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Web Appendix A

Proof of Theorem 1

W m can be broken into five terms:

W m =
1

m
XmT Xm − σ̂2
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m
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m
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− σ̂2
aveI︸ ︷︷ ︸
v

(A.1)

We consider each of these terms individually.

i: This term converges to GT∆G by assumption 3.

ii: Let M = 1
m

GTΓmT Um = 1
m

BmUm, then mij = 1
m

∑m
ℓ=1 biℓuℓj where E(biℓuℓj) = 0 and

var(biℓuℓj) = b2iℓσ
2
ℓ . So by the Kolmogorov Strong Law of Large Numbers (KSLLN) (Feller,

1968) mij →a.s. 0 for all i, j.

iii : By symmetry, this term also converges almost surely to zero.

iv : Let S = 1
m

UmT Um, and consider the off-diagonal element sij = 1
m

∑m
ℓ=1 uℓiuℓj, where

E(uℓiuℓj) = 0 and var(uℓiuℓj) = E(u2
ℓiu

2
ℓj)−E(uℓiuℓj)

2 = (σ2
ℓ )

2
. So again by KSLLN sij →a.s. 0.

Now consider the diagonal elements sii = 1
m

∑m
ℓ=1 u

2
ℓi, where E(u2

ℓi) = σ2
ℓ and var(u2

ℓi) =

E(u4
ℓi) − E(u2

ℓi)
2. By assumptions 1 the variances are bounded, so by KSLLN sii →a.s. σ̄

2 =

lim
m→∞

1

m

m∑

i=1

σ2
i , which exists because σ2

i is bounded for all i.

Combining terms (i-iv) and applying Slutsky’s theorem yields: 1
m

XmT Xm →a.s. GT∆G+
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σ̄2I. Since the eigenvalues of a matrix are defined as roots of a determinant depending on

the elements of that matrix, and since the roots of a polynomial equation are a continuous

multi-valued function of the coefficients (Henriksen and Isbell, 1953), the eigenvalue function

is continuous. The eigenvalues of 1
m

XmT Xm converge almost surely to the eigenvalues of

GT∆G + σ̄2I from the continuous mapping theorem. The eigenvalues of GT∆G + σ̄2I are

equal to λ1 + σ̄2, . . . , λn + σ̄2; but λr+1, . . . , λn are equal to zero by assumption, so the last

n− r eigenvalues consistently estimate σ̄2.

v : σ̂2
ave = 1

m

∑m
i=1

1
(n−κ)

∑n
j=1 (xij −

∑κ
k=1 γ̂ikv̂kj)

2 = 1
n−κ

∑n
k=κ λk(Z

m), where λk(Z
m) is

the kth eigenvalue of Zm = 1
m

XmT Xm. But for all κ > r, λk(Z
m)k converges to σ̄2 almost

surely.

Combining terms (i-v) and applying Slutsky’s theorem yields: W m →a.s. GT∆G. By the

same argument as above, the eigenvalues of W m converge almost surely to the eigenvalues

of GT∆G from the continuous mapping theorem. Further, since both the matrix Wm

and the eigenvalues converge almost surely, and the eigenvectors can be obtained from a

linear operation of these two elements, the eigenvectors of W m corresponding to the unique

eigenvalues must converge to the corresponding eigenvectors of GT∆G.

Proof of Lemma 1

We wish to show that the indicator:

1 {λk(W
m) ≥ cm} = 1

{
1

cm
λk(W

m) ≥ 1
}
.

consistently distinguishes between zero and non-zero eigenvalues. If λk(W
m) = λk+OP

(
m− 1

2

)

then for any cm = O(m−η), 0 < η < 1
2
, when λk = 0,

(
1

cm

λk(W
m)

)
= O(mη)OP

(
m− 1

2

)
=

mη− 1

2OP (1) and 1
{

1
cm

λk(W
m) ≥ 1

}
→P 0. When λk > 0,

(
1

cm

λk(W
m)

)
= O(mη)

{
λk +OP (m− 1

2 )
}

=

O(mη) + oP

{
mη− 1

2

}
→ ∞. So when λk > 0 and 0 < η < 1

2
, 1

{
1

cm

λk(W
m) ≥ 1

}
→P 1. To

complete the proof, we must show that λk(W
m) = λk +OP

(
m− 1

2

)
.
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From the decomposition (A.1) we can write W m as a continuous function of:

yi =
1

m

(
ki1u

T
i. , . . . , kinu

T
i. , ui1u

T
i. , . . . , uinu

T
i.

