# Web-based Supplementary Materials for "Asymptotic conditional singular value decomposition for high-dimensional genomic data"

Jeffrey T. Leek

Johns Hopkins Bloomberg School of Public Health

Baltimore, MD 21205-2179

jleek@jhsph.edu

Web Appendix A

Proof of Theorem 1

 $\boldsymbol{W}^m$  can be broken into five terms:

$$\boldsymbol{W}^{m} = \frac{1}{m} \boldsymbol{X}^{mT} \boldsymbol{X}^{m} - \hat{\sigma}_{ave}^{2} \boldsymbol{I}$$
  
$$= \underbrace{\frac{1}{m} \boldsymbol{G}^{T} \boldsymbol{\Gamma}^{mT} \boldsymbol{\Gamma}^{m} \boldsymbol{G}}_{i} + \underbrace{\frac{1}{m} \boldsymbol{G}^{T} \boldsymbol{\Gamma}^{mT} \boldsymbol{U}^{m}}_{ii} + \underbrace{\frac{1}{m} \boldsymbol{U}^{mT} \boldsymbol{\Gamma}^{m} \boldsymbol{G}}_{iii} + \underbrace{\frac{1}{m} \boldsymbol{U}^{mT} \boldsymbol{U}^{m}}_{iv} - \underbrace{\widehat{\sigma}_{ave}^{2} \boldsymbol{I}}_{v} \quad (A.1)$$

We consider each of these terms individually.

*i*: This term converges to  $G^T \Delta G$  by assumption 3.

*ii*: Let  $\boldsymbol{M} = \frac{1}{m} \boldsymbol{G}^T \boldsymbol{\Gamma}^{mT} \boldsymbol{U}^m = \frac{1}{m} \boldsymbol{B}^m \boldsymbol{U}^m$ , then  $m_{ij} = \frac{1}{m} \sum_{\ell=1}^m b_{i\ell} u_{\ell j}$  where  $E(b_{i\ell} u_{\ell j}) = 0$  and  $var(b_{i\ell} u_{\ell j}) = b_{i\ell}^2 \sigma_{\ell}^2$ . So by the Kolmogorov Strong Law of Large Numbers (KSLLN) (Feller, 1968)  $m_{ij} \rightarrow_{a.s.} 0$  for all i, j.

*iii* : By symmetry, this term also converges almost surely to zero.

*iv* : Let  $\mathbf{S} = \frac{1}{m} \mathbf{U}^{mT} \mathbf{U}^m$ , and consider the off-diagonal element  $s_{ij} = \frac{1}{m} \sum_{\ell=1}^m u_{\ell i} u_{\ell j}$ , where  $\mathbf{E}(u_{\ell i} u_{\ell j}) = 0$  and  $\operatorname{var}(u_{\ell i} u_{\ell j}) = \mathbf{E}(u_{\ell i}^2 u_{\ell j}^2) - \mathbf{E}(u_{\ell i} u_{\ell j})^2 = (\sigma_{\ell}^2)^2$ . So again by KSLLN  $s_{ij} \to_{a.s.} 0$ . Now consider the diagonal elements  $s_{ii} = \frac{1}{m} \sum_{\ell=1}^m u_{\ell i}^2$ , where  $\mathbf{E}(u_{\ell i}^2) = \sigma_{\ell}^2$  and  $\operatorname{var}(u_{\ell i}^2) = \mathbf{E}(u_{\ell i}^4) - \mathbf{E}(u_{\ell i}^2)^2$ . By assumptions 1 the variances are bounded, so by KSLLN  $s_{ii} \to_{a.s.} \bar{\sigma}^2 = \lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^m \sigma_i^2$ , which exists because  $\sigma_i^2$  is bounded for all *i*.

Combining terms (i-iv) and applying Slutsky's theorem yields:  $\frac{1}{m} X^{mT} X^m \rightarrow_{a.s.} G^T \Delta G +$ 

 $\bar{\sigma}^2 \mathbf{I}$ . Since the eigenvalues of a matrix are defined as roots of a determinant depending on the elements of that matrix, and since the roots of a polynomial equation are a continuous multi-valued function of the coefficients (Henriksen and Isbell, 1953), the eigenvalue function is continuous. The eigenvalues of  $\frac{1}{m} \mathbf{X}^{mT} \mathbf{X}^m$  converge almost surely to the eigenvalues of  $\mathbf{G}^T \Delta \mathbf{G} + \bar{\sigma}^2 \mathbf{I}$  from the continuous mapping theorem. The eigenvalues of  $\mathbf{G}^T \Delta \mathbf{G} + \bar{\sigma}^2 \mathbf{I}$  are equal to  $\lambda_1 + \bar{\sigma}^2, \ldots, \lambda_n + \bar{\sigma}^2$ ; but  $\lambda_{r+1}, \ldots, \lambda_n$  are equal to zero by assumption, so the last n - r eigenvalues consistently estimate  $\bar{\sigma}^2$ .

