₂Cl₂:MeOH) to afford compound **51a** as a light brown amorphorous solid (84 mg, 33%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.73 (s, 1H), 7.95–7.92 (m, 2H), 7.41–7.35 (m, 2H), 7.16–7.08 (m, 3H), 6.95 (m, 2H), 6.04–5.94 (m, 2H), 4.99 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.09–2.98 (m, 3H), 2.67–2.63 (m, 1H), 2.44 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.9, 159.7, 159.5, 157.6, 149.6, 138.8, 131.2, 130.2, 130.1, 129.3, 128.3, 126.2, 125.8, 124.5, 124.4, 122.2, 121.9, 115.6, 115.4, 113.8, 113.3, 111.2, 110.9, 72.3, 56.8, 56.0, 55.5, 54.4, 45.8, 8.6. IR (film) *v_{max}* 3404, 3090, 3049, 2935, 2839, 1697, 1662, 1634, 1606, 1524, 1500, 1369, 1236, 1097, 1018 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for C₃₁H₃₁N₂O₆, 527.2182; found, 527.2178.

3',6-dimethoxy-N-(8-methoxy-7-(1-methyl-1,2,3,6-tetrahydropyridin-3-yloxy)-2-oxo-2Hchromen-3-yl)biphenyl-3-carboxamide (51b). Compound **51b** was obtained a light brown amorphous solid (68 mg, 30%). ¹H NMR (500 MHz, MeOD) δ 8.58 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 1H),7.83 (s, 1H), 7.32–7.28 (m, 2H), 7.16–7.14 (m, 2H), 7.07–7.05 (m, 2H), 6.90 (m, 1H), 6.26– 6.13 (m, 2H), 5.14 (m, 1H), 3.97 (s, 3H), 3.95–3.93 (m, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.80– 3.73 (m, 2H), 3.61–3.58 (m, 1H), 3.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 158.8, 152.2, 144.2, 138.6, 137.8, 131.0, 130.1, 130.0, 129.2, 128.2, 125.9, 124.2, 123.8, 122.4, 122.3, 122.0, 115.3, 115.1, 113.8, 113.1, 111.0, 72.9, 61.5, 56.4, 55.9, 55.3, 54.1, 45.5. IR (KBr) *v_{max}* 3404, 2954, 2845, 1689, 1643, 1607, 1573, 1529, 1502, 1277, 1205, 1140, 1099, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₁N₂O₇, 543.2131; found 543.2126.

3',6-dimethoxy-N-(6-methoxy-8-methyl-7-(1-methyl-1,2,3,6-tetrahydropyridin-3-yloxy)-2oxo-2H-chromen-3-yl)biphenyl-3-carboxamide (51c). Compound **51c** was obtained a light brown amorphous solid (59 mg, 21%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.78 (s, 1H), 7.96–7.92 (m, 2H), 7.39 (t, *J* =8.0 Hz, 1H), 7.16–7.08 (m, 3H), 6.95 (dd, *J* = 8.0, 2.3 Hz, 2H), 6.87 (s, 1H), 6.00–5.97 (m, 2H), 4.78 (m, 1H), 3.92 (s, 3H), 3.92 (s, 3H), 3.88 (s, 3H), 3.09 (d, *J* = 7.0 Hz, 1H), 2.92 (d, *J* = 7.0 Hz, 1H), 2.77–2.70 (m, 2H), 2.44 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.8, 159.4, 159.3, 150.3, 147.5, 143.5, 138.6, 131.1, 130.0, 129.7, 129.2, 128.2, 126.0, 125.3, 123.8, 123.0, 122.0, 121.0, 115.3 (2C), 113.1, 111.0, 106.4, 76.0, 57.1, 56.0, 55.9, 55.3, 54.4, 45.8, 9.6. IR (KBr) v_{max} 3403, 3112, 3072, 2954, 2929, 2854, 1716, 1649, 1605, 1502, 1458, 1366, 1248, 1207, 1180, 1086 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₂H₃₃N₂O₇, 557.2288; found, 527.2300.

N-(7-(4,5-dihydroxypiperidin-3-yloxy)-8-methyl-2-oxochromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (52a). Compound 52a was obtained as a colorless amorphorous solid (32 mg, 53%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.66 (s, 1H), 8.48 (s, 1H), 8.01 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.93 (d, *J* = 2.3, 1H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.18 (d, *J* = 8.8, 1H), 7.13–7.10 (m, 2H), 6.97–6.95 (m, 1H), 4.96 (d, *J* = 5.2, 1H), 4.61 (d, *J* = 4.2, 1H), 4.45–4.41 (m, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.73 (bs, 1H), 3.68 (bs, 1H), 3.08–3.04 (m, 1H), 2.76–2.72 (m, 1H), 2.60–2.57 (m, 1H), 2.48–2.44 (m, 1H), 2.24 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.6, 159.6, 159.4, 158.8, 158.6, 150.1, 139.2, 130.4, 129.92, 129.85, 129.7, 129.6, 126.5, 126.3, 122.2, 121.5, 115.7, 113.9, 113.1, 113.0, 112.0, 111.3, 77.9, 72.1, 69.2, 56.4, 55.6, 49.5, 47.1, 8.6. IR (film) *v*_{max} 3317 (broad), 2950, 2918, 2849, 1705, 1674, 1607, 1541, 1533, 1375, 1253, 1204, 1136, 1103 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₁N₂O₈, 547.2080; found, 547.2083.

N-(7-(4,5-dihydroxypiperidin-3-yloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (52b). Compound 52b was obtained as a colorless amorphorous solid (48 mg, 92%). ¹H NMR (500 MHz, DMSO- d_6) δ 9.68 (s, 1H), 8.48 (s, 1H), 7.99 (dd, J = 8.6, 2.4 Hz, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.23 (t, J = 9.0 Hz, 1H), 7.12–7.09 (m 2H), 6.96–6.94 (m, 1H), 5.02 (s, 1H), 4.76 (s, 1H), 4.48–4.44 (m, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.77 (s, 3H), 3.72 (m, 1H), 3.70–3.69 (m, 1H), 3.17–3.09 (m, 2H), 2.81–2.77 (m, 1H), 2.66–2.63 (m, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 165.2, 159.2, 159.0, 157.9, 153.2, 144.5, 138.7, 136.0, 130.0, 129.4, 129.20, 129.16 (2C), 125.8, 122.8, 121.7, 121.6, 115.3, 113.7, 112.6, 112.5, 111.6, 77.5, 71.6, 68.7, 60.9, 55.9, 55.1, 48.9, 46.5. IR (KBr) v_{max} 3417 (broad), 2947, 2846, 1682, 1645, 1602, 1519, 1434, 1389, 1206, 1141 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₁N₂O₉, 563.2030; found, 563.2029.

N-(7-(4,5-dihydroxypiperidin-3-yloxy)-6,8-dimethoxy-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (52c). Compound **52c** was obtained as a colorless amorphorous solid (42 mg, 59%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.65 (s, 1H), 8.53 (s, 1H), 7.99 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.92 (d, *J* = 2.4 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.28 (s, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 7.12–7.09 (m 2H), 6.96–6.94 (m, 1H), 4.16 (m, 1H), 3.87 (s, 6H), 3.80 (m,1H), 3.76 (s, 3H), 3.75 (m, 1H), 3.04–3.01 (m, 1H), 2.78–2.74 (m, 1H), 2.70–2.65 (m, 2H), 2.32 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.1, 159.1, 158.9, 158.1, 149.3, 147.4, 143.6, 138.6, 130.0, 129.4, 129.1 (2C), 128.1, 125.7, 122.5, 121.7, 119.0, 115.2, 114.4, 112.5, 111.5, 107.3, 80.7, 71.5, 67.5, 56.1, 55.9, 55.1, 47.8, 45.9, 9.3. IR (KBr) *v_{max}* 3402 (broad), 2974, 2939, 2835, 1666, 1631, 1604, 1523, 1502, 1462, 1429, 1366, 1267, 1244, 1091, 1022 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for C₃₁H₃₃N₂O₉, 577.2186; found, 577.2180.

N-(7-(1-acetylpiperidin-3-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (53a). Palladium on carbon (10%, 5 mg) was added to 50 (36 mg, 0.07 mmol) in anhydrous THF (3 mL) and the solution was placed under an atmosphere of H₂. After 12 h, the solution was filtered through SiO₂ (40:1, CH₂Cl₂:acetone) and the eluent was concentrated to afford 53a as a colorless amorphous solid (32 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.72 (s, 1H), 7.94-7.90 (m, 2H), 7.40-7.34 (m, 2H), 7.15-7.07 (m, 3H), 6.99-6.86 (m, 2H), 4.60-4.30 (m, 1H), 4.25-3.95 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.76-3.39 (m, 3H), 2.32-2.04 (3H), 1.98-1.82 (m, 3H), 1.70-1.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.4, 165.5 (2C), 159.8, 159.7, 159.5, 159.4, 159.3, 156.7, 156.1, 149.5, 149.4, 138.6 (2C), 131.0, 130.0, 129.2, 128.2, 126.1, 126.0, 125.7, 124.3, 124.0, 122.0, 121.7, 115.4, 115.3, 115.2, 113.8, 113.7, 113.2, 113.1, 111.0, 110.5, 109.8, 72.0, 71.4, 55.9, 55.3, 50.3, 46.6, 45.5, 42.0, 30.0, 28.8, 23.3, 21.5, 21.4, 21.2, 8.3. IR (film) ν_{max} 3406, 2934, 2835, 1701, 1666, 1628, 1539, 1369, 1234, 1093, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₂H₃₂N₂O₇, 557.2288; found 557.2291.

N-(7-(1-acetyl-4,5-dihydroxypiperidin-3-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (54a). Compound 54a was obtained as a white

amorphorous solid (22 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.71–8.67 (m, 2H), 7.92–7.87 (M, 2H), 7.37–7.36 (t, J=8.0, 1H), 7.31–7.25 (m, 1H), 7.25–7.04 (m, 3H), 6.95–6.92 (m, 1H), 4.66–3.97 (m, 4H), 3.90–3.85 (m, 6H), 3.79–2.82 (m, 3H), 2.26–2.01 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 170.4, 165.7, 160.0, 159.5, 159.3, 157.1, 156.1, 149.4, 149.3, 138.8, 131.2, 130.2, 129.4, 128.4, 126.2, 126.0, 124.4, 123.9, 122.2, 121.9, 115.5, 115.1, 114.9, 114.3, 114.1, 113.3, 111.2, 110.6, 109.6, 74.6, 73.3, 69.5, 68.4, 65.9, 56.1, 55.5, 49.8, 45.9, 43.2, 43.1, 21.6, 21.5, 8.5, 8.4. IR (film) v_{max} 3400, 3365 (broad), 2931, 2839, 1712, 1628, 1607, 1526, 1502, 1369, 1267, 1244, 1105, 1034 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₂H₃₂N₂O₉Na, 611.2005; found, 611.2011.

N-(7-(4,5-dihydroxy-1-methylpiperidin-3-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (55a). Compound 55a was obtained as light brown amorphorous solid (27 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.72 (s, 1H), 7.95– 7.92 (m, 2H), 7.41–7.33 (m, 2H), 7.16–7.05 (m, 4H), 6.97–6.95 (m, 1H), 4.61 (m, 1H), 4.10 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.78–3.76 (m, 1H), 3.11–2.99 (m, 2H), 2.40 (s, 3H), 2.35 (s, 3H), 2.12–2.08 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.4, 159.3, 157.4, 149.3, 138.6, 131.0, 130.0, 129.2, 128.2, 126.0, 125.7, 124.2, 122.0, 121.9, 115.5, 115.3, 114.0, 113.2, 111.2, 111.0, 73.5, 68.6, 59.1, 57.0, 55.9, 55.3, 45.5, 8.4. IR (film) v_{max} 3402, 2927, 2852, 1707, 1653, 1605, 1526, 1502, 1369, 1267, 1242, 1207, 1107 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₈, 561.2237; found, 561.2239.

N-(7-(4,5-dihydroxy-1-methylpiperidin-3-yloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (55b). Compound **55b** was obtained as a light brown amorphorous solid (9.8 mg, 39%). ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.74 (s, 1H), 7.95–7.91 (m, 2H), 7.39 (t, *J* = 8.7 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 1H), 7.15–7.08 (m, 3H), 6.96 (dd, *J* = 8.7, 2.2 Hz, 1H), 4.48 (m, 1H), 4.10 (m, 1H), 4.06 (s, 3H), 3.92 (s, 3H), 3.89 (s, 3H), 3.79–3.78 (m, 1H), 3.16–3.14 (m, 1H), 3.02–2.99 (m, 1H), 2.37 (s, 3H), 2.33 (t, J = 12.2 Hz, 1H), 2.18 (t, J = 12.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 159.9, 159.4, 158.7, 152.6, 145.2, 144.1, 138.6, 138.0, 131.1, 130.0, 129.2, 128.2, 125.9, 123.6, 122.7, 122.0, 115.9, 115.3, 115.0, 113.2, 111.1, 79.3, 76.1, 68.6, 62.0, 59.0, 57.4, 55.9, 55.3, 45.5. IR (KBr) ν_{max} 3410 (broad), 2927, 2870, 2835, 1710, 1664, 1603, 1524, 1502, 1460, 1366, 1275, 1244, 1086 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₉, 577.2186; found, 577.2180.

N-(7-(4,5-dihydroxy-1-methylpiperidin-3-yloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (**55c**). Compound **55c** was obtained as light brown amorphorous solid (38 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.78 (s, 1H), 7.95–7.92 (m, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.16–7.08 (m, 3H), 6.96 (dd, *J* = 8.0, 2.1 Hz, 1H), 6.89 (s, 1H), 4.40 (m, 1H), 4.08 (m, 1H), 3.95 (s, 3H), 3.92 (s, 3H), 3.88 (s, 3H), 3.79 (m, 1H), 2.97 (m, 2H), 2.41 (s, 3H), 2.33 (s, 3H), 2.25–2.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.9, 159.34, 159.25, 149.3, 146.7, 143.4, 138.6, 131.1, 130.0, 129.2, 128.2, 126.0, 123.5, 123.3, 122.0, 120.8, 115.7, 115.3, 113.1, 111.0, 106.4, 80.7, 77.2, 68.4, 58.7, 58.0, 56.1, 55.9, 55.3, 45.7, 9.6. IR (KBr) v_{max} 3405 (broad), 2959, 2930, 2854, 1682, 1647, 1605, 1439, 1385, 1207, 1138, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₂H₃₅N₂O₉, 591.2342; found, 591.2326.