)T
,

and 1
m

GTΓmTΓmG, where K = GTΓmT , this is straightforward for components (i− iv), for

component v:

σ̂2
ave =

1

n− κ

n∑

k=κ

λk(Z
m)

but Zm = 1
m

XmT Xm is a continuous function of yi and 1
m

GTΓmTΓmG and the eigenvalues

of Zm are a continuous function of the matrix (Henriksen and Isbell, 1953), so σ̂2
ave is a

continuous function of yi.

The expectation of yi is E(yi) = (0, . . . , 0, σ2
i , 0, . . . , 0, σ

2
i , 0, . . . , 0, σ

2
i )

T . Define y∗
i =

√
m{yi − E(yi)}; the covariance matrix for this random variable is cov(y∗

i ) = 1
m
Σi. From

assumption 1, 1
m

∑m
i=1 Σi → Σ and

∑m
i=1 y∗

i is asymptotically normally distributed if the

Lindeberg condition holds for every ǫ > 0. Let

ψi =






n∑

j=1

(u2
ij − σ2

i )
2 +

n∑

j=1

n∑

k=1

k2
iju

2
ik +

∑

k 6=j

u2
iju

2
ik




1(‖ y∗
i ‖2> ǫ).

The Lindeberg condition requires E(ψi) → 0 for every i. But ψi is only non-zero when:

‖ y∗
i ‖2 =

1

m






n∑

j=1

(u2
ij − σ2

i )
2 +

n∑

j=1

n∑

k=1

k2
iju

2
ik +

∑

k 6=j

u2
iju

2
ik




 > ǫ

an event that has probability zero as m → ∞, so ψi →P 0. It is also clear that |ψi| ≤ m ‖

y∗
i ‖2 and E {m ‖ y∗

i ‖2} < ∞ by assumption 1. So by the dominated convergence theorem

E(ψi) →P 0 for each i and hence for every ǫ > 0,

m∑

i=1

E {‖ y∗
i ‖ 1(‖ y∗

i ‖> ǫ)} =
1

m

m∑

i=1

E{ψi} →P 0

Since the Lindeberg condition is satisfied
∑m

i=1 y∗
i is asymptotically normally distributed.

Since vec(W m) = g(
∑m

i=1 yi) + vec
(

1
m

GΓmTΓmG
)
, where the function vec(.) concatenates
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the columns of a matrix and g is a continuous function,

√
m

(
vec(W m) − vec

(
1

m
GTΓmTΓmG

))
→ MVN(0,Σw)

by the multivariate delta method, so
√
m(W m − vec

(
1
m

GTΓmTΓmG
)
) = OP (1). Since

λr − λr+1 = c > 0 and W m is symmetric and real, by Theorem 4.2 of Eaton and Tyler

(1991),

√
m

{
λ1(W

m), . . . , λn(W m))T − (λ1, . . . , λn)
T
}

= OP (1)

⇒
√
mλk(W

m) =
√
mλk +OP (1) ∀k.

So λk(W
m) = λk +OP (m−1/2), which completes the proof.

Proof of Corollary 1

Rm = Xm(I − S(ST S)−1ST )

= {BmS + ΓmG + Um}{I − ST (SST )−1S}

= ΓmG + UmP s

Then we can write:

W m
R =

1

m
RmT Rm − σ̂2

aveI

=
1

m
GTΓmTΓmG

︸ ︷︷ ︸
i

+
1

m
GTΓmT UP S

︸ ︷︷ ︸
ii

+
1

m
P T

s UmT ΓmG
︸ ︷︷ ︸

iii

+
1

m
P T

s UmT UmP s

︸ ︷︷ ︸
iv

−P T
s σ̂

2
aveP s︸ ︷︷ ︸
v

Following the proof of Theorem 1, terms (ii) and (iii) converge to zero, term (i) converges

to GT∆G, and term (iv) converges to P T
s σ̄

2P s = σ̄2P s. Term (v) is equal to σ̂2
aveP s, but

σ̂2
ave is equal to 1

n−d−k

∑n
k=(d+κ) λk(Z

m), which converges almost surely to σ̄2. Thus, W m
R
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converges almost surely to GT∆G and the result follows according to the proof of Theorem

1.

