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Lateral habenula neurons signal errors in the prediction of reward information 
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Supplementary Figures 

1. Computational TD learning model of IPEs and conventional RPEs 
2. Test of computational mechanisms for assigning value to informative cues 
3. Behavioral performance and neural activity for each recording session 
4. No significant difference in mean response to forced vs. choice trials 
5. Trend for different response time course on forced vs. choice trials 
6. Conventional RPE signals in the information-predictive and remaining neurons 
7. Absence of consistent IPE signals in the remaining neurons 
8. A further test of IPE and cRPE transmission by single neurons 
9. Neural data are consistent with low-info choices being caused by noisy action selection 
10. Signals related to IPEs and cRPEs in four example neurons – summary 
11. Signals related to IPEs and cRPEs in four example neurons – raw activity 
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Full description for Supplementary Fig. 1: 
Computational TD learning model of IPEs and conventional RPEs 
 

Here we show that the information-related effects seen in the neural and behavioral data 
(Fig. S1a) cannot be accounted for by a conventional temporal difference (TD) learning model 
of RPEs51 (Fig. S1c) but can be accounted for by a modified model that assigns bonus reward 
value to the act of viewing informative cues (Fig. S1b). In the main text, we use the simulated 
neural activity from these TD models to make the diagrams showing theoretical IPE signals (Fig. 
4-6). We next describe the formal representation of the task, the TD learning models, the 
procedure for comparing the models to the data, and the results of the comparison. 
 
Formal representation of the task: 

In order to apply TD models to the data we had to represent the task as a Markov decision 
process (MDP): a sequence of discrete states that transition to each other with specified 
probabilities (potentially dependent on the subject’s actions) and that deliver specified reward 
outcomes52. We represented each trial with a series of state transitions representing the task 
epochs: fixation → target array onset → target chosen → visual cue → end of trial. Water 
rewards were delivered on the transition from the visual cue to the end of the trial. Each epoch 
had several potential states matching the potential stimuli during the task: five target arrays 
(choice 100% vs. 50%, choice 50% vs. 0%, forced 100%, forced 50%, forced 0%), three chosen 
targets (100%, 50%, and 0%), and four visual cues (info-big, info-small, random 1, random 2). 
The transition probabilities between states (and their associated rewards) were set to match the 
true task structure. For example, the target arrays transitioned to the possible chosen targets 
based on the model’s behavioral preferences (as described below), and the probability of each 
target array being presented was set equal to its true probability of being presented if the subject 
had had those behavioral preferences (Methods). The reward sizes were set equal to the true 
amount of water reward in milliliters (Methods). 
 
Temporal difference models: 

We used a simple TD model to estimate the reward value of each event during our 
behavioral task, to generate an RPE signal, and make choices51, 52. In TD learning, the value V(s) 
of a state s is equal to the expected future amount of time-discounted primary reward. This can 
be calculated by considering all possible state transitions from state s and taking into account the 
amount of immediate primary reward r and the value of the next state s’. The relative value of 
immediate vs. delayed rewards is controlled by a temporal discounting parameter γ. Since our 
task did not manipulate reward timing this parameter did not influence the results, so for 
simplicity we fixed it at γ = 1 (other settings produced similar results). To formalize this, we 
represent each potential state transition using a tuple (s, s’, r, p), meaning that state s transitions 
to state s’ while delivering reward r with probability p. Let T(s) be the set of all state transitions 
from state s. Then the value of state s is defined by the equation:  
 

V(s) = Σ(s, s’, r, p) ϵ T(s) p(γV(s’) + r).  
 

The RPE signal in TD learning (called the TD error, δ), is triggered by each state transition 
and is equal to the difference between the predicted reward value of the current state, V(s), and 
the reward value delivered by the transition, γV(s’) + r. It is controlled by the equation: 
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δ = (γV(s’) + r) – V(s) 

 
We calculated the values of all of the states by initializing V(end of trial) = 0 and then 

recursively calculating the remaining values (i.e., using an ‘episodic’ TD model52). The model 
chose between actions using the standard softmax rule, so that the sensitivity of the subject’s 
choice to the action values was controlled by the parameter β. Specifically, if the values of the 
targets 1 and 2 when presented alone on forced trials were V1 and V2, then the probability of 
choosing target 1 over target 2 on a choice trial was set equal to:  
 

Pr(choose target 1) = exp(βV1) / (exp(βV1) + exp(βV2)). 
 