 $v: \hat{\sigma}_{ave}^2 = \frac{1}{m} \sum_{i=1}^m \frac{1}{(n-\kappa)} \sum_{j=1}^n (x_{ij} - \sum_{k=1}^\kappa \hat{\gamma}_{ik} \hat{v}_{kj})^2 = \frac{1}{n-\kappa} \sum_{k=\kappa}^n \lambda_k(\mathbf{Z}^m), \text{ where } \lambda_k(\mathbf{Z}^m) \text{ is the } k\text{th eigenvalue of } \mathbf{Z}_m = \frac{1}{m} \mathbf{X}^{mT} \mathbf{X}^m. \text{ But for all } \kappa > r, \lambda_k(\mathbf{Z}^m) k \text{ converges to } \bar{\sigma}^2 \text{ almost surely.}$ 

Combining terms (i-v) and applying Slutsky's theorem yields:  $\mathbf{W}^m \to_{a.s.} \mathbf{G}^T \Delta \mathbf{G}$ . By the same argument as above, the eigenvalues of  $\mathbf{W}^m$  converge almost surely to the eigenvalues of  $\mathbf{G}^T \Delta \mathbf{G}$  from the continuous mapping theorem. Further, since both the matrix  $W^m$  and the eigenvalues converge almost surely, and the eigenvectors can be obtained from a linear operation of these two elements, the eigenvectors of  $\mathbf{W}^m$  corresponding to the unique eigenvalues must converge to the corresponding eigenvectors of  $\mathbf{G}^T \Delta \mathbf{G}$ .

## Proof of Lemma 1

We wish to show that the indicator:

$$1\left\{\lambda_k(\boldsymbol{W}^m) \ge c_m\right\} = 1\left\{\frac{1}{c_m}\lambda_k(\boldsymbol{W}^m) \ge 1\right\}.$$

consistently distinguishes between zero and non-zero eigenvalues. If  $\lambda_k(\mathbf{W}^m) = \lambda_k + O_P\left(m^{-\frac{1}{2}}\right)$ then for any  $c_m = O(m^{-\eta}), \ 0 < \eta < \frac{1}{2}$ , when  $\lambda_k = 0, \ \left(\frac{1}{c_m}\lambda_k(\mathbf{W}^m)\right) = O(m^{\eta})O_P\left(m^{-\frac{1}{2}}\right) = m^{\eta-\frac{1}{2}}O_P(1)$  and  $1\left\{\frac{1}{c_m}\lambda_k(\mathbf{W}^m) \ge 1\right\} \to_P 0$ . When  $\lambda_k > 0, \ \left(\frac{1}{c_m}\lambda_k(\mathbf{W}^m)\right) = O(m^{\eta})\left\{\lambda_k + O_P(m^{-\frac{1}{2}})\right\} = O(m^{\eta}) + o_P\left\{m^{\eta-\frac{1}{2}}\right\} \to \infty$ . So when  $\lambda_k > 0$  and  $0 < \eta < \frac{1}{2}, \ 1\left\{\frac{1}{c_m}\lambda_k(\mathbf{W}^m) \ge 1\right\} \to_P 1$ . To complete the proof, we must show that  $\lambda_k(\mathbf{W}^m) = \lambda_k + O_P\left(m^{-\frac{1}{2}}\right)$ . From the decomposition (A.1) we can write  $\boldsymbol{W}^m$  as a continuous function of:

$$\boldsymbol{y}_i = rac{1}{m} \left( k_{i1} \boldsymbol{u}_{i.}^T, \dots, k_{in} \boldsymbol{u}_{i.}^T, u_{i1} \boldsymbol{u}_{i.}^T, \dots, u_{in} \boldsymbol{u}_{i.}^T 
ight)^T,$$

and  $\frac{1}{m} \boldsymbol{G}^T \boldsymbol{\Gamma}^{mT} \boldsymbol{\Gamma}^m \boldsymbol{G}$ , where  $\boldsymbol{K} = \boldsymbol{G}^T \boldsymbol{\Gamma}^{mT}$ , this is straightforward for components (i - iv), for component v:

$$\hat{\sigma}_{ave}^2 = \frac{1}{n-\kappa} \sum_{k=\kappa}^n \lambda_k(\boldsymbol{Z}^m)$$

but  $Z^m = \frac{1}{m} X^{mT} X^m$  is a continuous function of  $y_i$  and  $\frac{1}{m} G^T \Gamma^{mT} \Gamma^m G$  and the eigenvalues of  $Z^m$  are a continuous function of the matrix (Henriksen and Isbell, 1953), so  $\hat{\sigma}_{ave}^2$  is a continuous function of  $y_i$ .

