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Web Appendix A

Proof of Theorem 1

W™ can be broken into five terms:
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We consider each of these terms individually.

i: This term converges to GT AG by assumption 3.

ii: Let M = L G'T™U™ = LB™U™, then m;; = L 31" byuy; where E(bjug;) = 0 and
var(byue;) = b4o7. So by the Kolmogorov Strong Law of Large Numbers (KSLLN) (Feller,
1968) m;; —q.s. 0 for all 4, j.

124 : By symmetry, this term also converges almost surely to zero.

w: Let § = %UmTUm, and consider the off-diagonal element s;; = % > oreq Upitgj, Where
E(ugiug;) = 0 and var(ugug;) = E(ujug;) —E(ugue)® = (03)2. So again by KSLLN s;; —. 0.
Now consider the diagonal elements s; = -+ >/, uZ;, where E(u};) = o7 and var(uj;) =

E(u};) — E(uZ)? By assumptions 1 the variances are bounded, so by KSLLN s;; —,, 6% =

S . . . .
lim — Y o7, which exists because o7 is bounded for all i.

Combining terms (i-iv) and applying Slutsky’s theorem yields: %X mrxm™ .. GTAG+
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o2I. Since the eigenvalues of a matrix are defined as roots of a determinant depending on
the elements of that matrix, and since the roots of a polynomial equation are a continuous
multi-valued function of the coefficients (Henriksen and Isbell, 1953), the eigenvalue function
is continuous. The eigenvalues of %X mT X™ converge almost surely to the eigenvalues of
GT AG + %I from the continuous mapping theorem. The eigenvalues of GT AG + %I are
equal to A\; +32,...,\, + % but A\.yq,...,\, are equal to zero by assumption, so the last
n — r eigenvalues consistently estimate 2.
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the kth eigenvalue of Z,, = L X™" X™. But for all k > r, \y(Z™)k converges to 5% almost
surely.

Combining terms (i-v) and applying Slutsky’s theorem yields: W™ —,, GT AG. By the
same argument as above, the eigenvalues of W™ converge almost surely to the eigenvalues
of GTAG from the continuous mapping theorem. Further, since both the matrix W™
and the eigenvalues converge almost surely, and the eigenvectors can be obtained from a
linear operation of these two elements, the eigenvectors of W™ corresponding to the unique
eigenvalues must converge to the corresponding eigenvectors of GT AG.

Proof of Lemma 1

We wish to show that the indicator:

LOWW™) > e} = 1 {iAk(WM) > 1),

Cm

consistently distinguishes between zero and non-zero eigenvalues. If \,(W™) = A\;+Op (m_%)

then for any ¢, = O(m™), 0 < n < 1, when X\, = 0, (é)\k(Wm)) = O(m")Op (m_% =
m"20p(1) and 1{N(W™) > 1} —p 0. When A, > 0, (

1 1
Cm Cm

(
O(m") + op {m"_%} — 00. So when A\, > 0 and 0 < 7 < 3, 1{



From the decomposition (A.1) we can write W™ as a continuous function of:
1 T
_ T T T T
Yi = m (]fﬂui,, o kinty L uny 7umuz) )

and %GTI"”TI"”G, where K = G'T"™7, this is straightforward for components (i — 4v), for

component v:
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(Z™)

but Z™ = %X mT X™ is a continuous function of y, and %GTI‘mTI‘mG and the eigenvalues

2

of Z™ are a continuous function of the matrix (Henriksen and Isbell, 1953), so ;. is a

continuous function of y,.

The expectation of y, is E(y;) = (0,...,0,02,0,...,0,06%,0,...,0,02)T. Define y; =

vm{y; — E(y;)}; the covariance matrix for this random variable is cov(y;) = +3;. From
assumption 1, % Y, — X oand Y, yf is asymptotically normally distributed if the

Lindeberg condition holds for every € > 0. Let

n

wi = {Z(ufj - Ui2)2 + Z Z ij zk + Zumuzk} H yz || )

J=1 k#j

The Lindeberg condition requires E(1);) — 0 for every i. But ¢; is only non-zero when:

|| yz = {Z 22)2_'_22 i Zk+zu2]ulk}>€

Jj=1k=1 k#j
an event that has probability zero as m — oo, so ¥; —p 0. It is also clear that |[¢;| < m ||
y: ||? and E{m || y; ||*} < oo by assumption 1. So by the dominated convergence theorem

E(¢;) —p 0 for each ¢ and hence for every € > 0,

U

D E{ly 11y 1> e} > E{ti} —p 0

=1 i=1
Since the Lindeberg condition is satisfied > 1", y7 is asymptotically normally distributed.

Since vec(W™) = g(>1*, y;) + vec (%GI‘mTI‘mG), where the function vec(.) concatenates
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the columns of a matrix and g is a continuous function,
1
Jm (Vec(Wm) — vec (—GTrmTrmc;>) . MVN(0, £,)
m

by the multivariate delta method, so /m(W™ — vec (%GTI‘mTI‘mG)) = Op(1). Since
A — Ay1 = ¢ > 0 and W™ is symmetric and real, by Theorem 4.2 of Eaton and Tyler

(1991),

Vi { (W™, (W) = (AT = 0p(1)

= V(W™ = mA +Op(1) V.

So A\ (W™) = X\ + Op(m~/%), which completes the proof.