Tert-butyl 3-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yloxy)piperidine-1-carboxylate (56a). Compound **56a** was obtained as a light brown amorphorous solid (643 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.69 (s, 1H), 7.95-7.91 (m, 2H) 741–7.35 (m, 2H), 7.16–7.08 (m, 3H), 6.97–6.94 (m, 2H), 4.42 (m, 1H), 3.892 (s, 3H), 3.88 (s, 3H), 3.74–3.40 (m, 4H), 2.33 (s, 3H), 2.07–1.92 (m, 3H), 1.62–1.58 (m, 1H), 1.48 (bs, 3H), 1.28 (bs, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.5, 159.3, 156.8, 154.7, 149.4, 138.6, 131.0, 130.0, 129.2, 128.2, 126.1, 125.6, 124.3, 122.0, 121.7, 115.2, 115.0, 113.6, 113.2, 111.0, 109.9, 79.8, 77.3, 71.5, 55.9, 55.3, 47.3, 29.9, 28.3, 21.7, 8.3. IR (film) *v_{max}* 3403, 2980, 2937, 1707, 1653, 1676, 1605, 1524, 1502, 1464, 1367, 1242, 1178, 1109, 1041 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₅H₃₈N₂O₈Na, 637.2526; found, 637.2524.

Tert-butyl 3-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methoxy-2-oxo-2Hchromen-7-yloxy)piperidine-1-carboxylate (56b). Compound 56b was obtained as a light

brown amorphorous solid (174 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.72 (s, 1H), 7.92–7.89 (m, 2H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.13–6.99 (m, 3H), 6.97–6.91 (m, 2H), 4.38 (m, 1H), 3.98 (s, 3H), 3.89 (s, 3H), 3.85 (s, 3H), 3.85–3.39 (m, 4H), 2.05 (m, 1H), 1.88 (m, 2H), 1.56 (m, 1H), 1.41 (bs, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 158.9, 154.7, 151.7, 144.2, 138.6, 137.4, 131.0, 130.0, 129.2, 128.2, 125.9, 123.8, 122.3, 122.0, 115.2, 114.9, 113.1, 113.0, 112.8, 111.0, 79.8, 72.9, 61.5, 55.9, 55.3, 47.7, 43.8, 30.9, 29.9, 28.4. IR (KBr) *v_{max}* 3407, 2943, 2837, 1676, 1630, 1605, 1521, 1431, 1205, 1136 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₅H₃₉N₂O₉, 631.2656; found 631.2661.

Tert-butyl 3-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-chromen-7-yloxy)piperidine-1-carboxylate (56c). Compound 56c was obtained as a light brown amorphorous solid (135 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.76 (s, 1H), 7.93–7.91 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.14–7.06 (m, 3H), 6.94 (m, 1H), 6.85 (s, 1H), 4.32 (m, 1H), 3.94 (s, 6H), 3.86 (s, 3H), 3.82–3.59 (m, 2H), 3.21 (m, 2H), 2.38 (s, 3H), 2.06–1.77 (m, 3H), 1.51–1.48 (m, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 154.8, 150.1, 146.5, 143.5, 138.6, 131.0, 130.0, 129.2, 128.2, 126.1, 123.7, 123.0, 122.9, 122.0, 120.6, 115.3, 115.2, 113.1, 111.0, 106.5, 79.6, 76.4, 56.0, 55.9, 55.3, 30.9, 30.6, 29.3, 28.4, 21.7, 9.4. IR (KBr) ν_{max} 3402, 3333, 2976, 2931, 2868, 1713, 1680, 1632, 1604, 1529, 1425, 13666, 1232, 1201, 1167, 1095 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₆H₄₀N₂O₉Na, 667.2632; found, 667.2629.

3',6-dimethoxy-N-(8-methyl-2-oxo-7-(piperidin-3-yloxy)-2H-chromen-3-yl)biphenyl-3carboxamide (57a). Compound **57a** was obtained as white amorphorous solid (23 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.64 (s, 1H), 7.86–7.84 (m, 2H), 7.33–7.30 (m, 2H), 7.09–6.88 (m, 5H), 4.50 (bs, 1H), 4.06–3.90 (m, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 3.63–3.50 (m, 4H), 2.20 (s, 3H), 1.41 (bs, 3H), 1.22 (bs, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.9, 159.4, 159.3, 155.6, 149.3, 138.7, 131.0, 130.1, 129.3, 128.3, 126.0, 125.8, 123.8, 122.3, 122.2, 115.6, 115.4, 114.4, 113.2, 111.1, 110.3, 69.3, 56.0, 55.4, 46.8, 43.8, 28.0, 19.5, 8.7. IR (film) *v_{max}* 3404, 2939, 2837,1709, 1670, 1607, 1526, 1502, 1369, 1269, 1242, 1103, 1031 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₁N₂O₆, 515.2182; found, 515.2186.

3',6-dimethoxy-N-(8-methoxy-2-oxo-7-(piperidin-3-yloxy)-2H-chromen-3-yl)biphenyl-3carboxamide (57b). Compound **57b** was obtained as white amorphorous solid (93 mg, 84%). ¹H NMR (400 MHz, MeOD) δ 8.37 (s, 1H), 7.69–7.66 (m, 2H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.96–6.82 (m, 4H), 6.82 (dd, *J* = 8.2 Hz, 2.3, 1H), 4.66 (m, 1H), 3.85 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 3.42–3.37 (m, 2H), 3.23–3.19 (m, 2H), 2.15–2.10 (m, 2H), 2.02–1.98 (m, 2H). ¹³C NMR (100 MHz, MeOD) δ 164.5, 158.4, 158.0, 156.8, 149.3, 142.8, 137.3, 136.3, 129.0, 128.5, 127.3, 126.8, 124.1, 123.2, 121.4, 121.0, 120.3, 114.5, 113.8, 113.0, 111.0, 109.6, 69.9, 59.6, 53.6, 53.1, 45.1, 42.3, 24.8, 16.6. IR (KBr) *v_{max}* 3400, 2980, 2948, 2843, 1693, 1634, 1607, 1571, 1531, 1504, 1371, 1207, 1140, 1101 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for C₃₀H₃₁N₂O₇, 531.2131; found, 531.2129.

3',6-dimethoxy-N-(6-methoxy-8-methyl-2-oxo-7-(piperidin-3-yloxy)-2H-chromen-3-yl)-[**1,1'-biphenyl]-3-carboxamide (57c).** Compound **57c** was obtained as white amorphorous solid (83 mg, 73%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.65 (s, 1H), 8.56 (s, 1H), 8.99 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.92 (s, 1H), 7.39–7.33 (m, 2H), 7.25 (d, *J* =9.1 Hz, 1H), 7.12–7.10 (m, 2H), 6.95 (d, *J* = 8.4 Hz, 1H), 4.36 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.80 (s, 3H), 3.36–3.10 (m, 4H), 2.31 (s, 3H), 2.01–1.68 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.6, 159.6, 159.4, 158.5, 149.8, 146.4, 143.8, 139.1, 130.5, 129.9, 129.6, 127.9, 126.1, 123.5, 122.2, 119.7, 118.8, 115.7, 115.68, 113.0, 112.0, 108.0, 75.0, 56.6, 56.4, 55.6, 46.9, 43.4, 28.2, 19.5, 9.7. IR (KBr) *v_{max}* 3398, 2976, 2867, 1677, 1642, 1460, 1535, 1502, 1205, 1142 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₇, 545.2288; found, 545.2282.

Tert-butyl 4-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yloxy)piperidine-1-carboxylate (58a). Compound **58a** was obtained a light brown amorphorous solid (220 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ (CDCl₃) 8.77 (s, 1H), 8.70 (s, 1H), 7.91–7.89 (m, 2H), 7.38–7.28 (m, 2H), 7.14–7.04 (m, 3H), 6.94–6.86 (m, 2H), 4.60 (m, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.67–3.63 (m, 2H), 3.47–3.46 (m, 2H), 2.33 (s, 3H), 1.93–1.81 (m, 4H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.5, 159.4, 156.7, 154.9, 149.5, 138.7, 131.0, 130.0, 129.2, 128.2, 126.1, 125.7, 124.2, 122.1, 121.8, 115.33, 115.29, 113.6, 113.2, 111.1, 110.5, 79.8, 72.8, 56.0, 55.4, 30.6, 28.5, 22.0, 21.8, 8.4. IR (film) v_{max} 3400, 2980, 2864, 1717, 1699, 1683, 1635, 1558, 1521, 1386, 1244, 1105 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₃₅H₃₈N₂O₈Na, 637.2526; found, 637.2523.

Tert-butyl 4-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-8-methoxy-2-oxochromen-7yloxy)piperidine-1-carboxylate (**58b).** Compound **58b** was obtained as a light brown amorphorous solid (156 mg, 85%). ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.73 (s, 1H), 7.93–7.90 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.7 Hz, 1H), 7.14–7.07 (m, 3H), 6.96– 6.93 (m, 2H), 4.61–4.58 (m, 1H), 4.01 (s, 3H), 3.91 (s, 3H), 3.87 (s, 3H), 3.77–3.72 (m, 2H), 3.42 (m, 2H), 2.00–1.96 (m, 2H), 1.85–1.82 (m, 2H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 158.8, 154.8, 151.7, 144.3, 138.6, 137.8, 131.0, 130.0, 129.2, 128.2, 125.9, 123.7, 122.4, 122.3, 122.0, 115.3, 115.1, 113.6, 113.1, 111.0, 79.7, 74.5, 61.5, 55.9, 55.3, 53.5, 30.7, 28.4, 21.7. IR (KBr) ν_{max} 3404, 2978, 2935, 1701, 1637, 1605, 1521, 1431, 1389, 1373, 1232, 1207, 1180, 1086 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₅H₃₉N₂O₉, 631.2656; found, 631.2652.

Tert-butyl 4-(3-(3',6-dimethoxybiphenyl-3-ylcarboxamido)-6-methoxy-8-methyl-2oxochromen-7-yloxy)piperidine-1-carboxylate (58c). Compound **58c** was obtained as a light brown amorphorous solid (120 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.75 (s, 1H), 7.92–7.89 (m, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.13–7.04 (m, 3H), 6.94–6.91 (m, 1H), 6.83 (s, 1H), 4.37–4.33 (m, 1H), 3.88 (s, 6H), 3.86 (s, 3H), 3.90–3.86 (m, 2H), 3.11–3.06 (m, 2H), 2.37 (s, 3H), 1.90 (m, 2H), 1.75–1.71 (m, 2H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.32, 159.28, 154.8, 150.3, 146.7, 143.4, 138.6, 131.0, 130.0, 129.2, 128.2, 126.0, 123.6, 123.0, 122.0, 120.6, 115.28, 115.23, 113.1, 111.0, 106.5, 79.6 78.6, 56.0, 55.9, 55.3, 31.7 (2C), 28.5, 21.7 (2C), 9.7. IR (KBr) ν_{max} 3404, 2939, 2860, 1697, 1674, 1636, 1605, 1522, 1500, 1382, 1242, 1207, 1176, 1026 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₆H₄₁N₂O₉, 645.2812; found, 645.2810.

3',6-dimethoxy-N-(8-methyl-2-oxo-7-(piperidin-4-yloxy)-2H-chromen-3-yl)biphenyl-3carboxamide (59a). Compound **59a** was obtained as a white amorphorous solid (41 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ (CDCl₃) 8.82 (s, 1H), 8.73 (s, 1H), 7.95–7.91 (m, 2H), 7.41–7.35 (m, 2H), 7.15–7.08 (m, 3H), 6.95 (d, *J* = 4.0 Hz, 1H), 6.88 (d, *J* =4.8 Hz, 1H), 4.66 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.27 (m, 2H), 3.04 (m, 2H), 2.38 (s, 3H), 2.19–2.16 (m, 2H), 1.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (CDCl₃) 165.7, 160.0, 159.6, 159.5, 156.5, 149.6, 138.8, 131.2, 130.2, 129.4, 128.4, 126.2, 125.8, 124.3, 122.2, 122.1, 115.5, 115.4, 113.9, 113.3, 111.2, 110.5, 71.5, 56.1, 55.5, 42.0 (2C), 29.8 (2C), 8.6. IR (film) *v_{max}* 3400, 2933, 2833, 1699, 1668, 1601, 1522, 1499, 1366, 1236, 1204, 1134, 1101, 1028 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for $C_{30}H_{31}N_2O_6$, 515.2182; found, 515.2189.

3',6-dimethoxy-N-(8-methoxy-2-oxo-7-(piperidin-4-yloxy)chromen-3-yl)biphenyl-3carboxamide (59b). Compound **59b** was obtained as a white amorphorous solid (145 mg, 93%). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 7.69–7.66 (m, 2H), 7.21 (t, J = 8.5 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.96–6.92 (m, 4H), 6.82–6.80 (m, 1H), 4.66 (m, 1H), 3.85 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 3.42–3.37 (m, 2H), 3.23–3.19 (m, 2H), 2.15–2.10 (m, 2H), 2.02–1.98 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 161.2, 160.8, 159.7, 152.4, 145.6, 140.1, 138.8, 131.7, 131.3, 130.1, 129.5, 126.8, 126.1, 124.1, 123.5, 123.1, 116.6, 116.5, 114.8, 113.8, 112.3, 72.1, 62.1, 56.4, 55.9, 41.8, 28.5. IR (KBr) v_{max} 3414, 2966, 2927, 1680, 1632, 1610, 1410, 1371, 1277, 1205, 1142 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₁N₂O₇, 531.2131; found, 531.2120.

3',6-dimethoxy-N-(6-methoxy-8-methyl-2-oxo-7-(piperidin-4-yloxy)-2H-chromen-3-yl)-[**1,1'-biphenyl]-3-carboxamide (59c).** Compound **59c** was obtained as a white amorphorous solid (74 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ (DMSO-*d*₆) 9.66 (s, 1H), 8.54 (s, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.92 (s, 1H), 7.37 (t, *J* =8.0 Hz, 1H), 7.31 (s, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.12–7.10 (m, 2H), 6.96 (d, *J* = 8.0 Hz, 1H), 4.38 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.31 (m, 2H), 3.06 (m, 2H), 2.28 (s, 3H), 2.04 (m, 2H), 1.89 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.6, 159.6, 159.4, 158.2, 150.1, 146.5, 143.9, 139.1, 130.5, 129.9, 129.6, 128.3, 126.1, 123.3, 122.2, 119.7, 119.0, 115.7, 115.4, 113.0, 112.0, 107.9, 75.6, 56.6, 56.4, 49.0, 41.3, 28.7, 9.7. IR (KBr) v_{max} 3400, 2970, 2849, 1678, 1632, 1605, 1433, 1385, 1205, 1138, 1026 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₇, 545.2288; found, 545.2288.