In order to compare the model with the neural data, the model was given an additional 
scaling parameter k that controlled the mapping from model RPEs to neural activity. That is, the 
model’s predicted neural RPE effects (in units of spikes/s) were set equal to k times the model’s 
RPE signal (in units of milliliters of water). Note that habenula neurons signal RPEs in an 
inverted manner so k should be negative. 
 

In summary, the conventional TD model had two parameters: 
1. The softmax parameter β, controlling choices. 
2. The scaling parameter k, mapping from RPEs to neural activity. 

 
We also implemented a modified TD model, called the information-bonus TD model, to 

represent our hypothesis that the brain assigns additional reward value to the act of viewing 
informative cues. This was identical to the conventional model except that it received a bonus 
reward rinfo upon each transition to an informative cue state. (Note that similar results can be 
produced by giving a bonus to only one of the two informative cues, or by giving a penalty to the 
random cues). So this model had a third parameter: 

3. The bonus parameter rinfo, setting the bonus reward for informative cues. 
 
 
Procedure for comparing the models to the data: 

For each model, we found the parameters that optimized the fit between the model and the 
neural and behavioral data. The data were represented by a vector x of 11 values representing 9 
neural IPE and cRPE effects (measured as firing rate differences between pairs of task 
conditions) and 2 behavioral effects (measured as choice percentages), as follows: 
 

Effect name Effect measurement Fig. # 
Negative IPE, target (0% info) – (50% info) 4a 
Negative IPE, cue (unpredicted no-info) – (predicted no-info) 5a 
Positive IPE, target (100% info) – (50% info) 4a 
Positive IPE, small cue (unpredicted info, small) – (predictable info, small) 6a 
Positive IPE, big cue (unpredicted info, big) – (predictable info, big) 6a 
Negative cRPE, cue (predicted info-small cue) – (predicted random cues) 2a 
Negative cRPE, reward (random-small reward) – (info-small reward) 2a 
Positive cRPE, cue (predicted info-big cue) – (predicted random cues) 2a 



4   

Positive cRPE, reward (random-big reward) – (info-big reward) 2a 
Choice type #1 percentage of choosing 100% > 50% info 1c 
Choice type #2 percentage choosing 50% > 0% info 1c 

 
The fit was optimized by using the matlab function ‘fminsearch’ to minimize the fitting 

error. The fitting error was defined as the sum of the squared errors between the measured mean 
effects in the data and the predicted effects from the model, normalized by the variability of the 
measurements (defined for each measurement as the square of the standard error of the mean). 
Thus, if the i-th effect had a measured mean of x(i) with a standard error of σ(i), and a model-
predicted effect of y(i), then the fitting error was given by the equation: Σi (y(i) – x(i))2 / σ(i)2. 
This ensured that the fit was based on all 11 effects while giving greater weight to the effects that 
could be measured more reliably in the data. 
 
Generation of hypothetical response diagrams in main text: 
 To generate the hypothetical response diagrams in the main text, we generated neural 
responses to each task event based on the fitted firing rate response for that event. Responses 
were drawn as triangular waveforms such that the mean of the triangle was equal to the mean 
neural response (i.e., the peak of the triangle was 2x as high as the mean neural response). 
 
Results: 
 
True data (Fig. S1a) 

As expected from our results in the main text, the population of information-predictive 
neurons was significantly excited for all negative IPEs and significantly inhibited for all positive 
IPEs (top panel, red bars show IPE effects in cross-validated data; signed-rank test, all P < 0.05). 
The population was also excited for all negative cRPEs and inhibited for all positive cRPEs 
(middle panel, black bars; signed-rank test, all P < 0.05). The IPE signals were smaller than the 
cRPE signals but had a similar overall pattern. Thus, the IPE signals had a close resemblance to 
the cRPE signals if they were scaled by a factor of 5 (middle panel, red bars), suggesting that the 
neurons might have assigned reward value to the informative cues equal to approximately 1/5th 
the value difference between the big and small water rewards. 
 
Conventional TD model (Fig. S1c), fitted parameters: β = 20, k = –30. 

The conventional TD model produced cRPE signals similar to those observed in the data, 
with excitation for negative cRPEs and inhibition for positive cRPEs (middle panel, black bars). 
However, the model could not reproduce the observed pattern of IPE signals – it had no 
differential response during information-related events (top and middle panels, red bars), and had 
no behavioral preference between the targets (bottom panel).  

All five IPE signals in the data and both behavioral preference measurements were 
significantly different from those for the model (all P < 0.05, signed-rank test for IPE effects and 
binomial test for choice percentages). 
 