Proof of Corollary 1

R™ = X™(I-S(8"8)7's")

= {B"S+I"G+U™}{I - S"(SS")"'8}

= I'"''G+U™P,
Then we can write:
m 1 mT ppm ~2
Wy = —R"R" -o0,,.1
m

1 1 1 1
= -GG+ —-G'r""vPs+—P'umT"G+ —PTU™U™P, - P15, P

s Tave”™ S
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Following the proof of Theorem 1, terms (ii) and (iii) converge to zero, term (i) converges

2 P, but

to GTAG, and term (iv) converges to P15*P, = 3*P,. Term (v) is equal to 62,

Goye is equal to —— S0 41 Ak(Z™), which converges almost surely to 6. Thus, W'



converges almost surely to G* AG and the result follows according to the proof of Theorem

1.

Proof of Corollary 2
The proof follows the proof of Lemma 1, where the function, g, incorporates the project

term P,.

Web Appendix B

[Figure 1 about here.]
[Figure 2 about here.]
[Figure 3 about here.]
[Figure 4 about here.]
[Figure 5 about here.]
[Figure 6 about here.]
[Figure 7 about here.]

[Figure 8 about here.]

Web Appendix C

[Table 1 about here.]
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Figure 1. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with » = 3. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 2. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with » = 3. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 3. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with » = 5. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 4. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with » = 5. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.



20

15

5
1

Estimated Number of Factors
10
$J0310B4 JO Jaquinp JO dduelIep

Figure 5. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with » = 10. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 6. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with » = 10. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors.
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Figure 7. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 18. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors. Since r = 18 is close to the sample size n = 20, there is
no clear second stability point, so the Hallin & Liska approach does not give an estimate.
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Figure 8. A plot of the estimated number of factors (blue and left axis) and the empirical
variance of the estimate for varying set sizes (red and right axis) across a range of coefficients
a for a simulated example with r = 18. The second stability point (green bracket) is the
second point, moving from left to right, where the variance finds a trough. Hallin & Liska
(2007) suggest using the estimate corresponding to this second stability point as a practical
estimator of the number of factors. Since r = 18 is close to the sample size n = 20, there is
no clear second stability point, so the Hallin & Liska approach does not give an estimate.



Table 1
Results from a simulation experiment. For each combination of m,n and r, 100 independent microarray data sets
were simulated. The average (s.d.) RMSFE, a measure of how well the eigenvectors of Wy, span the linear space
spanned by G, is reported for the Lemma 1 estimator of v and the Bai & Ng (2002) and Buja & Eyuboglu (1992)
estimators.

(m,n)  r RMSFE() x 105 RMSFE(f,) x 105 RMSFE(f) x 10°
(1000,10) 3 403.84 (773.88)  2514.19 (2881.21)  915.18 (1571.98)
(5000,10) 3 78.44 (271.25)  3022.17 (2409.22)  785.95 (1446.20)
(10000,10) 3 50.18 (215.60)  2881.82 (2585.60)  817.71 (1753.53)
(1000,20) 3 109.77 (23.18)  685.79 (1683.42)  133.18 (237.64)
(5000,20) 3 22.49 (4.67) 426.71 (1266.14) 22.49 (4.67)
(10000,20) 3 10.42 (2.22) 193.79 (972.41) 10.42 (2.22)
(1000,100) 3 101.24 (7.29) 101.24 (7.29) 101.24 (7.29)
(5000,100) 3 20.26 (1.57) 20.26 (1.57) 20.26 (1.57)
(10000,100) 3 10.11(0.82) 10.11(0.82) 10.11 (0.82)
(1000,10) 5 82246 (624.17) 2514 .19 (1704.76)  3256.58 (1698.78)
(5000,10) 5  224.48(309.48)  3022.17 (1729.20)  2885.43 (1636.53)
(10000,10) 5  129.70(245.14)  2606.50 (1371.87)  2655.60 (1474.46)
(1000,20) 5  395.34 (591.32)  1378.21 (1101.71)  480.67 (718.98)
(5000,20) 5  46.95 (151.17)  1298.78 (1109.70)  230.22 (563.62)
(10000,20) 5  18.00 (78.65) 980.16 (991.06) 191.60 (478.68)
(1000,100) 5  99.65 (7.22) 99.65 (7.22) 99.65 (7.21)
(5000,100) 5 20.11(1.31) 20.11 (1.31) 20.11 (1.31)

(10000,100) 5  10.10 (0.63) 10.10 (0.63) 10.10 (0.63)
(1000,20) 10 1108.28 (435.75)  1732.07 (644.47)  3034.82 (1076.86)
(5000,20) 10  297.95 (245.09)  1715.14 (545.61)  2683.19 (717.63)
(10000,20) 10 198.12 (164.99)  1592.15 (520.36)  2562.26 (711.42)
(1000,100) 10  96.40 (5.31) 96.40 (5.31) 96.40 (5.31)
(5000,100) 10 19.30 (1.06) 19.30 (1.06) 19.30 (1.06)
(10000,100) 10 9.60 (0.44) 9.60(0.44) 9.60 (0.44)
(1000,20) 18 1148.48 (273.08)  1562.41(329.37)  5479.46 (1011.77)
(5000,20) 18  497.17(144.31)  1484.74 (312.31)  5033.88 (832.27)
(10000,20) 18 336.51 (104.66)  1472.69 (350.24)  4876.27 (867.75)
(1000,100) 18  314.30 (293.42) 90.25 (3.61) 97.64 (53.06)
(5000,100) 18  17.88 (0.74) 17.88 (0.74) 17.88 (0.74)
(10000,100) 18  8.88 (0.34) 8.88 (0.34) 8.88 (0.34)
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