The expectation of  $\boldsymbol{y}_i$  is  $\mathrm{E}(\boldsymbol{y}_i) = (0, \dots, 0, \sigma_i^2, 0, \dots, 0, \sigma_i^2, 0, \dots, 0, \sigma_i^2)^T$ . Define  $\boldsymbol{y}_i^* = \sqrt{m} \{\boldsymbol{y}_i - \mathrm{E}(\boldsymbol{y}_i)\}$ ; the covariance matrix for this random variable is  $\mathrm{cov}(\boldsymbol{y}_i^*) = \frac{1}{m} \boldsymbol{\Sigma}_i$ . From assumption 1,  $\frac{1}{m} \sum_{i=1}^m \boldsymbol{\Sigma}_i \to \boldsymbol{\Sigma}$  and  $\sum_{i=1}^m \boldsymbol{y}_i^*$  is asymptotically normally distributed if the Lindeberg condition holds for every  $\epsilon > 0$ . Let

$$\psi_i = \left\{ \sum_{j=1}^n (u_{ij}^2 - \sigma_i^2)^2 + \sum_{j=1}^n \sum_{k=1}^n k_{ij}^2 u_{ik}^2 + \sum_{k \neq j} u_{ij}^2 u_{ik}^2 \right\} \mathbf{1} (\parallel \boldsymbol{y}_i^* \parallel^2 > \epsilon).$$

The Lindeberg condition requires  $E(\psi_i) \to 0$  for every *i*. But  $\psi_i$  is only non-zero when:

$$\| \boldsymbol{y}_{i}^{*} \|^{2} = \frac{1}{m} \left\{ \sum_{j=1}^{n} (u_{ij}^{2} - \sigma_{i}^{2})^{2} + \sum_{j=1}^{n} \sum_{k=1}^{n} k_{ij}^{2} u_{ik}^{2} + \sum_{k \neq j} u_{ij}^{2} u_{ik}^{2} \right\} > \epsilon$$

an event that has probability zero as  $m \to \infty$ , so  $\psi_i \to_P 0$ . It is also clear that  $|\psi_i| \leq m \parallel \mathbf{y}_i^* \parallel^2$  and  $\mathbb{E}\{m \parallel \mathbf{y}_i^* \parallel^2\} < \infty$  by assumption 1. So by the dominated convergence theorem  $\mathbb{E}(\psi_i) \to_P 0$  for each *i* and hence for every  $\epsilon > 0$ ,

$$\sum_{i=1}^{m} \mathbf{E} \{ \| \boldsymbol{y}_{i}^{*} \| \mathbf{1} (\| \boldsymbol{y}_{i}^{*} \| > \epsilon) \} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{E} \{ \psi_{i} \} \to_{P} 0$$

Since the Lindeberg condition is satisfied  $\sum_{i=1}^{m} \boldsymbol{y}_{i}^{*}$  is asymptotically normally distributed. Since  $\operatorname{vec}(\boldsymbol{W}^{m}) = \boldsymbol{g}(\sum_{i=1}^{m} \boldsymbol{y}_{i}) + \operatorname{vec}\left(\frac{1}{m}\boldsymbol{G}\boldsymbol{\Gamma}^{mT}\boldsymbol{\Gamma}^{m}\boldsymbol{G}\right)$ , where the function  $\operatorname{vec}(.)$  concatenates the columns of a matrix and  $\boldsymbol{g}$  is a continuous function,

$$\sqrt{m}\left(\operatorname{vec}(\boldsymbol{W}^m) - \operatorname{vec}\left(\frac{1}{m}\boldsymbol{G}^T\boldsymbol{\Gamma}^m\boldsymbol{G}\right)\right) \to \operatorname{MVN}(\boldsymbol{0},\boldsymbol{\Sigma}_w)$$

by the multivariate delta method, so  $\sqrt{m}(\boldsymbol{W}^m - \operatorname{vec}\left(\frac{1}{m}\boldsymbol{G}^T\boldsymbol{\Gamma}^{mT}\boldsymbol{\Gamma}^m\boldsymbol{G}\right)) = O_P(1)$ . Since  $\lambda_r - \lambda_{r+1} = c > 0$  and  $\boldsymbol{W}^m$  is symmetric and real, by Theorem 4.2 of Eaton and Tyler (1991),

$$\sqrt{m} \left\{ \lambda_1(\boldsymbol{W}^m), \dots, \lambda_n(\boldsymbol{W}^m) \right\}^T - (\lambda_1, \dots, \lambda_n)^T \right\} = O_P(1)$$
$$\Rightarrow \sqrt{m} \lambda_k(\boldsymbol{W}^m) = \sqrt{m} \lambda_k + O_P(1) \quad \forall k$$

So  $\lambda_k(\boldsymbol{W}^m) = \lambda_k + O_P(m^{-1/2})$ , which completes the proof.