3',6-dimethoxy-N-(8-methyl-7-(1-methylpiperidin-3-yloxy)-2-oxo-2H-chromen-3-

yl)biphenyl-3-carboxamide (60a). Compound 60a was obtained as a light brown amorphorous solid (35 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.72 (s, 1H), 7.96–7.91 (m, 2H), 7.41–7.34 (m, 2H), 7.15–7.08 (m, 3H), 6.98–6.94 (m, 2H), 4.47 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.09–3.07 (m, 1H), 2.76–2.74 (m, 1H), 2.36 (s, 3H), 2.34 (s, 3H), 2.20–2.07 (m, 2H), 1.90–1.86 (m, 1H), 1.72–1.64 (m, 2H), 1.54–1.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 159.8, 159.5, 159.3, 157.3, 149.4, 138.6, 131.0, 130.0, 129.2, 128.1, 126.1, 125.6, 124.3, 122.0, 121.6, 115.3, 115.2, 113.5, 113.1, 111.0, 110.9, 74.2, 59.9, 55.9, 55.4, 55.3, 46.3, 29.8, 23.3, 8.4. IR (film) ν_{max} 3406. 2939, 2839, 1705, 1674, 1605, 1526, 1502, 1367, 1269, 1242, 1205, 1182, 1138, 1105, 1036 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₆, 529.2339; found, 529.2335.

3',6-dimethoxy-N-(8-methoxy-7-(1-methylpiperidin-3-yloxy)-2-oxo-2H-chromen-3yl)biphenyl-3-carboxamide (60b). Compound **60b** was obtained a light brown amorphorous solid (16 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.72 (s, 1H), 7.94–7.90 (m, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.7 Hz, 1H), 7.15–7.07 (m, 3H), 6.98 (d, *J* = 8.7 Hz, 1H), 6.95 (dd, *J* = 8.0, 2.4 Hz, 1H), 4.48 (m, 1H), 4.01 (s, 3H), 3.91 (s, 3H), 3.87 (s, 3H), 3.06 (d, *J* = 10.0 Hz, 1H), 2.71 (d, *J* = 10.0 Hz, 1H), 2.34 (s, 3H), 2.10 (t, *J* = 9.7 Hz, 1H), 2.13–2.06 (m, 2H), 1.89–1.69 (m, 1H), 1.69–1.66 (m, 1H), 1.55–1.52 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.3, 158.9, 152.1, 144.2, 138.6, 137.6, 131.1, 130.0, 129.2, 128.2, 126.0, 123.9, 122.4, 122.2, 122.0, 115.3, 114.8, 113.3, 113.2, 111.0, 74.9, 61.5, 59.8, 55.9, 55.3 (2C), 46.3, 29.6, 23.2. IR (KBr) ν_{max} 3407, 2939, 2870, 2850, 1711, 1673, 1605, 1529, 1367, 1244, 1278, 1090 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₇, 545.2288; found, 545.2298.

3',6-dimethoxy-N-(6-methoxy-8-methyl-7-(1-methylpiperidin-3-yloxy)-2-oxo-2Hchromen-3-yl)biphenyl-3-carboxamide (60c). Compound **60c** was obtained a light brown amorphorous solid (47 mg, 60 %). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.77 (s, 1H), 7.95–7.91 (m, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.15–7.08 (m, 3H), 6.95 (dd, *J* = 8.0, 2.4 Hz, 1H), 6.85 (s, 1H), 4.35 (m, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.00 (d, *J* = 8.0 hz, 1H), 2.69 (d, J = 8.0 Hz, 1H), 2.41 (s, 3H), 2.34 (s, 3H), 2.24 (t, *J* = 8.0 Hz, 1H), 2.09–2.01 (m, 3H), 1.88– 1.85 (m, 1H), 1.63–1.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.8, 159.4, 159.3, 150.4, 147.0, 143.4, 138.6, 131.1, 130.0, 129.2, 128.2, 126.1, 123.8, 122.9, 122.0, 120.8, 115.3, 115.2, 113.1, 111.0, 106.3, 78.2, 60.5, 56.0, 55.9, 55.4, 55.3, 46.4, 30.3, 23.4, 9.6. IR (KBr) *v_{max}*

3408, 2978, 2934, 2874, 2858, 1713, 1633, 1603, 1520, 1467, 1373, 1288, 1226, 1203, 1105 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for $C_{32}H_{35}N_2O_7$, 559.2444; found, 559.2446.

3',6-dimethoxy-N-(8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3yl)biphenyl-3-carboxamide (61a). Compound **61a** was obtained a light brown amorphorous solid (56 mg, 46 %). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.67 (s, 1H), 7.92–7.86 (m, 2H), 7.36–7.33 (m, 2H), 7.11–7.08 (m, 3H), 6.93–6.89 (m, 2H), 4.54 (m, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 2.80–2.76 (m, 2H), 2.57 (m, 2H), 2.41 (s, 3H), 2.33 (s, 3H), 2.19–2.12 (m, 2H), 1.97–1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 159.7, 159.4, 159.3, 157.0, 149.4, 138.9, 130.8, 130.8, 129.8, 128.1, 126.1, 125.5, 123.9, 121.9, 121.7, 115.3, 115.0, 113.2, 112.8, 111.0, 110.5, 73.1, 55.8, 55.3, 52.5, 46.0 (2C), 30.9 (2C), 8.1. IR (film) *v_{max}* 3406, 2939, 2839, 1705, 1674, 1605, 1526, 1502, 1367, 1242, 1205, 1182, 1138, 1105, 1036 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₆, 529.2339; found, 529.2334.

3',6-dimethoxy-N-(8-methoxy-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-chromen-3-yl)-[**1,1'-biphenyl]-3-carboxamide (61b).** Compound **61b** was obtained a light brown amorphorous solid (47 mg, 66 %). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.74 (s, 1H), 7.94–7.88 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.14–7.08 (m, 3H), 6.98–6.94 (m, 2H). 4.78 (m,1H), 4.03 (s, 3H), 3.92 (s, 3H), 3.87 (s, 3H), 3.56–3.53 (m, 2H), 3.35–3.30 (m, 2H), 2.92 (s, 3H), 2.38–2.20 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 160.0, 159.3, 158.5, 150.4, 144.3, 138.5, 138.2, 131.1, 130.0, 129.2, 128.3, 125.6, 123.7, 123.1, 122.8, 122.0, 116.2, 115.3, 114.3, 113.1, 111.1, 68.8, 61.8, 55.9, 55.3, 49.9 (2C), 44.1, 27.2 (2C). IR (KBr) v_{max} 406, 2941, 2928, 2853, 1713, 1666, 1605, 1526, 1502, 1462, 1367, 1277, 1244, 1207, 1086, 1045 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₃N₂O₇, 545.2288; found, 545.2281.

3',6-dimethoxy-N-(6-methoxy-8-methyl-7-((1-methylpiperidin-4-yl)oxy)-2-oxo-2H-

chromen-3-yl)-[1,1'-biphenyl]-3-carboxamide (**61c**). Compound **61c** was obtained a light brown amorphorous solid (43 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.77 (s, 1H), 7.95–7.91 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 1H0, 7.15–7.08 (m, 3H), 6.95 (dd, *J* = 8.0, 2.4 Hz, 1H), 6.86 (s, 1H), 4.30 (m, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 2.97 (m, 2H), 2.52–2.46 (m, 5H), 2.40 (s, 3H), 2.11 (m, 2H), 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.8, 159.33, 159.31, 150.2, 146.8, 143.5, 138.6, 131.1, 130.0, 129.2, 128.2, 126.0, 123.6, 123.1, 122.0, 120.6, 115.34, 115.28, 113.1, 111.0, 106.5, 77.3, 56.0, 55.9, 55.3, 52.4 (2C), 45.3, 30.8 (2C), 9.7. IR (KBr) ν_{max} 3404, 2937, 2841, 1718, 1649, 1602, 1577, 1477, 1465, 1371, 1249, 1207, 1180, 1138, 1083 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₂H₃₅N₂O₇, 559.2444; found, 559.2448.

3',6-dimethoxy-N-(8-methyl-7-(2-(methylamino)ethoxy)-2-oxo-2H-chromen-3-

yl)biphenyl-3-carboxamide (64a). Compound 64a was obtained after acidic deprotetion of 63a as a light brown amorphous solid (174 mg, 65% over 2 steps). ¹HNMR (400 MHz, CD₃OD) δ 8.61 (s, 1H), 7.93 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.87 (d, *J* = 2.2 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.32 (t, *J* = 8.2 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 1H), 7.09–7.05 (m, 3H), 6.91 (dd, *J* = 8.2, 1.5 Hz, 1H), 4.38 (t, *J* = 8.0 Hz, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 3.53 (t, *J* = 8.0 Hz, 2H), 2.85 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.3, 159.3, 159.1, 158.4, 157.7, 149.7, 138.8, 130.1, 129.6, 129.5, 129.3, 126.4, 125.9, 121.9, 121.5, 118.8, 115.8, 115.4, 113.2, 113.0, 111.7, 109.2, 65.3, 56.0, 55.2, 48.0, 33.7, 8.1. IR (KBr) *v*_{max} 3433 (broad), 2924, 2851, 1691, 1652, 1601, 1462, 1382, 1209, 1145, 1020 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₈H₂₉N₂O₆, 489.2026; found, 489.2020.

3',6-dimethoxy-N-(8-methoxy-7-(2-(methylamino)ethoxy)-2-oxo-2H-chromen-3yl)biphenyl-3-carboxamide (64b). Compound **64b** was obtained after acidic deprotetion of **63b** as a light yellow amorphous solid (112 mg, 89% over 2 steps). ¹HNMR (400 MHz, CD₃OD) δ 8.59 (s, 1H), 7.90 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.85 (d, *J* = 2.4 Hz, 1H), 7.32–7.29 (m, 2H), 7.16 (d, *J* = 8.6 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 7.07–7.06 (m, 2H), 6.91–6.89 (m, 1H), 4.40 (t, *J* = 4.9 Hz, 2H), 3.98 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.52 (t, *J* = 4.9 Hz, 2H), 2.85 (s, 3H). ¹³CNMR (100 MHz, CD₃OD) δ 168.0, 161.5, 161.0, 159.9, 153.7, 145.8, 140.3, 138.0, 132.2, 131.4, 130.2, 129.8, 127.2, 127.0, 124.4, 123.9, 123.1, 117.0, 116.5, 113.9, 113.1, 112.5, 66.7, 62.4, 56.5, 55.9, 49.6, 34.2. IR (KBr) *v_{max}* 3402 (broad), 2926, 2851, 1702, 1678, 1601, 1479, 1383,

1248, 1209, 1146, 1099, 1020 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for C₂₈H₂₉N₂O₇, 505.1975; found, 505.1977.

3',6-dimethoxy-N-(6-methoxy-8-methyl-7-(2-(methylamino)ethoxy)-2-oxo-2H-chromen-3-yl)biphenyl-3-carboxamide (64c). Compound **64c** was obtained after acidic deprotetion of **63c** as a light yellow amorphous solid (59 mg, 47% over 2 steps). ¹HNMR (400 MHz, CD₃OD) δ 8.53 (s, 1H), 7.84–7.79 (m, 2H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.78–6.74 (m, 3H), 6.59 (s, 1H), 6.58 (dd, *J* = 8.0, 1.5 Hz, 1H), 3.89 (t, *J* = 4.5 Hz, 2H), 3.56 (s, 3H), 3.11 (t, *J* = 4.5 Hz, 2H), 3.05 (s, 3H), 3.01 (s, 3H), 2.53 (s, 3H), 1.98 (s, 3H). ¹³CNMR (100 MHz, CD₃OD) δ 170.0, 163.8, 163.3, 162.7, 153.7, 150.4, 147.0, 142.6, 134.4, 133.7, 132.6, 132.1, 129.4, 128.6, 127.0, 125.5, 123.7, 120.0, 119.0, 116.2, 114.8, 110.6, 71.3, 59.1, 58.8, 58.3, 52.8, 36.3, 11.4. IR (KBr) *v_{max}* 3450 (broad), 2924, 2845, 1708, 1678, 1602, 1464, 1383, 1277, 1209, 1146, 1020 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₉H₃₁N₂O₇, 519.2131; found, 519.2128.

N-(7-(2-(dimethylamino)ethoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (65a). Compound 65a was obtained as colorless amorphous solid (52 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.70 (s, 1H), 7.93–7.89 (m, 2H), 7.39–7.34 (m, 2H), 7.14–7.06 (m, 3H), 6.94 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.88 (d, *J* = 8.7, 1H), 4.17 (t, *J* = 5.8 Hz, 2H), 3.90 (s, 3H), 3.86 (s, 3H), 2.81 (t, *J* = 5.8 Hz, 2H), 2.38 (s,
6H), 2.34 (s, 3H). ¹³CNMR (100 MHz, CDCl3) δ 165.5, 159.8, 159.6, 159.3, 158.3, 149.2, 138.6, 131.0, 130.0, 129.2, 128.2, 126.1, 125.7, 124.4, 122.0, 121.6, 115.2, 114.2, 113.5, 113.2, 11.0, 108.9, 67.5, 58.3, 55.9, 55.3, 46.2, 8.4. IR (KBr) *v_{max}* 3406, 2926, 2851, 1709, 1667, 1605, 1582, 1500, 1441, 1367, 1269, 1246, 1207, 1180, 1140, 1113 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₉H₃₁N₂O₆, 503.2182; found, 503.2181.

N-(7-(2-(dimethylamino)ethoxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (65b). Compound **65b** was obtained as a light yellow amorphous solid (47 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.71(s, 1H), 7.93–7.89 (m, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 8.8 Hz, 1H), 7.13–7.06 (m, 3H), 6.95–6.92 (m, 2H), 4.21 (t, J = 5.9 Hz, 2H), 4.00 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.82 (t, J = 5.9 Hz, 2H), 2.38 (s, 6H). ¹³CNMR (100 MHz, CDCl3) δ 165.5, 159.8, 159.3, 158.9, 153.3, 144.0, 138.6, 136.7, 131.1, 130.0, 129.2, 128.2, 126.0, 123.9, 122.5, 122.1, 122.0, 115.3, 114.7, 113.2, 111.2, 111.0, 68.0, 61.6, 58.1, 55.9, 55.3, 46.0. IR (KBr) v_{max} 3404, 2928, 2853, 1693, 1648, 1605, 1479, 1367, 1248, 1207, 1113, 1032, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₉H₃₁N₂O₇, 519.2131; found, 519.2135.

N-(7-(2-(dimethylamino)ethoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (65c). Compound 65c was obtained as a white amorphous

solid (41 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.77 (s, 1H), 7.94–7.91 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.15–7.08 (m, 3H), 6.96–6.94 (m, 1H), 6.86 (s, 1H), 4.15 (t, *J* = 5.7 Hz, 2H), 3.91 (s, 6H), 3.88 (s, 3H), 2.83 (t, *J* = 5.7 Hz, 2H), 2.47 (s, 3H), 2.45 (s, 3H), 2.41 (s, 3H). ¹³CNMR (100 MHz, CDCl3) δ 165.5, 159.8, 159.4 (2C), 150.3, 148.1, 143.4, 138.6, 131.1, 130.0, 129.2, 128.2, 126.0, 123.7, 123.1, 122.0, 120.4, 115.5, 115.3, 113.1, 111.0, 106.5, 70.5, 59.0, 56.0, 55.9, 55.3, 45.6, 9.0. IR (KBr) v_{max} 3398, 2954, 2847, 1706, 1674, 1605, 1582, 1529, 1502, 1468, 1381, 1246, 1207, 1144, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₃N₂O₇, 533.2288; found, 533.2291.