Information-bonus model (Fig. S1b), fitted parameters: β = 23, k = –30, rinfo = 0.17. 

The information-bonus model produced both IPE and cRPE signals similar to those 
observed in the data. It had IPE signals with the correct direction and similar magnitudes to those 
seen in the data (top panel). It had behavioral choices closely matching those seen in the data 
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(bottom panel). And it had cRPE signals resembling those seen in the data, and a similar 
proportional relationship between IPEs and cRPEs (middle panel). Notably, the model assigned 
reward value to the informative cues equal to exactly 1/5th the value difference between the big 
and small water rewards (rinfo /(0.88-0.04) = 0.20), matching the pattern seen in the neural data.  

Most of the IPE signals in the data and behavioral preference measurements were not 
significantly different from the model (P > 0.05, signed-rank test for IPE effects and binomial 
test for choice percentages), although one signal was slightly stronger than the model (negative 
IPE for the targets, P = 0.006, signed-rank test) and one was slightly weaker than the model 
(positive IPE for unpredicted info with the big reward cue, P = 0.035, signed-rank test). 
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Supplementary Figure 1. Computational TD learning model of IPEs and conventional RPEs. 
The true neural and behavioral effects in the cross-validated data, used to fit the models (a) are 
similar to a modified TD model that receives bonus reward for viewing informative cues (b), but 
cannot be accounted for by conventional TD models that only receive water rewards (c). 
Top row: Red bars: neural IPE signals measured as the change in firing rate induced by negative 
IPEs (0% info target, unpredicted no-info) and positive IPEs (100% info target, unpredicted info 
during small reward trials and during big reward trials). 
Middle row: Black bars: neural cRPE signals measured as the change in firing rate induced by 
negative cRPEs (Info-small cue, unpredicted small reward) and positive cRPEs (Info-big cue, 
unpredicted big rewards). Red bars: the same IPE signals as in the top row but scaled up by a 
factor of 5, revealing that the cRPE and IPE signals have a comparable response pattern despite 
their different magnitudes. 
Bottom row: Behavioral choice percentages between the information-related targets. 
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Full description for Supplementary Fig. 2: 
Test of computational mechanisms for assigning value to informative cues 
 

Having shown that our data can be accounted for by a model that assigns bonus value to 
informative cues relative to random cues, we next asked whether our data can constrain the 
possible mechanisms by which this bonus value is assigned.  

In this section we show that our data provides evidence against one potential mechanism for 
assigning greater value to the informative cues, called a disengagement mechanism, which was 
proposed in a recent TD learning model43. The disengagement model can reproduce the correct 
pattern of IPE and cRPE signals seen in the average neural activity (Fig. S2a). However, it also 
makes a prediction about the trial-to-trial reliability of neural responses that is not borne out in 
the data. The model predicts that animals frequently ‘disengage’ from the task and forget their 
reward predictions. This would put sharp limits on the ability of neurons to discriminate between 
predictable and unpredictable reward outcomes. In the data, however, most habenula neurons 
had very strong discrimination between predictable and unpredictable rewards, beyond the limits 
predicted by the model (Fig. S2b). 
 
Disengagement model: 
 

The disengagement model is the same as conventional TD learning but is modified to have 
an internal state of ‘disengagement’, representing a time period when the subject loses track of 
the current task state (e.g. by not paying attention to the task) and is unable to predict rewards43. 
The model engages at the start of each trial and then has a chance of transitioning to the 
disengaged state at each moment during the task. The disengaged state has its value fixed at zero, 
so a transition to the disengaged state causes a negative RPE that punishes previous states and 
actions. The chance of disengagement depends on the value of the current state – it occurs often 
during low-value states and rarely during high-value states.  

The idea of this mechanism is to attenuate the values of all states but to have a weaker effect 
on informative cue states than random cue states, thus leaving the informative cue states with a 
relatively higher value. Specifically, the “info-big cue” state has a high value so disengagement 
rarely occurs. The “info-small cue” state has a low value so disengagement occurs often, but its 
value is already near zero so it cannot fall very far. But the “random cue” state has an 
intermediate value, low enough that disengagement occurs fairly often but high enough that its 
value has far to fall. 