Proof of Corollary 2

The proof follows the proof of Lemma 1, where the function, g, incorporates the project

term P s.

Web Appendix B

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

Web Appendix C

[Table 1 about here.]
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Figure 1. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 3. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 2. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 3. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 3. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 5. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 4. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 5. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 5. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 10. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 6. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 10. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 7. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 18. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors. Since r = 18 is close to the sample size n = 20, there is
no clear second stability point, so the Hallin & Liska approach does not give an estimate.
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Figure 8. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 18. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors. Since r = 18 is close to the sample size n = 20, there is
no clear second stability point, so the Hallin & Liska approach does not give an estimate.
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Table 1

Results from a simulation experiment. For each combination of m,n and r, 100 independent microarray data sets
were simulated. The average (s.d.) RMSFE, a measure of how well the eigenvectors of Wm span the linear space
spanned by G, is reported for the Lemma 1 estimator of r and the Bai & Ng (2002) and Buja & Eyuboglu (1992)

estimators.

(m,n) r RMSFE(r̂) × 105 RMSFE(r̂bn) × 105 RMSFE(r̂be) × 105

(1000,10) 3 403.84 (773.88) 2514.19 (2881.21) 915.18 (1571.98)
(5000,10) 3 78.44 (271.25) 3022.17 (2409.22) 785.95 (1446.20)
(10000,10) 3 50.18 (215.60) 2881.82 (2585.60) 817.71 (1753.53)
(1000,20) 3 109.77 (23.18) 685.79 (1683.42) 133.18 (237.64)
(5000,20) 3 22.49 (4.67) 426.71 (1266.14) 22.49 (4.67)
(10000,20) 3 10.42 (2.22) 193.79 (972.41) 10.42 (2.22)
(1000,100) 3 101.24 (7.29) 101.24 (7.29) 101.24 (7.29)
(5000,100) 3 20.26 (1.57) 20.26 (1.57) 20.26 (1.57)
(10000,100) 3 10.11(0.82) 10.11(0.82) 10.11 (0.82)

(1000,10) 5 822.46 (624.17) 2514 .19 (1704.76) 3256.58 (1698.78)
(5000,10) 5 224.48(309.48) 3022.17 (1729.20) 2885.43 (1636.53)
(10000,10) 5 129.70(245.14) 2606.50 (1371.87) 2655.60 (1474.46)
(1000,20) 5 395.34 (591.32) 1378.21 (1101.71) 480.67 (718.98)
(5000,20) 5 46.95 (151.17) 1298.78 (1109.70) 230.22 (563.62)
(10000,20) 5 18.00 (78.65) 980.16 (991.06) 191.60 (478.68)
(1000,100) 5 99.65 (7.22) 99.65 (7.22) 99.65 (7.21)
(5000,100) 5 20.11(1.31) 20.11 (1.31) 20.11 (1.31)
(10000,100) 5 10.10 (0.63) 10.10 (0.63) 10.10 (0.63)

(1000,20) 10 1108.28 (435.75) 1732.07 (644.47) 3034.82 (1076.86)
(5000,20) 10 297.95 (245.09) 1715.14 (545.61) 2683.19 (717.63)
(10000,20) 10 198.12 (164.99) 1592.15 (520.36) 2562.26 (711.42)
(1000,100) 10 96.40 (5.31) 96.40 (5.31) 96.40 (5.31)
(5000,100) 10 19.30 (1.06) 19.30 (1.06) 19.30 (1.06)
(10000,100) 10 9.60 (0.44) 9.60(0.44) 9.60 (0.44)

(1000,20) 18 1148.48 (273.08) 1562.41(329.37) 5479.46 (1011.77)
(5000,20) 18 497.17(144.31) 1484.74 (312.31) 5033.88 (832.27)
(10000,20) 18 336.51 (104.66) 1472.69 (350.24) 4876.27 (867.75)
(1000,100) 18 314.30 (293.42) 90.25 (3.61) 97.64 (53.06)
(5000,100) 18 17.88 (0.74) 17.88 (0.74) 17.88 (0.74)
(10000,100) 18 8.88 (0.34) 8.88 (0.34) 8.88 (0.34)