N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (66a). Compound 66a was obtained as a light brown amorphous solid (65 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.71 (s, 1H), 7.95–7.91 (m, 2H), 7.40–7.34 (m, 2H), 7.15–7.08 (m, 3H), 6.95 (dd, J = 8.2, 2.0 Hz, 1H), 6.89 (d, J = 8.7 Hz, 1H), 4.14 (t, J = 6.2 Hz, 2H), 3.92 (s, 3H), 3.88 (s, 3H), 2.61 (t, J = 6.2 Hz, 2H), 2.37 (s, 6H), 2.34 (s, 3H), 2.11–2.06 (m, 2H). ¹³CNMR (100 MHz, CDCl3) δ 165.5, 159.8, 159.6, 159.3, 158.4, 149.2, 138.6, 131.0, 130.0, 129.2, 128.2, 126.1, 125.7, 124.5, 122.0, 121.5, 115.2, 114.1, 113.4, 113.2, 111.0, 108.9, 66.8, 56.3, 55.9, 55.3, 45.3, 27.2, 8.2. IR (KBr) v_{max} 3400, 2924, 2854, 1708, 1670, 1607, 1528, 1367, 1242, 1205, 1111, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₃N₂O₆, 517.2339; found, 517.2342.

N-(7-(3-(dimethylamino)propoxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (66b). Compound 66b was obtained as a light yellow amorphous solid (36 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.70 (s, 1H), 7.92–7.88 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.13–7.06 (m, 3H), 6.94–6.90 (m, 2H), 4.17 (t, *J* = 6.2 Hz, 2H), 4.02 (s, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 2.65 (t, *J* = 6.2 Hz, 2H), 2.39 (s, 6H), 2.12 (m, 2H). ¹³CNMR (100 MHz, CDCl3) δ 165.5, 159.8, 159.4, 158.9, 153.4, 144.0, 138.6, 136.5, 131.1, 130.0, 129.2, 128.2, 126.0, 124.0, 122.6, 122.1, 122.0, 115.3, 114.6, 113.2, 111.0, 111.95, 67.5, 61.5, 56.1, 55.9, 55.3, 45.1, 27.0. IR (KBr) v_{max} 3404, 2941, 2837, 1709, 1666, 1602, 1582, 1501, 1462, 1379, 1244, 1207, 1180, 1093 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₃N₂O₇, 533.2288; found, 533.2291.

N-(7-(3-(dimethylamino)propoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6dimethoxybiphenyl-3-carboxamide (66c). Compound **66c** was obtained as a white amorphous solid (57 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.75 (s, 1H), 7.92–7.90 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.14–7.06 (m, 3H), 6.95–6.92 (m, 1H), 6.84 (s, 1H), 4.06 (t, *J* = 6.2 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H), 2.74 (t, *J* = 6.2 Hz, 2H), 2.44 (s, 6H), 2.39 (s, 3H), 2.11–2.05 (m, 2H). ¹³CNMR (100 MHz, CDCl3) δ 165.5, 159.8, 159.3, 158.30, 158.29 150.3, 148.0, 143.3, 138.6, 131.0, 130.0, 129.2, 126.0, 123.7, 123.1, 122.0, 120.3, 115.5, 115.3, 113.1, 111.0, 106.5, 71.3, 56.3, 56.0, 55.9, 55.3, 44.9, 27.7, 9.0. IR (KBr) v_{max} 3404, 2941, 2837, 1709, 1672, 1603, 1582, 1526, 1501, 1464, 1377, 1242, 1205, 1093, 1034 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₅N₂O₇, 547.2444; found, 547.2449.

N-(7-(allyloxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (67a). A solution of compound 6a (149 mg, 0.35 mmol) in THF (5 mL) was treated with potassium carbonate (238 mg, 1.73 mmol) and allylbromide (84 mg, 0.69 mmol). The resulting mixture was refluxed for 8 h, quenched with aqueous ammonium chloride and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with water and saturated sodium chloride solution, dried over anhydrous magnesium sulfate and concentrated to dryness. The residue was purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to give compound 67a as a white amorphous solid (144 mg, 88%). ¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 8.70 (s, 1H), 7.92–7.90 (m, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.16– 7.12 (m, 2H), 7.06 (d, J = 8.0 Hz, 1H), 6.95 (dd, J = 8.0 Hz, 1.5, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.61-6.04 (m, 1H), 5.47 (dd, J = 7.1, 1.5 Hz, 1H), 5.33 (dt, J = 10.2, 1.1 Hz, 1H), 4.61 (d, J = 5.0Hz, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.3, 159.7, 159.5, 159.4, 158.0, 149.2, 138.6, 132.8, 131.0, 130.0, 129.2, 128.1, 126.1, 125.6, 124.2, 122.0, 121.6, 117.6, 115.3, 114.3, 113.5, 113.1, 111.0, 109.2, 69.3, 55.9, 55.3, 8.2, IR (KBr) v_{max} 3400. 3085, 3025, 2939, 2835, 1711, 1672, 1605, 1524, 1502, 1462, 1367, 1281, 1246, 1207, 1180, 1103, 1022 cm⁻¹. HRMS (ESI⁺) m/z calcd for $[M+Na^+]$ C₂₈H₂₄NO₆Na, 494.1580; found, 494.1583.

N-(7-(allyloxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-

carboxamide (67b). A solution of compound 6b (61 mg, 0.14 mmol) in DMF (5 mL) was treated with sodium hydride (60%, 8.4 mg, 0.21 mmol) and allylbromide (34 mg, 0.28 mmol). The resulting mixture was refluxed for 8 h, quenched with aqueous ammonium chloride and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with water and saturated sodium chloride solution, dried over anhydrous magnesium sulfate and concentrated to dryness. The residue was purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford compound **67b** as a white amorphous solid (57 mg, 84%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.81 \text{ (s, 1H)}, 8.72 \text{ (s, 1H)}, 7.92 \text{ (dd, } J = 8.6, 2.4 \text{ Hz}, 1\text{H}), 7.89 \text{ (d, } J = 2.4 \text{ Hz}, 1\text{H})$ Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.6 Hz, 1H), 7.13 (td, J = 7.6, 1.0 Hz, 1H), 7.10– 7.08 (m, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.95–6.92 (m, 2H), 6.13–6.05 (m, 1H), 5.46 (dd, J = 7.2, 1.5 Hz, 1H), 5.34 (dt, J = 5.0, 1.1 Hz, 1H), 4.69 (dd, J = 5.0, 1.0 Hz, 2H), 4.02 (s, 1H), 3.91 (s, 3H), 3.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 160.0, 159.5, 159.1, 153.2, 144.2, 138.8, 136.8, 132.8, 131.3, 130.2, 129.4, 128.4, 126.2, 124.2, 122.7, 122.4, 122.2, 118.5, 115.5, 114.9, 113.4, 111.5, 111.2, 70.3, 61.8, 56.1, 55.5. IR (KBr) v_{max} 3400, 3084, 3000, 2937, 2835, 1713, 1672, 1607, 1526, 1502, 1462, 1367, 1283, 1245, 1207, 1103, 1022 cm⁻¹. HRMS (ESI⁺) m/z calcd for [M+Na⁺] C₂₈H₂₅NO₇Na, 510.1529; found, 510.1521.

N-(7-(allyloxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3carboxamide (67c). Compound **67c** was obtained as a white amorphous solid (34 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 8.74 (s, 1H), 7.90 (dd, J = 10.8, 2.3 Hz, 1H), 7.88 (d, J = 2.3Hz, 1H), 7.34 (t, J = 10.8 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.08 (s, 1H), 7.05 (d, J = 8.5, Hz, 1H), 6.92 (d, J = 8.5, 1H), 6.83 (s, 1H), 6.12–6.04 (m, 1H), 5.35 (d, J = 7.2, 1.5 Hz, 1H), 5.23 (d, J = 10.3 Hz, 1H), 4.54 (dd, J = 6.0, 1.0 Hz, 2H), 3.89 (s, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 2.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 160.0, 159.6, 159.5, 150.6, 148.0, 143.5, 138.8, 134.0, 131.2, 130.2, 129.4, 128.4, 126.2, 123.9, 123.2, 122.2, 120.8, 118.4, 115.7, 115.5, 113.3, 111.2, 106.7, 74.4, 56.2, 56.1, 55.5, 9.4. IR (KBr) v_{max} 3402, 3084, 3002, 2939, 2835, 1713, 1670, 1605, 1526, 1502, 1462, 1367, 1283, 1246, 1207,1103, 1022 cm⁻¹. HRMS (ESI⁺) m/z calcd for [M+Na⁺] C₂₉H₂₇NO₇Na, 524.1685; found, 524.1684.

N-(7-(2,3-Dihydroxypropoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-dimethoxybiphenyl-3-carboxamide (68a). Compound 68a was obtained as a white amorphous powder (58 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.72 (s, 1H), 7.95–7.91 (m, 2H), 7.41–7.36 (m, 2H), 7.16–7.08 (m, 3H), 6.97–6.90 (m, 2H), 4.22–4.16 (m, 3H), 3.99 (s, 3H), 3.92 (s, 3H), 3.91–3.81 (2H), 2.59 (s, 1H), 2.36 (s, 3H), 2.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 159.5, 159.4, 158.9, 158.8, 150.0, 139.2, 130.4, 129.8, 129.6, 129.5, 129.3, 126.7, 126.2, 122.2, 121.5, 115.7, 113.1, 113.0 (2C), 112.0, 109.6, 70.9, 70.4, 63.1, 56.4, 55.6, 8.4. IR (KBr) ν_{max} 3256 (broad), 3030, 2980, 2939, 1735, 1691, 1526, 1382, 1256, 1178, 1109, 1051, 1020 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₂₈H₂₇NO₈Na, 528.1634; found, 528.1630.

N-(7-(2,3-dihydroxypropoxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (68b). Compound **68b** was obtained as a white amorphous powder (26 mg, 74%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.68 (s, 1H), 8.48 (s, 1H), 7.99 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.92 (d, *J* = 2.3 Hz, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.26 (d, J = 8.6, 1H), 7.12 (t, J = 8.8 Hz, 1H), 7.10 (d, J = 2.6 Hz, 1H), 6.96 (dd, J = 8.3, 2.1 Hz, 1H), 5.05 (bs, 1H), 4.73 (t, *J* = 5.7 Hz, 1H), 4.15 (dd, J = 10.0, 4.1 Hz, 1H), 4.04 (dd, J = 10.0, 2.2 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.79 (s, 3H), 3.50 (t, *J* = 5.6 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.1, 159.1, 158.9, 157.9, 153.6, 144.2, 138.7, 135.3, 130.0, 129.3, 129.2, 129.1 (2C), 125.7, 122.9, 121.7, 121.5, 115.2, 113.6, 112.5, 111.5, 110.8. 70.7, 69.8, 62.6, 60.8, 55.9, 55.1. IR (KBr) ν_{max} 3294 (broad), 2982, 2937, 1711, 1678, 1538, 1502, 1468, 1375, 1232, 1109, 1047, 1020 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₂₈H₂₇NO₉Na, 544.1583; found, 544.1581.

N-(7-(2,3-dihydroxypropoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-3',6-

dimethoxybiphenyl-3-carboxamide (**68c**). Compound **68c** was obtained as a white amorphous powder (18 mg, 67%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.65 (s, 1H), 8.54 (s, 1H), 8.00 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.91 (d, *J* = 2.4 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.29 (s, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.12–7.09 (m, 2H), 6.96 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.89 (s, OH, 1H), 4.62 (t, *J* = 5.7 Hz, 1H), 7.12–7.09 (m, 2H), 6.96 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.89 (s, OH, 1H), 4.62 (t, *J* = 5.7 Hz, 1H), 7.12–7.09 (m, 2H), 6.96 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.89 (s, OH, 1H), 4.62 (t, *J* = 5.7 Hz, 1H), 7.12–7.09 (m, 2H), 6.96 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.89 (s, OH, 1H), 4.62 (t, *J* = 5.7 Hz), 1H

1H), 4.05 (dd, J = 10.0, 4.2, 1H), 3.98–3.92 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.79–3.74 (m, 1H), 3.44 (t, J = 5.6 Hz, 2H). 2.31 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 165.2, 159.1, 159.0, 158.2, 149.6, 148.1, 143.5, 138.7, 130.0, 129.4, 129.1 (2C), 128.1, 125.7, 122.6, 121.7, 119.0, 115.2, 114.6, 112.6, 111.6, 107.6, 75.0, 70.7, 62.9, 56.1, 55.9, 55.1, 8.8. IR (KBr) v_{max} 3284 (broad), 2980, 2842, 1709, 1694, 1524, 1483, 1375, 1251, 1178, 1146, 1109, 1051, 1020 cm⁻¹. HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₂₉H₂₉NO₉Na, 558.1740; found, 558.1733.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl carbamate (69a): A solution of sulfurisocyanatidic chloride (6.0 µL, 0.070 mmol), dissolved in anhydrous CH₂Cl₂ (0.20 mL), was slowly added to **6a**³ (30 mg, 0.070 mmol) in anhydrous CH₂Cl₂ (1.20 mL) at rt. After 2 h, the solvent was removed and the residue was stirred with cold H₂O overnight. The solid was collected by filtration, washing with H₂O, and thoroughly dried to afford **69a** as a yellow amorphous solid (19 mg, 56%): ¹H NMR (DMSO-*d*₆, 500 MHz) § 9.77 (s, 1H), 8.59 (s, 1H), 8.01 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.93 (d, *J* = 2.5 Hz, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.43 (bs, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 9.0 Hz, 1H), 7.14–7.09 (m, 4H), 6.97– 6.94 (m, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 2.21 (s, 3H); ¹³C NMR (DMSO-*d*₆, 125 MHz) § 168.5, 165.3, 159.2, 159.0, 154.2, 149.1, 138.7, 136.7, 130.1, 129.4, 129.3, 129.2, 127.9, 125.7, 125.6, 123.2, 121.8, 119.8, 118.4, 116.6, 115.3, 112.6, 111.6, 56.0, 55.2, 8.7; IR (film) *v_{max}* 3053, 2986, 2305, 1713, 1603, 1522, 1421, 1367, 1265, 897, 748; HRMS (ESI⁺) *m/z*: [M + 2H⁺] calcd for C₂₆H₂₄N₂O₇, 476.1584; found, 476.1514.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl carbamate (69b): A solution of sulfurisocyanatidic chloride (3.8 µL, 0.043 mmol), dissolved in anhydrous CH₂Cl₂ (0.12 mL), was slowly added to **6b** (20 mg, 0.043 mmol) in anhydrous CH₂Cl₂ (0.75 mL) at rt. After 2 h, the solvent was removed and the residue was stirred with cold H₂O overnight. The solid was collected by filtration, washing with H₂O, and thoroughly dried to afford **69b** as a yellow amorphous solid (11 mg, 50%): ¹H NMR (CDCl₃, 500 MHz) δ 8.81 (s, 1H), 8.78 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.90 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.14–7.07 (m, 4H), 6.95–6.93 (m, 1H), 6.91 (s, 1H), 3.90 (s, 6H), 3.86 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.8, 160.0, 159.5, 159.2, 153.8, 149.6, 142.8, 139.7, 138.7, 131.2, 130.2, 129.3, 128.4, 126,1, 124.1, 123.3, 122.1, 121.3, 117.8, 115.4, 113.3, 111.1, 106.6, 56.5, 56.0, 55.5, 9.2; IR (film) *v_{max}* 3053, 2986, 2684, 2305, 1421, 1265, 895, 750, 706; HRMS (ESI⁺) *m*/z: [M + 2H⁺] calcd for C₂₇H₂₆N₂O₈, 506.1689; found, 506.1637.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl carbamate (69c): A solution of sulfurisocyanatidic chloride (11 μ L, 0.13 mmol), dissolved in anhydrous CH₂Cl₂ (0.4 mL), was slowly added to 6c (30 mg, 0.066 mmol) in anhydrous CH₂Cl₂ (1.6 mL) at rt. After 2 h, the solvent was removed and the residue was stirred with cold H₂O