To test whether this model could account for our data, we implemented it as follows. The 
probability of disengagement per second of time spent in state s with value V(s) is denoted as 
ε(s) and is controlled by the equation43: 
 

ε(s)  = ε0exp(–V(s)ψ) 
 

Here the parameter ε0 controls the rate of disengagement and the parameter ψ controls how 
the rate of disengagement is influenced by the current state’s value. Given the state’s 
disengagement rate, the probability that the state completes successfully without disengaging 
(and therefore is able to update its value in the normal way based on future states and rewards) is 
controlled by the equation43: 
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Pr(normal value update | s) = (1 – ε(s))τ 
 

Where τ is the duration of the state in seconds. The final result of these disengagement 
effects is that the value of a state is based on the fraction of trials when its value can be updated 
normally (since the remaining trials lead to disengagement which always has a value of zero). 
This can be expressed with the equation: 
 

V(s) = Vconv(s)Pr(normal value update | s) 
 

Where Vconv(s) is the value that would be given by the conventional updating equation, i.e. 
Vconv(s) = Σ(s, s’, r, p) ϵ T(s) p(γV(s’) + r). Note that by expanding terms we can see that V(s) in this 
model is defined recursively: V(s) = Vconv(s)(1 – ε0exp(–V(s)ψ))τ. We therefore solve for the 
state value numerically by using an iterative procedure to find the unique setting of V(s) that 
satisfies the equation.  

In summary, the disengagement model had four parameters: 
1. The softmax parameter β, controlling choices. 
2. The scaling parameter k, mapping from RPEs to neural activity. 
3. The parameter ε0 setting the overall rate of disengagement. 
4. The parameter ψ setting the sensitivity of disengagement to state values. 

 
Model bounds on ROC area for neural discrimination: 

The disengagement model also makes a prediction about the trial-to-trial reliability of neural 
responses43. According to the model, neural responses during the disengaged state reflect only 
the immediate delivery of reward without being influenced by prior predictions43 (because the 
disengaged state has a predicted reward value of zero). So the model’s disengagement rate puts a 
strict limit on its ability to discriminate between predictable and unpredictable reward delivery. 
In our task, this corresponds to a strict bound on the ability of neurons to discriminate whether a 
reward was delivered on an informative cue trial (predictable) or a random cue trial 
(unpredictable).  

The precise bounds are set by the probability that the model is in the disengaged state at the 
moment when reward is delivered. We calculated this separately for info-big, info-small, and 
random cue trials (here denoted as pd(IB),pd(IS), and pd(R)). As it turned out, the best-fitting 
model disengaged very often – its probabilities were pd(IB) = 0.27, pd(R) = 0.55, pd(IS) = 0.91. 
This is roughly comparable to (but slightly higher than) the disengagement probabilities for the 
originally proposed parameter settings of the model43.  

The bounds on neural discrimination were then calculated as follows. We first consider the 
ROC area for discriminating rand-big vs. info-big reward delivery (Fig. S2b, x-axis). Normally 
the model is inhibited by rand-big delivery and non-responsive to info-big delivery. But if the 
model is in the disengaged state then both rand-big or info-big deliveries would cause maximal 
inhibition, at least as large as rand-big delivery. So considering info-big trials, the model has a 
probability of (1–pd(IB)) of being engaged and thus having a higher firing rate than all rand-big 
trials (ROC area as low as 0), whereas it has a probability of pd(IB) of being disengaged and thus 
having at least as low of a firing rate as all rand-big trials (ROC area no lower than 0.5). Hence 
the overall ROC area can be no lower than (1–pd(IB))*0 + pd(IB)*0.5 = pd(IB)*0.5. By a similar 
argument there should also be a symmetrical upper bound on the ROC area, so that the ROC area 
can be no higher than 1–pd(IB)*0.5. Thus the ROC area should lie within a limited region 
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centered at 0.5 (Fig. S2b, extent of gray box along x-axis). By an analogous argument, we can 
also bound the ROC area for discriminating info-small from rand-small reward delivery (Fig. 
S2b, y-axis). That ROC area should be no lower than pd(R)*0.5 and no higher than 1–pd(R)*0.5 
(Fig. S2b, extent of gray box along y-axis). 
 
Results of disengagement model: (fitted parameters: β = 21, k = –26, ε0 = 0.60, ψ = 4.8). 

The disengagement model produced both IPE and  cRPE signals similar to the information-
bonus model and similar to those observed in the data (Fig. S2a, compare to Fig. S1a,b). The 
quality of the fit was slightly worse for the disengagement model despite its additional parameter 
(fitting error: 38 for the information bonus model, 53 for the disengagement model) but it 
produced the correct qualitative pattern of mean responses. 

The disengagement model also predicted that the neural cRPE signals during reward 
delivery would have limited reliability, due to frequent disengagement that would cause the 
model to forget its reward predictions. According to the model the neural ROC areas for 
discriminating informed vs. random reward deliveries should be bounded within a limited range 
(Fig. S2b, gray box). In the data, however, most lateral habenula neurons (n=63/95) had ROC 
areas that fell outside that range (Fig. S2b, dots), indicating that the neurons had more reliable 
cRPE signals than predicted by the model. 
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Supplementary Figure 2. Test of computational mechanisms for assigning value to informative 
cues. (a) A modified TD model using a “disengagement” mechanism43 produces qualitatively 
similar results to the information-bonus model (compare to Fig. S1b). It assigns greater value to 
informative cues than random cues, thus producing IPE signals and a behavioral preference to 
view the informative cues. (b) However, the disengagement model is inconsistent with the 
strength of neural discrimination between predictable and unpredictable reward delivery. The 
plot shows each neuron’s ROC area for discriminating between predictable and unpredictable 
deliveries of big rewards (x-axis, Rand-big vs. Info-big) and small rewards (y-axis, Info-small 
vs. Rand-small). This is the same data as in Fig. 2b but expressed as ROC area. As expected, 
most neurons were clustered in the lower left corner of the plot, indicating strong coding of 
inverted cRPEs. According to the disengagement model, however, neurons should have been 
restricted to a limited region near the center of the plot (gray box, set according to the parameters 
of the best-fitting disengagement model), because frequent disengagement from the task would 
impair their ability to predict the reward size. 
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Supplementary Figure 3. Behavioral performance and neural activity for each recording 
session. Data are shown separately for monkey V (left) and monkey Z (right). Top: behavior. 
Fraction of trials when the animal chose 100% > 50% info (y-axis) or 50% > 0% info (x-axis). 
Error bars are ± 1 SE. Both monkeys expressed an orderly preference for 100% info > 50% info 
> 0% info during every recording session. Bottom: neural activity. Each row is a neuron. Colored 
patches indicate neurons with a significant mean IPE index for the target (first column), mean 
IPE index for the cue, mean cRPE index for the cue, or mean cRPE index for reward delivery 
(last column). Neurons are sorted based on whether they had significant effects in each 
successive column. The patch color indicates the direction of IPE/cRPE coding, with red for 
conventional prediction error signals (hypothesized for dopamine neurons) and blue for inverted 
signals (hypothesized for lateral habenula neurons). A considerable number of neurons had 
inverted IPE signals (blue, left two columns) and many of the same neurons also had inverted 
cRPE signals (blue, right two columns). A few neurons (primarily in monkey Z) had a tendency 
for inverted IPE or inverted cRPE signals (red patches). An example is Neuron D in 
Supplementary Figs. 9,10. We were unable to detect a significant session-to-session neural-
behavioral correlation (mean percent choice of the higher info probability target vs. mean target 
IPE index, rho = -0.07, P = 0.51), perhaps because the animals assigned stable values to the 
targets so there was little underlying variability in target value.  
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Supplementary Figure 4. No significant difference in mean response to forced vs. choice trials. 
Cross-validated data are shown from the information-predictive neurons (top) and remaining 
neurons (bottom) that were recorded for at least one trial during all of the seven possible forced 
and choice trial conditions. 

Left: Response to the targets for all seven trial types, sorted by the information probability of 
the chosen target (blue/purple/red indicate 0/50/100% info) and whether the trial was a forced or 
choice trial (text below x-axis indicates forced trials (“F”) and choice trials (“C”) as well as the 
non-chosen option (e.g. “C0>50”)). There was no significant response difference between forced 
vs. choice trials that had the same information probability (gray text; all P > 0.01, signed-rank 
test). 