overnight. The solid was collected by filtration, washing with H₂O, and thoroughly dried to afford **69c** as a colorless amorphous solid (22 mg, 68%): ¹H NMR (DMSO-*d*₆, 500 MHz) § 9.78 (s, 1H), 8.58 (s, 1H), 8.01 (dd, J = 8.5, 2.5 Hz, 1H), 7.93 (d, J = 2.5 Hz, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.46 (bs, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.5 Hz, 1H), 7.16–7.10 (m, 4H), 6.97–6.94 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 165.8, 160.1, 159.5, 158.4, 154.1, 144.3, 143.7, 140.0, 138.7, 131.3, 130.1, 129.3, 128.4, 125.9, 123.9, 123.2, 122.2, 122.1, 120.3, 119.3, 115.4, 113.3, 111.2, 62.0, 56.1, 55.5; IR (film) v_{max} 3406, 3271, 3053, 2986, 2359, 2339, 1715, 1672, 1603, 1531, 1502, 1366, 1265, 1082, 897, 737, 704; HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₆H₂₃N₂O₈, 491.1454; found, 491.1432.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-vlcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl methylcarbamate (70b): A solution of **6b** (20 mg, 0.043 mmol) in anhydrous pyridine (2.1 mL) was treated with methylcarbamic chloride (4.4 mg). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **70b** as a yellow amorphous solid (21 mg, 95%): ¹H NMR (CDCl₃, 500 MHz) δ 8.79 (s, 1H), 8.71 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.89 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.13–7.06 (m, 3H), 6.95–6.92 (m, 1H), 6.81 (s, 1H), 6.11 (s, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.37 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.7, 159.9, 159.7, 159.4, 146.1, 144.5, 144.2, 138.7 (2C), 131.1, 130.1, 129.3, 128.3, 126.3, 124.7, 122.1, 122.0, 115.4, 113.3, 112.2, 111.9, 111.1, 105.0, 56.4, 56.0, 55.5, 29.6, 8.3; IR (film) *V_{max}* 3053, 2986,

2685, 2359, 2341, 2307, 1684, 1421, 1265, 1022, 897, 746, 704; HRMS (ESI⁺) *m/z*: [M + H⁺] calcd for C₂₈H₂₇N₂O₈, 519.1767; found, 519.1839.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl methylcarbamate (70c): A solution of **6c** (33 mg, 0.074 mmol) in anhydrous pyridine (3.5 mL) was treated with methylcarbamic chloride (7.4 mg). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **70c** as a yellow amorphous solid (34 mg, 90%): ¹H NMR (CDCl₃, 500 MHz) § 8.81 (s, 1H), 8.65 (bs, 1H), 7.97 (bs, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.88 (d, J = 2.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 7.13–7.07 (m, 3H), 6.96 (d, J = 8.5 Hz, 1H), 6.95–6.93 (m, 1H), 4.12 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 165.7, 160.0, 159.5, 158.7, 150.4, 143.1, 141.6, 138.7, 133.7, 131.2, 130.1, 129.3, 128.3, 126.1, 124.8, 123.3, 122.1, 121.7, 115.4, 114.1, 113.3, 113.1, 111.2, 62.1, 56.0, 55.5, 29.9; IR (film) v_{max} 3030, 2851, 2284, 1693, 1668, 1599, 1520, 1495, 1487, 1371, 1342, 1231, 1161, 1078, 964, 901, 856, 795; HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₂₇H₂₄N₂NaO₈, 527.1430; found, 527.1403.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl dimethylcarbamate (71a): A solution of **6a** (30 mg, 0.070 mmol) in pyridine (3.0 mL) at rt was

treated with dimethylcarbamyl chloride (1.0 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **71a** as a colorless amorphous solid (31 mg, 89%): ¹H NMR (CDCl₃, 500 MHz) δ 8.84 (s, 1H), 8.75 (s, 1H), 7.93 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.90 (d, *J* = 2.0 Hz, 1H), 7.40–7.35 (m, 2H), 7.14–7.07 (m, 4H), 6.95–6.92 (m, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.17 (s, 3H), 3.05 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.8, 160.0, 159.5, 159.3, 154.2, 151.0, 148.9, 138.7, 131.2, 130.1, 129.3, 128.4, 126.1, 125.5, 123.6, 123.5, 122.2, 119.9, 119.3, 117.4, 115.4, 113.3, 111.2, 56.1. 55.5, 37.0, 36.7, 9.1; IR (film) *v_{max}* 3053, 2986, 2305, 1724, 1421, 1265, 1163, 895, 746, 706; HRMS (ESI⁺) *m/z*: [M + 2H⁺] calcd for C₂₈H₂₈N₂O₇, 504.1897; found, 504.1822.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl dimethylcarbamate (71b): A solution of **6b** (25 mg, 0.054 mmol) in pyridine (2.25 mL) at rt was treated with dimethylcarbamyl chloride (0.75 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **71b** as a yellow amorphous solid (25 mg, 85%): ¹H NMR (CDCl₃, 500 MHz) δ 8.81 (s, 1H), 8.77 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.90 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.14–7.07 (m, 3H), 6.95–6.92 (m, 1H), 6.89 (s, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 3.18 (s, 3H), 3.04 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.7, 160.0, 159.5, 159.3, 154.0, 149.7, 143.0, 140.8, 138.7, 131.2, 130.2, 129.3, 128.4, 126.1, 123.9, 123.6, 122.2, 121.1, 117.3, 115.4, 113.3, 111.1, 106.5, 56.5, 56.0, 55.5, 37.1, 36.8, 9.3; IR (film) *v*_{max} 3053,

2986, 2305, 1724, 1713, 1672, 1603, 1522, 1501, 1421, 1383, 1267, 1163, 897, 739, 704; HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₉H₂₉N₂O₈, 533.1924; found, 533.1841.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl dimethylcarbamate (71c): A solution of **6c** (25 mg, 0.056 mmol) in pyridine (2.25 mL) at rt was treated with dimethylcarbamyl chloride (0.75 mL). After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **71c** as a colorless amorphous solid (19 mg, 65%): ¹H NMR (CDCl₃, 500 MHz) § 8.84 (s, 1H), 8.74 (s, 1H), 7.92 (dd, J = 8.5, 2.5 Hz, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.38–7.35 (m, 2H), 7.13–7.07 (m, 4H), 6.95–6.93 (m, 1H), 4.05 (s, 3H), 3.91 (s, 3H), 3.86 (s, 3H), 3.16 (s, 3H), 3.05 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 165.8, 160.0, 158.6, 156.5, 153.0, 149.9, 145.5, 144.0, 142.6, 140.0, 135.6, 130.1, 129.3, 128.4 (2C), 126.0, 123.5, 122.1, 120.5, 118.9, 115.4, 113.3, 111.2, 61.9, 56.0, 55.5, 36.8 (2C); IR (film) v_{max} 3053, 2986, 2930, 2685, 2305, 1603, 1421, 1265, 1157, 1024, 895, 737, 704; HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₈H₂₇N₂O₈, 519.1767; found, 519.1750.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methyl-2-oxo-2H-chromen-7-yl dimethyl phosphate (72a): Dimethyl phosphorochloridate (6.3 μ L, 0.058 mmol) was slowly added to 6a (25 mg, 0.058 mmol) and 4-dimethylaminopyridine (7.1 mg, 0.058 mmol) in

anhydrous CH₂Cl₂ (1.2 mL) at rt. After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1 \rightarrow 10:1 CH₂Cl₂:acetone) to afford **72a** as a colorless amorphous solid (17 mg, 54%): ¹H NMR (CDCl₃, 500 MHz) § 8.83 (s, 1H), 8.74 (s, 1H), 7.93 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.89 (d, *J* = 2.0 Hz, 1H), 7.39–7.36 (m, 2H), 7.32 (d, *J* = 9.0 Hz, 1H), 7.13–7.07 (m, 3H), 6.95–6.93 (m, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 165.7, 160.0, 159.5, 159.1, 149.9, 149.8, 149.0, 138.7, 131.2, 130.1, 129.3, 128.4, 125.9, 125.8, 123.5, 123.3, 122.1, 118.1, 117.2, 115.4, 113.3, 111.2, 56.0, 55.5, 55.3 (2C), 9.0; IR (film) v_{max} 3404, 3053, 2986, 2930, 2854, 2305, 1715, 1674, 1605, 1522, 1501, 1421, 1366, 1265, 1055, 897, 725, 704; HRMS (ESI⁺) *m/z*: [M + 2H⁺] calcd for C₂₇H₂₈NO₉P, 541.1502; found, 541.1454.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2Hchromen-7-yl dimethyl phosphate (72b): Dimethyl phosphorochloridate (7.0 µL, 0.065 mmol) was slowly added to **6b** (30 mg, 0.065 mmol) and 4-dimethylaminopyridine (8 mg, 0.065 mmol) in anhydrous CH₂Cl₂ (1.3 mL) at rt. After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1 \rightarrow 10:1 CH₂Cl₂:acetone) to afford **72b** as a colorless amorphous solid (14 mg, 41%): ¹H NMR (CDCl₃, 500 MHz) § 8.79 (s, 1H), 8.77 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.89 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.13–7.06 (m, 3H), 6.94–6.92 (m, 1H), 6.90 (s, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.93 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.46 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 165.8, 160.0, 159.5, 159.2, 148.9 (2C), 138.7, 131.2, 130.2, 129.3, 128.4, 126.0, 124.0, 123.2, 122.1, 120.4, 117.1 (2C), 115.4, 113.3, 111.1, 106.9, 56.5, 56.0, 55.5, 55.3, 55.2, 9.7; IR (film) v_{max} 3053, 2986, 2685, 2305, 1713, 1522, 1501, 1421, 1385, 1265, 897, 746, 704; HRMS (ESI⁺) m/z: [M + Na⁺] calcd for C₂₈H₂₈NNaO₁₀P, 592.1349; found, 592.1341.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl dimethyl phosphate (72c): Dimethyl phosphorochloridate (4.0 µL, 0.038 mmol) was slowly added to **6c** (17 mg, 0.038 mmol) and 4-dimethylaminopyridine (5 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (0.8 mL) at rt. After 12 h, the solvent was removed and the residue purified via column chromatography (SiO₂, 40:1) to afford **72c** as a yellow amorphous solid (6.0 mg, 30%): ¹H NMR (CDCl₃, 500 MHz) δ 8.82 (s, 1H) 8.74 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.88 (d, *J* = 2.5 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.29 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.25–7.23 (m, 1H), 7.13–7.07 (m, 3H), 6.95–6.93 (m, 1H) 4.09 (s, 3H), 3.94 (s, 3H), 3.92 (s, 3H), 3.91 (s, 3H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.7, 160.1, 159.5, 158.4, 144.4, 144.0, 138.6, 131.3, 130.1, 129.3, 128.4, 125.8, 123.8, 123.1, 122.4, 122.1, 118.6, 118.5, 118.4, 115.4, 113.3, 111.2, 62.2, 56.0, 55.5, 55.3 (2C); IR (film) *v_{max}* 3053, 2959, 2928, 2854, 2361, 2307, 1718, 1674, 1605, 1522, 1501, 1462, 1366, 1265, 1207, 1180, 1038, 1024, 916, 858, 735, 704; HRMS (ESI⁺) *m/z*: [M + Na⁺] calcd for C₂₇H₂₆NNaO₁₀P, 578.1192; found, 578.1147.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl methanesulfonate (73b): Methanesulfonyl chloride (10 μL, 0.13 mmol) was added to **6b** (15 mg, 0.033 mmol) in anhydrous pyridine (0.20 mL) at 0° C. The resulting solution was warmed to rt and stirred overnight, then diluted with H₂O. The desired product was extracted with EtOAc (3 × 10 mL); combined organic fractions were dried (Na₂SO₄), filtered, and concentrated. The residue was purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **73b** as a yellow amorphous solid (13 mg, 97%): ¹H NMR (DMSO-*d*₆, 500 MHz) δ 9.77 (s, 1H), 8.64 (s, 1H), 8.01 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.92 (d, *J* = 2.5 Hz, 1H), 7.49 (s, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 9.0 Hz, 1H), 7.12–7.10 (m, 2H), 6.97–6.95 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.80 (s, 3H), 3.54 (s, 3H), 2.36 (s, 3H); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 165.4, 159.3, 159.0, 157.7, 149.2, 148.9, 139.1, 138.7, 130.1, 129.3, 129.2, 128.9, 126.2, 124.6, 121.8, 121.2, 118.1, 115.3 (2C), 112.6, 111.5, 108.0, 55.1 (2C), 54.8, 29.1, 10.0; IR (film) *v*_{max} 3053, 2986, 2928, 2685, 2305, 1717, 1601, 1421, 1383, 1265, 1153, 895, 737, 704; HRMS (ESI⁺) *m*/*z*: [M + H⁺] calcd for C₂₇H₂₆NO₉S, 540.1328; found, 540.1395.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl methanesulfonate (73c): Methanesulfonyl chloride (17 μ L, 0.22 mmol) was added to 6b (25 mg, 0.056 mmol) in anhydrous pyridine (0.40 mL) at 0° C. The resulting solution was warmed to rt and stirred overnight, then diluted with H₂O. The desired product was extracted with EtOAc (3 × 10 mL); combined organic fractions were dried (Na₂SO₄), filtered, and concentrated. The residue was purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford 73c as a