Right: Overall response magnitude coding information probability (blue/purple/red dots, 
mean of forced and choice conditions for each 0/50/100% info probability) and performance of 
forced vs. choice trials (dark/light green dots, mean of the 0/50/100% conditions for forced or 
choice trials). There were significant response differences based on information probability but 
not on forced vs. choice trials (text indicates p-values; signed-rank tests). 
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Supplementary Figure 5. Trend for different response time course on forced vs. choice trials. 
Top: cross-validated target responses from the information-predictive neurons on forced and 
choice 50% info trials (top, same as Fig. 4a). Although there was no significant difference in 
overall response magnitude on forced versus choice trials (P = 0.11, signed-rank test), there was 
a trend for different response time courses. Activity on choice trials tended to be initially higher, 
and later lower, than activity on forced trials.  
 Bottom: a similar biphasic trend can be seen in the TD error (δ) signals of the info-bonus TD 
model from Supplementary Fig. 1b, if its target response is decomposed into separate TD errors 
triggered sequentially by target array onset and choice onset (time axis: arbitrary units). This 
biphasic response occurs due to uncertainty about which of the targets the monkey will choose. 
On forced 50% info trials the monkey is certain to get the 50% info target, but on “50% vs. 0%” 
choice trials the monkey sometimes chooses the lower-value 0% info target, so the choice trials 
have a lower value than the forced trials. This causes two effects. First, it causes the choice array 
to evoke an initial small negative TD error (plotted here as an initial ‘excitation’ in the model for 
“Targets on”). Second, if the monkey then chooses the 50% info target after all, the value 
increases to become as high as on forced 50% trials causing a small positive TD error (plotted 
here as a later ‘inhibition’ in the model for “Choice made”). 
 Note, however, that the neural data and model simulation are difficult to compare directly, 
for three reasons: (1) even if the two hypothesized TD errors occur, they may be intermixed 
instead of sequential; (2) the two resulting neural responses could have different durations and 
could overlap in time, in a manner that is difficult to predict; (3) based on the model parameters, 
each ‘phase’ of the model response represents a relatively small change in spike count (about 0.1 
spikes per trial) but could translate into either a large or small change in spike rate, depending on 
its duration. 
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Supplementary Figure 6. Conventional RPE signals in the information-predictive and 
remaining neurons. Same as Fig. 2, shown separately for the information-predictive neurons 
(top) and the remaining neurons (bottom). Both subpopulations of neurons had similar reward 
prediction error signals, although these signals tended to be stronger in the information-
predictive neurons. 
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Supplementary Figure 7. Absence of consistent IPE signals in the remaining neurons. (a) Same 
format as Fig. 5a,b, but showing activity from the remaining neurons. Similar to the information-
predictive neurons, many of the remaining neurons had higher activity in response to 
‘unexpected no-info’ (purple, random cues after 50% info target) than in response to ‘expected 
no-info’ (blue, random cues after 0% info target). Thus, their median negative IPE index for the 
cue was less than zero (-0.17; signed-rank test, P < 0.001). This activity was somewhat different 
from the theoretical inverted IPE signal, however (bottom), because it was a sustained change in 
activity that occurred even before the cues were presented, perhaps reflecting a long-latency 
neural response to the 50% and 0% info targets. (b) Same format as Fig. 6a-c, but showing 
activity for the remaining neurons. Unlike the information-predictive neurons, the remaining 
neurons had smaller and non-significant differences in their activity between ‘unpredicted info’ 
trials (purple) and ‘predictable info’ trials (red) (inset bar plot: all differences < 1 spike/s, all P > 
0.2, signed-rank test; bottom plot of differences in firing rate: no stimulus-triggered difference in 
neural activity). Thus, their activity was different from the theoretical inverted IPE+cRPE signal 
(right), and they had a mean positive cue IPE index of just -0.02, not significantly different from 
zero (P = 0.47, signed-rank test). 
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Supplementary Figure 8. A further test of IPE and cRPE transmission by single neurons. For 
each neuron we calculated the mean IPE index and mean cRPE index for each task event. 
Marginal histograms show the single neuron distribution of the mean cRPE indexes for the visual 
cues and for reward delivery (left, y-axis of scatterplots), and the mean IPE indexes for the target 
array and for the visual cues (top, x-axis of scatterplots). Gray numbers indicate count of neurons 
have mean cRPE or IPE indexes significantly different from 0 (gray neurons on histograms; P < 
0.05, permutation test). Text indicates the average of the single neuron indexes and the p-value 
(signed-rank test). Scatterplots show the relationship between the single neuron mean cRPE 
indexes and mean IPE indexes. Colors indicate significance of the indexes (P < 0.05, 
permutation test), showing neurons with no significant indexes (gray), a significant IPE index 
(red), a significant cRPE index (blue), or both significant indexes (black filled circles). Text 
indicates rank correlation (rho) and its p-value (permutation test); sold line indicates best-fitting 
linear relationship using type 2 regression. This analysis indicated that IPE and cRPE signals 
often occurred in the same neurons (black cells in lower left quadrant of each plot). For example, 
the 30 information-predictive neurons had significant inverted IPE coding for the target (mean 
target IPE index < 0; permutation test, P < 0.05), and 20/30 also had significant inverted cRPE 
coding for both the reward cues and reward delivery (both mean cRPE indexes < 0, P < 0.05). A 
total of 15 neurons had significant inverted prediction error coding for all four task events – IPE 
signals for the target array and the cues, and cRPE signals for the reward cues and deliveries. 
Furthermore, the indexes were correlated so that cells with strong IPE coding also tended to have 
strong cRPE coding (all rho > 0.25, all P < 0.02; permutation tests). 
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Supplementary Fig. 9. Neural data are consistent with low-info choices being caused by noisy 
action selection. We compared the true neural responses (left, same as Fig. 8f) with simulated 
neural responses representing the hypotheses that low-information choices are caused by noisy 
action selection (middle panel) or noisy evaluation (right panel). For simplicity, we considered 
the experiment used to record dopamine neurons in which there were only two targets (100% and 
0% info) that were presented in a mixture of both forced and choice trials (Methods). In the 
simulations the mean target values were set equal to V(100% info) = 2 and V(0% info) = 0. The 
simulated dopamine neurons signaled prediction errors defined as the value of the chosen option 
minus the expected value of the trial (which was computed based on the values of both potential 
options). The simulations were adjusted to resemble the neural recording sessions in terms of the 
probability of choosing the low-info target (~10%), the number of trials (n=3000), and the trial-
to-trial variability in firing rates. 

In the noisy action selection simulation, the values of the two targets were constant on all 
trials but the animal had a 10% probability of making an error in action selection and choosing 
the low-value target. This produced a pattern of results closely resembling the true neural activity 
observed in dopamine neurons (compare left panel to middle panel).  

In the noisy evaluation simulation, the animal always chose the target that had a higher 
value but the values were perturbed from trial to trial with random Gaussian noise to induce a 
10% probability of choosing the low-info target. This produced a very different pattern of 
results: prediction errors were much more positive during choice 0% info trials (blue open circle, 
dotted line) than during forced 0% info trials (blue filled circle). This is different from the pattern 
seen in the neural data (compare left panel to right panel). This occurred because the simulated 
animal only chose the low-info target on trials when evaluation noise gave it a high perceived 
value, so that low-info choices were associated with overly optimistic prediction errors. 
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Full description for Supplementary Figs. 10,11 
IPE and cRPE signals in single neurons – summary and raw activity 
 

Our analysis in the main text shows that a considerable subpopulation of lateral habenula 
neurons transmitted signals related to IPEs, and most also transmitted signals related to cRPEs. 
This suggests that downstream regions could decode lateral habenula cRPE and IPE signals by 
simply averaging spikes across many lateral habenula neurons. At the level of single neurons, 
however, we observed that these IPE and cRPE signals were often superimposed on additional 
heterogeneous forms of tonic and phasic activation. This suggests that downstream regions might 
be able to decode additional information about task events by considering the activity levels of 
individual lateral habenula neurons. To illustrate, we have plotted data from four example 
neurons chosen to show the most common forms of IPE/cRPE and non-IPE/cRPE related 
activity in single cells (Figs. S10,11). The first plot shows a summary analysis of each neuron’s 
IPE and cRPE signals based on comparisons of neural firing rates (Fig. S10). The second plot 
shows each neuron’s raw activity, to illustrate their other forms of task-related activity (Fig. 
S11). A detailed description of their activity is below. 

The first two examples are information-predictive neurons (neurons A, B). These neurons 
had inverted IPE signals in response to the targets and cues, as seen in the population as a whole 
(Figs. 4-6). Their target responses were inversely related to information probability (left 
column); they were excited during ‘unpredicted no-info’ (middle column); and they tended to be 
relatively inhibited during ‘unexpected info’ (middle column). These IPE signals were 
superimposed on additional heterogeneous tonic and phasic activations. These included target 
responses with multiple excitatory and inhibitory phases which could occur differently during 
forced vs. choice trials (neuron A, compare forced 50% vs. choice 50% trials; forced trials have a 
biphasic inhibition-excitation, while choice trials have a triphasic inhibition-excitation-
inhibition). These neurons also had cRPE signals similar to those seen in the population as a 
whole (right column). Again, these cRPE signals could be superimposed on additional 
heterogeneous tonic and phasic activations. After negative cRPEs triggered by the info-small 
cue, some neurons had sustained tonic inhibition (neuron A) or tonic excitation (neuron B) 
lasting throughout the cue period. After delivery of a big reward, some neurons had post-
outcome tonic excitation (neuron B, and to a lesser extent neuron A; right column, far right side 
of plot, solid lines above dotted lines), as reported previously44. 