yellow amorphous solid (29 mg, 99%): ¹H NMR (CDCl₃, 500 MHz) § 8.80 (s, 1H), 8.73 (s, 1H), 7.88 (dd, J = 8.5, 2.0 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.26–7.23 (m, 2H), 7.09–7.04 (m, 3H), 6.91–6.89 (m, 1H), 4.09 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.23 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) § 165.7, 160.2, 159.5, 158.0, 143.6, 142.4, 140.0, 138.6, 131.2, 130.1, 129.3, 128.4, 125.7, 124.6, 122.5 (2C), 122.1, 121.1, 120.6, 115.4, 113.2, 111.2, 62.6, 56.0, 55.4, 38.6; IR (film) v_{max} 2928, 2359, 2341, 1720, 1676, 1603, 1521, 1501, 1464, 1364, 1242, 1180, 1078, 970, 860; HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₆H₂₄NO₉S, 526.1172; found, 526.1179.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-6-methoxy-8-methyl-2-oxo-2H-

chromen-7-yl 4-methylbenzenesulfonate (74b): 4-methylbenzene-1-sulfonyl chloride (50 µL, 0.26 mmol) was added to **6b** (30 mg, 0.065 mmol) in anhydrous pyridine (0.40 mL) at 0° C. The resulting solution was warmed to rt and stirred overnight, then diluted with H₂O (10 mL). The desired product was extracted with EtOAc (3 × 10 mL); combined organic fractions were dried (Na₂SO₄), filtered, and concentrated. The residue was purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **74b** as a yellow amorphous solid (39 mg, 98%): ¹H NMR (CDCl₃, 500 MHz) δ 8.79 (s, 1H), 8.78 (s, 1H), 7.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.89 (d, *J* = 2.5 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 1H), 7.39–7.36 (m, 3H), 7.13–7.07 (m, 3H), 6.95–6.93 (m, 1H), 6.81 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.59 (s, 3H), 2.49 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.8, 160.0, 159.4, 159.0, 149.8, 145.3, 142.6, 138.7, 138.6, 134.3, 131.2, 130.2, 129.7 (2C), 129.3, 128.5 (2C), 128.4, 125.8, 124.6, 123.0, 122.7, 122.1, 118.6, 115.4,

113.2, 111.1, 106.6, 56.0, 55.9, 55.4, 21.9, 10.4; IR (film) v_{max} 3053, 2986, 2685, 2305, 1713, 1601, 1421, 1383, 1265, 1163, 895, 739, 706; HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₃H₃₀NO₉S, 616.1641; found, 616.1676.

3-(3',6-dimethoxy-[1,1'-biphenyl]-3-ylcarboxamido)-8-methoxy-2-oxo-2H-chromen-7-yl 4methylbenzenesulfonate (74c): 4-methylbenzene-1-sulfonyl chloride (43 µL, 0.22 mmol) was added to 6c (25 mg, 0.056 mmol) in anhydrous pyridine (0.40 mL) at 0° C. The resulting solution was warmed to rt and stirred overnight, then diluted with H₂O (10 mL). The desired product was extracted with EtOAc (3 \times 10 mL); combined organic fractions were dried (Na_2SO_4) , filtered, and concentrated. The residue was purified via column chromatography (SiO₂, 40:1, CH₂Cl₂:acetone) to afford **74c** as a colorless amorphous solid (33 mg, 99%): ¹H NMR (CDCl₃, 500 MHz) δ 8.80 (s, 1H), 8.74 (s, 1H), 7.91 (dd, J = 8.5, 2.5 Hz, 1H), 7.88 (d, J =2.5 Hz, 1H), 7.81–7.79 (m, 2H), 7.38–7.34 (m, 3H), 7.19 (d, J = 8.5 Hz, 1H), 7.12–7.07 (m, 4H), 6.95-6.92 (m, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) & 165.7, 160.2, 159.5, 158.1, 145.9, 143.5, 142.6, 140.5, 138.6, 132.9, 131.3, 130.1, 130.0 (2C), 129.3, 128.6 (2C), 128.4, 125.7, 124.4, 122.7, 122.1, 121.9, 120.5, 120.2, 115.4, 113.3, 111.2, 62.1, 56.0, 55.5, 21.9; IR (film) v_{max} 3053, 2927, 2359, 2341, 1720, 1676, 1603, 1522, 1501, 1462, 1364, 1265, 1178, 1078, 1007, 858, 818, 737, 706; HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₂H₂₈NO₉S, 602.1485; found, 602.1494.

Benzyl 8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamate (75a). Compound **75a** was obtained as a white amorphorous solid (60 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.55 (s, 1H), 7.40–7.34 (m, 5H), 7.24 (d, *J* = 8.0 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 2H), 4.48 (m, 1H), 2.71 (m, 2H), 2.52–2.49 (m, 2H), 2.38 (s. 3H), 2.11–2.07 (m, 2H), 1.98–1.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 156.5, 153.2, 149.2, 135.6, 128.7, 128.5, 128.2, 125.1, 122.2, 121.4, 115.2, 113.0, 110.4, 72.4, 67.4, 52.0 (2C), 46.0, 30.3 (2C), 8.4. IR (film) *v_{max}* 3406, 3319, 2939, 2849, 2791, 1711, 1609, 1524, 1366, 1271, 1227, 1204, 1103, 1038, 1024 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₄H₂₇N₂O₅, 423.1920; found 423.1920.

Benzyl 8-methoxy-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamate (75b). Compound 75b was obtained as light brown oil (63 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.58 (s, 1H), 7.40–7.34 (m, 5H), 7.13 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 5.22 (s, 2H), 4.46 (m, 1H), 3.98 (s, 3H), 2.80–2.77 (m, 2H), 2.51–2.40 (m, 2H), 2.39 (s, 3H), 2.12–2.08 (m, 2H), 1.98–1.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 153.2, 151.5, 144.0, 137.8, 135.6, 128.7, 128.5, 128.2, 122.1, 122.0, 121.8, 114.8, 113.5, 72.3, 67.5, 61.5, 52.1 (2C), 45.8, 30.4 (2C). IR (film) $ν_{max}$ 3406, 3331, 2974, 2941, 2893, 1720, 1703, 1607, 1553, 1502, 1462, 1367, 1240, 1070. cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₄H₂₇N₂O₆, 439.1869; found 439.1867.

Benzyl 6-methoxy-8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3ylcarbamate (75c). Compound 75c was obtained as light brown oil (134 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.59 (s, 1H), 7.42–7.35 (m, 5H), 6.77 (s, 1H), 5.23 (s, 2H), 4.23–4.22 (m, 1H), 3.86 (s, 3H), 2.85–2.82 (m, 2H), 2.36 (s, 3H), 2.33 (s, 2H), 2.28–2.20 (m, 2H), 2.01–1.97 (m, 2H), 1.93–1.86 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 153.4, 150.5, 146.8, 143.4, 135.7, 128.9, 128.7, 128.4, 122.9, 121.9, 120.9, 115.2, 106.3, 78.1, 67.7, 56.2, 53.3 (2C), 46.1, 31.8 (2C), 9.9. IR (film) ν_{max} 3404, 3312, 2937, 2864, 1710, 1693, 1609, 1529, 1466, 1385, 1367, 1288, 1240, 1211, 1109, 1078, 1031 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₅H₂₉N₂O₆, 435.2026; found, 453.2021.

Representative procedure for the preparation of compounds 77, 78, 81 and 82:

N-(8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-yl)-1H-indole-2-

carboxamide (**78a**). Compound **75a** (60 mg, 0.14 mmol) and Pd/C mixture were suspended in THF (2 mL) and stirred under hydrogen overnight. The mixture was filtered and the filtrate was concentrated and dried under vacuum for 2 h. The residue was dissolved in methylene chloride (2 mL) and treated with freshly prepared indole carboxylic chloride (25.5 mg, 0.14 mmol) and pyridine (0.1 mL). The resulting mixture was stirred at rt for 2 h, then purified via column chromatography (SiO₂, CH₂Cl₂:MeOH, 10:1) to yield compound **78a** (31 mg, 51%). ¹HMNR (500 MHz, CD₃CD-CDCl₃) δ 8.50 (s, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.16 (d, *J* = 8.6 Hz, 1H), 7.09 (t, *J* = 8.1 Hz, 1H), 7.00 (s, 1H),), 6.92 (t, *J* = 7.9 Hz, 1H), 6.72 (d,

J = 8.7 Hz, 1H), 4.54 (m, 1H), 2.53 (m, 2H), 2.35 (m, 2H), 2.18 (s, 3H), 2.13 (s, 3H), 1.85 (m, 2H), 1.75 (m, 2H). ¹³C MNR (125 MHz, CD₃CD-CDCl₃) δ 160.5, 159.4, 156.7, 149.4, 137.3, 129.8, 127.2, 125.6, 125.3, 124.8, 122.0, 120.9, 120.5, 114.9, 113.2, 112.0, 110.4, 104.6, 77.4, 51.5 (2C), 45.3, 29.7 (2C), 7.9. IR (film) v_{max} 3391, 3292, 2958, 2851, 1709, 1643, 1605, 1537, 1385, 1263, 1236, 1211, 1107, 1036, 731 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₅H₂₆N₃O₄, 432.1923; found 432.1927. This material was determined to be 100% pure (Retention time = 8.37 min) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(8-methoxy-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-yl)-1H-indole-2carboxamide (78b). Compound **78b** was obtained as a light brown amorphous solid (28 mg, 38%). ¹H MNR (500 MHz CDCl₃/MeOD) δ 8.66 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.3 Hz, 1H), 7.24 (t, *J* = 8.2 Hz, 1H), 7.16 (d, *J* = 8.8 Hz, 1H), 7.13 (s, 1H), 7.09 (t, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 4.45 (m, 1H), 3.93 (s, 3H), 2.71 (m, 2H), 2.45 (m, 2H), 2.32 (s, 3H), 2.15–2.11 (m, 2H), 2.00–1.91 (m, 2H). ¹³C MNR (125 MHz CDCl₃/MeOD) δ 160.4, 158.7, 151.75, 144.2, 137.5, 137.2, 129.7, 127.4, 125.2, 124.3, 122.5, 122.3, 121.7, 120.8, 114.7, 113.4, 112.1, 104.7, 77.3, 61.5, 51.7 (2C), 45.6, 29.6 (2C). IR (film) *v_{max}* 3390, 3312, 3292, 2928, 2851, 1711, 1653, 1607, 1535, 1383, 1264, 1236, 1211, 1107, 1036, 738 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₅H₂₆N₃O₅, 448.1873; found 448.1886. This material was determined to be 99% pure (Retention time = 9.04) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(6-methoxy-8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-yl)-1Hindole-2-carboxamide (78c). Compound **78c** was obtained as a light brown amorphous solid (19 mg, 53%). ¹H MNR (500 MHz DMSO-*d*₆) 11.91 (s, 1H), 9.56 (s, 1H), 8.55 (s, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.42 (s, 1H), 7.30 (s, 1H), 7.25 (t, *J* = 8.1 Hz, 1H), 7.08 (t, *J* = 7.7 Hz, 1H), 4.24–4.21 (m, 1H), 3.85 (s, 3H), 2.86 (m, 2H), 2.33 (s, 3H), 2.50 (m, 2H), 2.29 (s, 3H), 1.92–1.90 (m, 2H), 1.79–1.77 (m, 2H). ¹³CMNR (125 MHz DMSO-*d*₆) δ 160.0, 158.0, 149.7, 146.4, 143.5, 137.1, 130.3, 127.6, 126.9, 124.3, 122.3, 122.0, 120.1, 119.2, 114.6, 112.4, 107.4, 105.1, 77.1, 56.9, 52.1 (2C), 44.7, 30.7 (2C), 9.4. IR (film) *v_{max}* 3379, 3312, 2924, 2851, 1713, 1659, 1582, 1543, 1468, 1392, 1292, 1136, 1084, 1036 739 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₄H₂₆N₃O₅, 462.2029; found 462.2032. This material was determined to be 99% pure (Retention time = 8.70) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN → 52% H₂O (0.2% H₃PO₄)/48% MeCN → 95% H₂O (0.2% H₃PO₄)/5% MeCN → 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

4-(8-Methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamoyl)-2-(3methylbut-2-enyl)phenyl acetate (79a). Compound 79a was obtained as white amorphous solid

(76 mg, 73%). ¹H NMR (500MHz, CDCl₃), δ 8.79 (s, 1H), 8.71 (s, 1H), 7.81 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 8.3 Hz, 2.1, 1H), 7.34(d, J = 8.6 Hz, 1H), 7.18 (d, J = 8.3 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 5.25 (m, 1H), 4.52 (m, 1H), 3.33 (d, J = 7.2 Hz, 2H), 2.76–2.70 (m, 2H), 2.55–2.45 (m, 2H), 2.40 (s, 3H), 2.35 (s, 6H), 2.15–2.09 (m, 2H), 1.97–1.92 (m, 2H), 1.78 (s, 3H), 1.74 (s, 3H). ¹³C NMR δ (125MHz, CDCl₃) 169.1, 165.6, 159.6, 157.1, 152.3, 149.7, 134.8, 134.5, 131.8, 129.5, 126.1, 125.8, 124.8, 123.1, 121.7, 120.8, 115.4, 113.5, 110.6, 77.4, 52.3 (2C), 46.2, 30.5 (2C), 29.0, 25.9, 21.1, 18.1, 8.6. IR (film) ν_{max} 3400, 3087, 2922, 2851, 1765, 1711, 1672, 1607, 1526, 1493, 1369, 1248, 1202, 1175, 1099, 1040 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₅N₂O₆, 519.2495; found, 519.2485. This material was determined to be 95% pure (Retention time = 14.3) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN is the constant of the set of

4-(8-methoxy-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-ylcarbamoyl)-2-(3-methylbut-2-enyl)phenyl acetate (**79b).** Compound **79b** was obtained as white amorphous solid (85 mg, 61%). ¹H NMR (500MHz, CDCl₃) δ 8.70 (s, 1H), 8.64 (s, 1H), 7.72 (d, *J* = 2.2 Hz, 1H), 7.68 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.14 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 1H), 5.15 (m, 1H), 4.49 (m, 1H), 3.93 (s, 3H), 3.24 (d, *J* = 7.2 Hz, 2H), 2.90–2.85 (m, 2H), 2.68–2.65 (m, 2H), 2.46 (s, 3H), 2.26 (s, 3H), 2.19–2.16 (m, 2H), 1.98–1.94(m, 2H), 1.69 (s, 3H), 1.65 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 169.0, 165.6, 158.8, 152.3, 151.6, 144.4, 137.9, 134.8, 134.4, 131.5, 129.5, 126.0, 124.1, 123.1, 122.8, 122.4, 120.7, 115.2, 113.8, 72.1, 61.7,

51.5 (2C), 45.3, 29.5 (2C), 28.9, 25.8, 21.0, 18.0. IR (film) *v_{max}* 3406, 3084, 2962, 2937, 2831, 1731, 1711, 1666, 1604, 1529, 1502, 1462, 1366, 1258, 1178, 1103, 1036 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₀H₃₅N₂O₇, 535.2444; found, 535.2442.

4-(6-methoxy-8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-

ylcarbamoyl)-2-(3-methylbut-2-enyl)phenyl acetate (79c). Compound 79c was obtained as white amorphous solid (81mg, 70%). ¹H NMR (500MHz, CDCl₃) δ 8.78 (s, 1H), 8.75 (s, 1H), 7.81 (d, J = 2.2 Hz, 1H), 7.77 (dd, J = 8.3, 2.3 Hz, 1H), 7.19 (d, J = 8.5 Hz, 2H), 6.85 (s, 1H), 5.25 (m, 1H), 4.32 (m, 1H), 3.89 (s, 3H), 3.32 (d, J = 7.2 Hz, 2H), 3.07–3.04 (m, 2H), 2.82–2.65 (m, 2H), 2.54 (s, 3H), 2.39 (s, 3H), 2.35 (s, 3H), 2.19–2.16 (m, 2H), 2.11–2.02 (m, 2H), 1.77 (s, 3H), 1.74 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 169.2, 165.8, 159.4, 152.4, 150.4, 147.1, 143.8, 134.9, 134.6, 131.7, 129.6, 126.2, 124.1, 123.2, 120.9, 120.8, 115.5, 106.8, 77.5, 56.3, 52.3 (2C), 45.3, 30.6 (2C), 29.1, 26.0, 21.1, 18.1, 10.0. IR (film) ν_{max} 3404, 3086, 2935, 2852, 1721, 1711, 1672, 1605, 1529, 1383, 1250, 1177, 1085, 1034 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₃₁H₃₇N₂O₇, 549.2601; found, 549.2604. This material was determined to be 98% pure (Retention time = 13.9) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN → 52% H₂O (0.2% H₃PO₄)/48% MeCN → 95% H₂O (0.2% H₃PO₄)/5% MeCN → 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

Representative procedure for the preparation of compounds 80 and 84:

4-Hydroxy-N-(8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-yl)-3-(3methylbut-2-enyl)benzamide (80a). Compound 79a (52 mg, 0.1 mmol) was dissolved in 10% triethylamine/methanol (3 mL). The solution was stirred at rt overnight and concentrated. The residue was purified via column chromatography (SiO₂, CH₂Cl₂:MeOH, 10:1) to afford 80a as a white amorphous solid (37 mg, 73%). ¹H NMR (500MHz, DMSO- d_6) δ 9.22 (s, 1H), 8.47 (s, 1H), 7.68–7.66 (m, 2H), 7.53 (d, J = 8.7 Hz, 1H), 7.11 (d, J = 8.9 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 5.30 (m, 1H), 4.57 (m, 1H), 3.27 (d, J = 7.3 Hz, 2H), 2.62–2.54 (m, 2H), 2.34–2.28 (m, 2H), 2.22 (s, 3H), 2.21 (s, 3H), 1.96–1.92 (m, 2H), 1.76–1.72(m, 2H), 1.71 (s, 3H), 1.69 (s, 3H). ¹³C NMR (125MHz, DMSO-d₆) δ165.3, 158.8, 158.4, 156.6, 149.5, 131.9, 129.2, 127.8, 127.7, 126.8, 126.0, 124.0, 122.3, 121.3, 114.6, 113.4, 112.7, 110.8, 72.1, 51.8 (2C), 45.7, 30.2 (2C), 27.9, 25.6, 17.7, 8.2. IR (film) v_{max} 3421, 3081, 2938, 2856, 1703, 1666, 1601, 1528, 1504, 1366, 1248, 1178, 1150, 1094, 1040 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for C₂₈H₃₃N₂O₅, 477.2389: found, 477.2397. This material was determined to be 98% pure (Retention time = 13.5) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% $H_3PO_4)/30\%$ MeCN $\rightarrow 52\%$ H_2O (0.2% $H_3PO_4)/48\%$ MeCN $\rightarrow 95\%$ H_2O (0.2% $H_3PO_4)/5\%$ MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

4-hydroxy-N-(8-methoxy-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3-yl)-3-(3methylbut-2-enyl)benzamide (80b). Compound **80b** was obtained as white amorphous solid (24 mg, 75%). ¹H NMR (500MHz, CDCl₃) δ 9.26 (s, 1H), 8.49 (s, 1H), 7.68–7.66 (m, 2H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 9.0 Hz, 1H), 6.91 (d, *J* = 8.9 Hz, 1H), 5.30 (m, 1H), 4.58 (m, 1H), 3.88 (s, 3H), 3.27 (d, *J* = 7.2 Hz, 2H), 2.76–2.69 (m, 2H), 2.48–2.39 (m, 2H), 2.32 (s, 3H), 2.04–1.95 (m, 2H), 1.83–1.74 (m, 2H), 1.71 (s, 3H), 1.69 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 165.3, 158.8, 157.9, 151.5, 144.3, 136.3, 131.9, 129.2, 127.7, 127.4, 126.9, 123.9, 122.8, 122.3, 121.9, 114.6, 114.0, 112.7, 72.7, 60.9, 51.7 (2C), 45.1, 29.9 (2C), 27.9, 25.5, 17.7. IR (film) *v_{max}* 3406, 3317 (broad), 3086, 3053, 2941, 2833, 1711, 1666, 1605, 1527, 1502, 1460, 1365, 1265, 1178, 1080, 1034, 739 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₈H₃₃N₂O₆, 493.2339; found; 493.2337.

4-hydroxy-N-(6-methoxy-8-methyl-7-(1-methylpiperidin-4-yloxy)-2-oxo-2H-chromen-3yl)-3-(3-methylbut-2-enyl)benzamide (80c). Compound **80c** was obtained as white amorphous solid (21mg, 81%). ¹H NMR (500MHz, DMSO-*d*₆) δ 10.2 (s, 1H), 9.23 (s, 1H), 8.54 (s, 1H), 7.68–7.66 (m, 2H), 7.28 (s, 1H), 6.92 (d, *J* = 9.0 Hz, 1H), 5.30 (m, 1H), 4.21 (m, 1H), 3.85 (s, 3H), 3.35–3.30 (m, 2H), 3.28 (d, *J* = 7.2 Hz, 2H), 2.90–2.81 (m, 2H),2.32–2.29 (m, 2H), 2.28 (s, 3H), 2.25 (s, 3H), 1.93–1.88 (m, 2H), 1.78–1.71 (m, 2H), 1.71 (s, 3H), 1.70 (s, 3H). ¹³C NMR (125MHz, DMSO-*d*₆) δ 165.4, 158.9, 158.3, 149.8, 146.2, 143.3, 131.9, 129.2, 127.7, 126.9, 126.5, 123.9, 122.8, 122.3, 119.2, 114.8, 114.6, 107.4, 77.3, 56.1, 52.2 (2C), 44.8, 30.8 (2C), 27.9, 25.5, 17.7, 9.4. IR (film) *v_{max}* 3406, 3088, 3045, 2931, 2853, 1709, 1657, 1601, 1529, 1500, 1381, 1250, 1178, 1086, 1034 cm⁻¹. HRMS (ESI⁺) m/z: $[M + H^+]$ calcd for C₂₉H₃₅N₂O₆, 507.2495; found, 507.2494. This material was determined to be 99% pure (Retention time = 13.2) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

Benzyl 7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-yl carbamate (81a). Compound 81a was obtained as colorless oil (670 mg, 72%). ¹H NMR (400MHz, CDCl₃) δ 8.11 (s, 1H), 7.45 (s, 1H), 7.29–7.23 (m, 5H), 7.11 (d, *J* = 8.6 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 1H), 5.10 (s, 2H), 3.97 (t, *J* = 5.8 Hz, 2H), 2.46 (t, *J* = 5.8 Hz, 2H), 2.22 (s, 6H), 2.17 (s, 3H), 1.93 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 158.2, 153.3, 149.0, 135.8, 128.8 (2C), 128.6, 128.4 (2C), 125.3, 122.5, 121.4, 114.0, 113.3, 108.9, 67.5, 66.8, 56.4, 45.4 (2C), 27.4, 8.2. IR (film) *v_{max}* 3404, 3323, 2978, 2943, 2816, 2768, 1713, 1610, 1524, 1381, 1366, 1273, 1227, 1204, 1109, 1022 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₃H₂₆N₂O₅, 411.1920; found, 411.1918.

Benzyl 7-(3-(dimethylamino)propoxy)-8-methoxy-2-oxo-2H-chromen-3-ylcarbamate (81b). Compound 81b was obtained as a brown white amorphous foam (39 mg, 92%). ¹H NMR (400MHz, CDCl₃): δ 8.25 (s, 1H), 7.55 (s, 1H), 7.41–7.30 (m, 5H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 5.23 (s, 2H), 4.16 (t, *J* = 5.8 Hz, 2H), 3.97 (s, 3H), 2.68 (t, *J* = 5.8 Hz, 2H), 2.41 (s, 6H), 2.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 153.2, 153.0, 143.8, 136.4, 135.6, 128.7 (2C), 128.5, 128.2 (2C), 122.1, 121.93, 121.86, 114.4, 110.9, 67.5, 67.4, 61.5, 56.1,

45.0 (2C), 26.9. IR (film) v_{max} 3406, 3310, 2937, 2813, 2766, 1697, 1631, 1608, 1537, 1271, 1229, 1213, 1113, 1024. cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₃H₂₇N₂O₆, 427.1869; found, 427.1861.

Benzyl 7-(3-(dimethylamino)propoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3ylcarbamate (81c). Compound **81c** was obtained as a white amorphous solid (77 mg, 60%). ¹H NMR (400MHz, CDCl₃): δ 8.20 (s, 1H), 7.62 (s, 1H), 7.37–7.31 (m, 5H), 6.72 (s, 1H), 5.19 (s, 2H), 4.01 (t, *J* = 5.7 Hz, 2H), 3.83 (s, 3H), 2.55 (t, *J* = 5.7 Hz, 2H), 2.32 (s, 3H), 2.29 (s, 6H), 199–1.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 153.1, 150.2, 147.9, 143.0, 135.6, 128.6 (2C), 128.5, 128.2 (2C), 122.8, 121.7, 120.2, 115.2, 106.1, 71.6, 67.4, 56.4, 55.9, 45.3 (2C), 28.3, 8.9. IR (film) *v_{max}* 3404, 3313, 2953, 2820, 2770, 1709, 1524, 1464, 1389, 1298, 1229, 1204, 1090, 1024 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₄H₂₉N₂O₆, 441.2026; found, 441.2018.

N-(7-(3-(dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-1H-indole-2carboxamide (82a). Compound **82a** was obtained a brown amorphous solid (21 mg, 36%). ¹H NMR (500 MHz,DMSO-*d*₆) δ 11.89 (s, 1H), 9.60 (s, 1H), 8.49 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.7 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.42 (s, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.11– 7.07 (m, 2H), 4.14 (t, *J* = 6.2 Hz, 2H), 2.62 (m, 2H), 2.32 (s, 6H), 2.24 (s, 3H), 2.00–1.90 (m, 2H). ¹³C NMR (125 MHz,DMSO-*d*₆) δ 160.0, 158.22, 158.19, 149.5, 137.1, 130.5, 129.3, 127.0, 126.3, 124.2, 122.0, 120.8, 120.1, 112.7, 112.49, 112.46, 109.2, 105.0, 66.5, 55.2, 44.4 (2C), 26.1, 8.0. IR (film) v_{max} 3375, 3319, 2926, 2854, 1711, 1649, 1580, 1535, 1412, 1390, 1327, 1265, 1111, 1063, 789 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₄H₂₆N₃O₄, 420.1923; found, 420.1920. This material was determined to be 100% pure (Retention time = 12.1) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(7-(3-(dimethylamino)propoxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-1H-indole-2carboxamide (82b). Compound **82b** was obtained a brown amorphous solid (28 mg, 70%). ¹H NMR (500 MHz, CDCl₃-CD₃OD) δ 8.50 (s, 1H), 7.47 (m, 1H), 7.28 (m, 1H), 7.11–7.04 (m, 2H), 7.00 (s, 1H), 6.94–6.91 (m, 1H), 6.79–6.76 (m, 1H), 3.95 (t, J = 4.7 Hz, 2H), 3.78 (s, 3H), 2.52 (m, 2H), 2.23 (s, 3H), 2.22 (s, 3H), 1.92–1.88 (m, 2H). ¹³C NMR (125 MHz, CDCl₃/CD₃OD) δ 164.5, 162.7, 157.3, 147.9, 141.4, 140.0, 133.8, 131.3, 128.9, 128.8, 126.8, 126.1, 125.5, 124.6, 118.4, 116.1, 114.8, 108.7, 71.1, 65.3, 59.9, 48.4 (2C), 30.4. IR (film) v_{max} 3379, 3321, 2943, 2853, 1712, 1662, 1583, 1542, 1421, 1391, 1291, 1207, 1138, 1030 739 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₄H₂₆N₃O₅, 436.1873; found, 436.1867. This material was determined to be 100% pure (Retention time = 8.25) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN → 52% H₂O (0.2% H₃PO₄)/48% MeCN → 95% H₂O (0.2% H₃PO₄)/5% MeCN → 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(7-(3-(dimethylamino)propoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-1H-

indole-2-carboxamide (82c). Compound 82c was obtained a brown amorphous solid (41 mg, 83%). ¹H NMR (500 MHz, CDCl₃-CD₃OD) δ 8.37 (s, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.89 (s, 1H), 6.81 (t, *J* = 8.0 Hz, 1H), 6.60 (s, 1H). 3.74 (t, *J* = 5.6 Hz, 2H), 3.60 (s, 3H), 2.67 (t, *J* = 5.6 Hz, 2H), 2.29 (s, 6H), 1.80 (s, 3H), 1.80 (m, 2H). ¹³C NMR (125 MHz, CDCl₃/CD₃OD) δ 164.5, 163.1, 154.1, 151.7, 147.2, 141.4, 133.8, 131.3, 128.8, 128.4, 126.5, 125.9, 124.4, 123.9, 119.5, 116.0, 110.5, 108.6, 74.7, 60.1, 59.6, 47.7 (2C), 30.6, 12.3. IR (film) ν_{max} 3381, 3315, 2943, 2833, 1722, 1657, 1543, 1467, 1394, 1292, 1086, 1030 739 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₅H₂₈N₃O₅, 450.2029; found, 450.2031. This material was determined to be 96% pure (Retention time = 7.92) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN → 52% H₂O (0.2% H₃PO₄)/48% MeCN → 95% H₂O (0.2% H₃PO₄)/5% MeCN → 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