Neuron C is an example that had cRPE-like signals but no significant IPE signals – one of 
the “remaining neurons” described in the main text (Fig. 4). This neuron did not seem to encode 
IPEs because it responded to the targets with a mostly non-differential excitation (left column), 
and it had no significant response modulation by ‘unpredicted no-info’ or ‘unpredicted info’ 
(middle column). But this neuron had an cRPE-like response to the cues (right column: 
excitation by info-small cue, inhibition by info-big cue, intermediate response to random cues) 
and to reward delivery (right column: initial non-differential excitation followed by further 
excitation by rand-small rewards and relative inhibition by rand-big rewards). Again, these 
cRPE-like signals were superimposed on other heterogeneous forms of task-related activity, such 
as an overall suppression of firing rate during the cue period on trials when the info-big or 
random cues were presented (right column, compare blue and solid red lines to red dashed lines). 

Neuron D was a rare example that had IPE signals in the opposite direction of the lateral 
habenula population as a whole. This neuron’s target response was positively related to 
information probability (left column). Its random cue responses were relatively inhibited by 
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negative IPEs (‘unpredicted no-info’ < ‘predictable no-info’, middle column) and its informative 
cue responses were relatively excited by positive IPEs (‘unpredicted info’ > ‘predictable info’; 
middle column). Despite this unusual direction of IPE coding, this neuron still had the typical 
habenular direction of phasic cRPE-like signals in response to the cues and outcomes (right 
column). It was excited by negative IPEs (right, info-small cue and rand-small reward) and 
inhibited by positive IPEs (right, info-big cue and rand-small outcome). These IPE and cRPE 
signals were again superimposed on other heterogeneous forms of activity such as an overall 
suppression of firing rate during the cue period when the info-small cue was presented (right 
column, red dashed line below blue lines and red solid line) and an overall suppression of 
activity after reward delivery (right column, far right side of plot). 
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Supplementary Figure 10. Signals related to IPEs and cRPEs in four example neurons – 
summary. Each row is one neuron. First column: IPE coding in response to the target array 
(same format as Fig. 3C). Plotted is the baseline-subtracted firing rate. Text is p-value of the 
difference in firing rate for negative IPEs (forced 0% info vs. forced 50% info, left two dots) and 
positive IPEs (choice 50% info vs. choice 100% info, right two dots). Error bars are ±1 SE. 
Second column: IPE coding in response to the visual cues, separately for negative IPEs (random 
cues, ‘unpredicted no-info’ – ‘predictable no-info’, left, purple bar) and positive IPEs 
(informative cues, ‘unpredicted info’ – ‘predictable info’, right; data shown for small-reward cue 
(dashed white bar), big-reward cue (solid white bar), and average of both cues (purple bar)). 
Error bars are ±1 SE. Text indicates p-value of the difference in firing rate between unpredicted 
vs. predictable trials. Third column: cRPE coding in response to the cues and rewards. Plotted 
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are the firing rates in response to the cues (left: info-small cue, random cues, and info-big cue) 
and rewards (right: random small, informed small, informed big, and random big). Asterisks 
indicate significant differences in rate for negative cRPEs (difference between info-small vs. 
random cue, or between rand-small vs. informed-small reward) and positive cRPEs (difference 
between info-big vs. random cue, or between rand-big vs. informed-big reward). See associated 
text for a detailed description of each neuron.
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Supplementary Figure 11. Signals related to IPEs and cRPEs in four example neurons – raw 
activity. Each row shows activity from a single neuron, smoothed with a Gaussian kernel (σ=20 
ms). First column: IPE coding in response to the target array. Same format as Fig. 3a,b. Data are 
shown separately for negative IPEs (left, forced 0% vs. forced 50% info) and positive IPEs 
(right, choice 100% vs. choice 50% info). Second column: IPE coding in response to the visual 
cues. Similar format to Fig. 5a and 6a. Data are shown separately for negative IPEs (left, random 
cues, ‘unpredicted no-info’ vs. ‘predictable no-info’) and positive IPEs (right, informative cues, 
‘unpredicted info’ vs. ‘predictable info’). Third column: cRPE coding in response to the cues 
and rewards. Same format as Fig. 2a. See associated text for a detailed description of each 
neuron. 
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