4-(7-(3-(Dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-ylcarbamoyl)-2-(3methylbut-2-enyl)phenyl acetate (83a). Compound 83a was obtained as a white amorphous solid (79 mg, 77%). ¹H NMR (500MHz, CDCl₃) δ 8.79 (s, 1H), 8.70 (s, 1H), 7.81 (s, 1H), 7.77(d, *J* = 8.3 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.18 (d, *J* = 8.3 Hz, 1H), 6.88 (d, *J* = 8.6 Hz,

1H), 5.25 (m, 1H), 4.15 (t, J = 6.0 Hz, 2H), 3.32 (d, J = 7.2 Hz, 2H), 2.77 (t, J = 7.4 Hz, 2H), 2.49 (s, 6H), 2.35 (s, 3H), 2.33 (s, 3H), 2.17 (m, 2H), 1.77 (s, 3H), 1.73 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 169.1, 165.6, 159.7, 158.4, 152.3, 149.4, 134.8, 134.5, 131.8, 129.6, 126.09, 126.05, 124.9, 123.1, 121.7, 120.9, 114.3, 113.6, 109.1, 66.7, 56.4, 45.0 (2C), 29.0, 26.8, 26.0, 21.1, 18.2, 8.4. IR (film) v_{max} 3400, 3086, 3054, 2922, 2851, 1765, 1711, 1672, 1607, 1526, 1493, 1369, 1248, 1202, 1175, 1099, 1040 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₉H₃₅N₂O₆, 507.2495; found, 507.2501. This material was determined to be 100% pure (Retention time = 10.0) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

4-(7-(3-(dimethylamino)propoxy)-8-methoxy-2-oxo-2H-chromen-3-ylcarbamoyl)-2-(3methylbut-2-enyl)phenyl acetate (83b). Compound **83b** was obtained as white amorphous solid (48 mg, 54%). ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.70 (s, 1H), 7.80 (d, *J* = 2.3 Hz, 1H), 7.76 (dd, *J* = 8.4 Hz, 2.3 Hz, 1H), 7.22 (d, *J* = 8.8 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 5.24 (m, 1H), 4.17 (t, *J* = 6.3 Hz, 2H), 3.99 (s, 3H), 3.32 (d, *J* = 7.2 Hz, 2H), 2.66 (t, *J* = 7.2 Hz, 2H), 2.40 (s, 6H), 2.37 (s, 3H), 2.12 (m, 2H), 1.77 (s, 3H), 1.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 165.7, 159.1, 153.7, 152.3, 144.3, 136.6, 134.9, 134.5, 131.7, 129.6, 126.1, 124.5, 123.1, 122.9, 122.1, 120.8, 114.6, 111.1, 67.6, 61.8, 56.3, 45.3 (2C), 29.0, 27.1, 25.9, 21.1, 18.2. IR (film) v_{max} 3408, 3084, 3024, 2937, 2858, 1711, 1666, 1605, 1529, 1502, 1462, 1367, 1259, 1178, 1105, 1082, 1034 cm⁻¹. HRMS (ESI⁺) m/z calcd for [M+H⁺] C₂₉H₃₅NO₇, 523.2444; found, 523.2450.

4-(7-(3-(dimethylamino)propoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3ylcarbamoyl)-2-(3-methylbut-2-enyl)phenyl acetate (83c). Compound **83c** was obtained as white amorphous solid (81 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.75 (s, 1H), 7.81 (d, *J* = 2.2 Hz, 1H), 7.77 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 6.84 (s, 1H), 5.24 (m, 1H), 4.06 (t, *J* = 6.1 Hz, 2H), 3.90 (s, 3H), 3.32 (d, *J* = 7.2 Hz, 2H), 2.89 (t, *J* = 7.5 Hz, 2H), 2.55 (s, 6H), 2.37 (s, 3H), 2.35 (s, 3H), 2.15 (m, 2H), 1.77 (s, 3H), 1.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 165.7, 159.5, 152.3, 150.4, 148.1, 143.6, 134.9, 134.5, 131.7, 129.6, 126.1, 124.1, 123.17, 123.14, 120.8, 120.6, 115.7, 106.7, 71.1, 56.5, 56.2, 44.7 (2C), 29.0, 27.4, 25.9, 21.1, 18.2, 9.2. IR (film) ν_{max} 3404, 3082, 2935, 2854, 1765, 1711, 1672, 1605, 1527, 1492, 1382, 1249, 1177, 1088, 1034 cm⁻¹. HRMS (ESI⁺) m/z calcd for [M+H⁺] C₃₀H₃₇NO₇, 537.2601; found, 537.2595. This material was determined to be 99% pure (Retention time = 10.8) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(7-(3-(Dimethylamino)propoxy)-8-methyl-2-oxo-2H-chromen-3-yl)-4-hydroxy-3-(3methylbut-2-enyl)benzamide (84a). Compound **84a** was obtained as a white, amorphous solid (22 mg, 69%). ¹H NMR (500MHz, DMSO-*d*₆) δ 10.19 (s, 1H), 9.24 (s, 1H), 8.47 (s, 1H), 7.68– 7.66 (m, 2H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.07 (d, *J* = 8.7 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 1H), 5.31 (m, 1H), 4.13 (t, *J* = 6.2 Hz, 2H), 3.27 (d, *J* = 7.2 Hz, 2H), 2.47 (t, *J* = 6.9 Hz, 2H), 2.22 (s, 6H), 2.21 (s, 3H), 1.92 (m, 2H), 1.71 (s, 3H), 1.70 (s, 3H). ¹³C NMR (125MHz, DMSO-*d*₆) δ 165.3, 158.7, 158.4, 158.1, 149.3, 131.8, 129.2, 128.1, 127.6, 126.8, 126.1, 124.0, 122.3, 121.2, 114.5, 112.7, 112.4, 109.1, 66.6, 55.5, 45.0 (2C), 27.9, 26.6, 25.5, 17.7, 7.9. IR (film) *v_{max}* 3408, 2961, 2928, 1709, 1666, 1607, 1529, 1504, 1367, 1256, 1178, 1109 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₇H₃₃N₂O₅, 465.2389; found, 465.2388. This material was determined to be 100% pure (Retention time = 9.83) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN → 52% H₂O (0.2% H₃PO₄)/48% MeCN → 95% H₂O (0.2% H₃PO₄)/5% MeCN → 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(7-(3-(dimethylamino)propoxy)-8-methoxy-2-oxo-2H-chromen-3-yl)-4-hydroxy-3-(3methylbut-2-enyl)benzamide (84b). Compound **84b** was obtained as a white amorphous solid (16 mg, 79%). ¹H NMR (500MHz, DMSO-*d*₆) δ 10.23 (bs, 1H), 9.27 (s, 1H), 8.48 (s, 1H), 7.68– 7.66 (m, 2H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.13 (d, *J* = 8.8 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 1H), 5.30 (m, 1H), 4.16 (t, *J* = 6.2 Hz, 2H), 3.87 (s, 3H), 3.27 (d, *J* = 7.2 Hz, 2H), 2.62 (m, 2H), 2.31 (s, 6H), 1.76 (s, 3H), 1.70 (s, 3H). ¹³C NMR (125MHz, DMSO-*d*₆) δ 165.4, 158.8, 158.0, 153.1, 144.1, 135.3, 131.9, 129.3, 127.7, 126.9, 123.9, 122.9, 122.3 (2C), 121.8, 114.6, 113.8, 110.9, 66.9, 60.9, 55.2, 44.5 (2C), 27.9, 26.1, 25.5, 17.7. IR (film) ν_{max} 3410, 3319, 3086, 2960, 2878, 1711, 1666, 1605, 1529, 1504, 1462, 1367, 1259, 1178, 1105, 1084 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₇H₃₃N₂O₆, 481.2339; found, 481.2338. This material was determined to be 100% pure (Retention time = 9.11) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN \rightarrow 52% H₂O (0.2% H₃PO₄)/48% MeCN \rightarrow 95% H₂O (0.2% H₃PO₄)/5% MeCN \rightarrow 70% H₂O (0.2% H₃PO₄)/30% MeCN, flow rate 1.0 mL/min.

N-(7-(3-(dimethylamino)propoxy)-6-methoxy-8-methyl-2-oxo-2H-chromen-3-yl)-4hydroxy-3-(3-methylbut-2-enyl)benzamide (84c). Compound **84c** was obtained as a white amorphous solid (23 mg, 58%). ¹H NMR (500MHz, DMSO-*d*₆) δ 10.25 (bs, 1H), 9.22 (s, 1H), 8.54 (s, 1H), 7.67–7.66 (m, 2H), 7.27 (s, 1H), 6.92 (dd, J = 6.5, 2.4 Hz, 1H), 5.30 (m, 1H), 3.98 (t, J = 6.3 Hz, 2H), 3.85 (s, 3H), 3.27 (d, J = 7.2 Hz, 2H), 2.56 (t, J = 7.1 Hz, 2H), 2.27 (s, 3H), 2.26 (s, 6H), 1.89 (m, 2H), 1.71 (s, 3H), 1.70 (s, 3H). ¹³C NMR (125MHz, DMSO-*d*₆) δ 165.3, 158.9, 158.3, 149.7, 147.5, 143.2, 131.9, 129.1, 127.7, 126.9, 126.4, 123.9, 122.9, 122.3, 118.9, 114.9, 114.6, 107.5, 70.9, 56.0, 55.4, 44.6 (2C), 27.9, 27.3, 25.5, 17.7, 8.7. IR (film) v_{max} 3406, 3082 (broad), 2962, 2856, 1709, 1670, 1603, 1526, 1502, 1378, 1257, 1176, 1090, 1043, 758 cm⁻¹. HRMS (ESI⁺) m/z: [M + H⁺] calcd for C₂₈H₃₅N₂O₆, 495.2495; found, 495.2498. This material was determined to be 100% pure (Retention time = 8.48) by HPLC (ZORBAX Eclipse Plus 4.6 x 150 mm column eluting with 70% H₂O (0.2% H₃PO₄)/30% MeCN → 52% H₂O (0.2% $H_3PO_4)/48\%$ MeCN $\rightarrow 95\%$ H_2O (0.2% $H_3PO_4)/5\%$ MeCN $\rightarrow 70\%$ H_2O (0.2% $H_3PO_4)/30\%$ MeCN, flow rate 1.0 mL/min.

Anti-proliferation assays. Cells were maintained in a 1:1 mixture of Advanced DMEM/F12 (Gibco) supplemented with non-essential amino acids, L-glutamine (2 mM), streptomycin (500 μ g/mL), penicillin (100 units/mL), and 10% FBS. Cells were grown to confluence in a humidified atmosphere (37° C, 5% CO₂), seeded (2000/well, 100 μ L) in 96-well plates, and allowed to attach overnight. Compound or GDA at varying concentrations in DMSO (1% DMSO final concentration) was added, and cells were returned to the incubator for 72 h. At 72 h, the number of viable cells was determined using an MTS/PMS cell proliferation kit (Promega) per the manufacturer's instructions. Cells incubated in 1% DMSO were used at 100% proliferation, and values were adjusted accordingly. IC₅₀ values were calculated from separate experiments performed in triplicate using GraphPad Prism.

Western blot Analyses. MCF-7 cells were cultured as described above and treated with various concentrations of drug, GDA in DMSO (1% DMSO final concentration), or vehicle (DMSO) for 24 h. Cells were harvested in cold PBS and lysed in RIPA lysis buffer containing 1 mM PMSF, 2 mM sodium orthovanadate, and protease inhibitors on ice for 1 h. Lysates were clarified at 14000g for 10 min at 4° C. Protein concentrations were determined using the Pierce BCA protein assay kit per the manufacturer's instructions. Equal amounts of protein (20 µg) were electrophoresed under reducing conditions, transferred to a nitrocellulose membrane, and immunoblotted with the corresponding specific antibodies. Membranes were incubated with an

129.

S128

S130

981

S155

r R

S228

Analytical reverse HPLC Instrument: Agilent 1260 Detector: Diode array detection Wavelength: 254 nm Column: ZORBAX Eclipse Plus (150 mm X 4.6 mm, 5µm) Tempeture: 27 °C

Solvent system: A: H2O (0.2% H₃PO₄) B: acetonitrile Flow rate: 1.0 mL/min

	Α	В
0 min	70%	30%
18min	52%	48%
19min	95%	5%
22min	95%	5%
23min	70%	30%

Analytical reverse-phase HPLC profile of Dimethylsulfoxide (DMSO) as background (used as solvent to dissolve the novobiocin analogues)

Analytical reverse-phase HPLC profile of compound **78a** prior to bioassay. Retention time = 8.37 min. Purity = 100%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **78b** prior to bioassay. Retention time = 9.04 min. Purity = 98.8%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **78c** prior to bioassay. Retention time = 8.70 min. Purity = 99.4%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **79a** prior to bioassay. Retention time = 14.3 min. Purity = 95.2%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **79c** prior to bioassay. Retention time = 13.9 min. Purity = 98.4%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **80a** prior to bioassay. Retention time = 13.5 mim. Purity = 98.2%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **80c** prior to bioassay. Retention time = 13.2 min. Purity = 99.2%. Absorbance wavelength = 254 nm.

time = 12.1 min. Purity = 99.6%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **82b** prior to bioassay. Retention time = 8.25 min. Purity = 100%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **82c** prior to bioassay. Retention time = 7.92 min. Purity = 95.9%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **83a** prior to bioassay. Retention time = 10.0 mim. Purity = 100%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **83c** prior to bioassay. Retention time = 10.8 mim. Purity = 98.5%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **84a** prior to bioassay. Retention time = 9.83 min. Purity = 100%. Absorbance wavelength = 254 nm.

time = 9.11 min. Purity = 100%. Absorbance wavelength = 254 nm.

Analytical reverse-phase HPLC profile of compound **84c** prior to bioassay. Retention time = 8.48 min. Purity = 100%. Absorbance wavelength = 254 nm.

1. Donnelly, A.; Blagg, B. S. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. *Curr. Med. Chem.* **2008**, 15, 2702-2717.

Donnelly, A. C.; Mays, J. R.; Burlison, J. A.; Nelson, J. T.; Vielhauer, G.;
Holzbeierlein, J.; Blagg, B. S. J. The design, synthesis, and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity. *J. Org. Chem.* 2008, 73, 8901-8920.

Burlison, J. A.; Avila, C.; Vielhauer, G.; Lubbers, D. J.; Holzbeierlein, J.; Blagg,
B. S. J. Development of novobiocin analogues that manifest anti-proliferative activity
against several cancer cell lines. *J. Org. Chem.* 2008, 73, 2130-2137.