## Proof of Corollary 1

$$egin{array}{rcl} m{R}^m &=& m{X}^m (m{I} - m{S}(m{S}^Tm{S})^{-1}m{S}^T) \ &=& \{m{B}^mm{S} + m{\Gamma}^mm{G} + m{U}^m\}\{m{I} - m{S}^T(m{S}m{S}^T)^{-1}m{S}\} \ &=& m{\Gamma}^mm{G} + m{U}^mm{P}_s \end{array}$$

Then we can write:

$$\boldsymbol{W}_{R}^{m} = \frac{1}{m} \boldsymbol{R}^{mT} \boldsymbol{R}^{m} - \hat{\sigma}_{ave}^{2} \boldsymbol{I}$$
  
$$= \underbrace{\frac{1}{m} \boldsymbol{G}^{T} \boldsymbol{\Gamma}^{mT} \boldsymbol{\Gamma}^{m} \boldsymbol{G}}_{i} + \underbrace{\frac{1}{m} \boldsymbol{G}^{T} \boldsymbol{\Gamma}^{mT} \boldsymbol{U} \boldsymbol{P}_{S}}_{ii} + \underbrace{\frac{1}{m} \boldsymbol{P}_{s}^{T} \boldsymbol{U}^{mT} \boldsymbol{\Gamma}^{m} \boldsymbol{G}}_{iii} + \underbrace{\frac{1}{m} \boldsymbol{P}_{s}^{T} \boldsymbol{U}^{mT} \boldsymbol{U}^{m} \boldsymbol{P}_{s}}_{iv} - \underbrace{\boldsymbol{P}_{s}^{T} \hat{\sigma}_{ave}^{2} \boldsymbol{P}_{s}}_{v}$$

Following the proof of Theorem 1, terms (ii) and (iii) converge to zero, term (i) converges to  $\boldsymbol{G}^T \Delta \boldsymbol{G}$ , and term (iv) converges to  $\boldsymbol{P}_s^T \bar{\sigma}^2 \boldsymbol{P}_s = \bar{\sigma}^2 \boldsymbol{P}_s$ . Term (v) is equal to  $\hat{\sigma}_{ave}^2 \boldsymbol{P}_s$ , but  $\hat{\sigma}_{ave}^2$  is equal to  $\frac{1}{n-d-k} \sum_{k=(d+\kappa)}^n \lambda_k(\boldsymbol{Z}^m)$ , which converges almost surely to  $\bar{\sigma}^2$ . Thus,  $\boldsymbol{W}_{\boldsymbol{R}}^m$  converges almost surely to  $\boldsymbol{G}^T \Delta \boldsymbol{G}$  and the result follows according to the proof of Theorem 1.

# Proof of Corollary 2

The proof follows the proof of Lemma 1, where the function,  $\boldsymbol{g},$  incorporates the project term  $\boldsymbol{P}_s.$ 

Web Appendix B

[Figure 1 about here.]
[Figure 2 about here.]
[Figure 3 about here.]
[Figure 4 about here.]
[Figure 5 about here.]
[Figure 6 about here.]
[Figure 7 about here.]
[Figure 8 about here.]

Web Appendix C

[Table 1 about here.]

### References

Eaton, M. L. and Tyler, D. E. (1991). On wielandt's inequality and its application to the asymptotic distribution of the eigenvalues of a random symmetric matrix. Ann Stat 19, 260–271.

- Feller, W. (1968). An Introduction to Probability Theory and Its Applications, volume 1.Wiley, 3 edition.
- Henriksen, M. and Isbell, J. R. (1953). On the continuity of the real roots of an algebraic equation. *Proc Amer Math Soc* **4**, 431–4.



Figure 1. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 3. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors.



Figure 2. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 3. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors.



Figure 3. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 5. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors.



Figure 4. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 5. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors.



Figure 5. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 10. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors.



Figure 6. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 10. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors.



Figure 7. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 18. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors. Since r = 18 is close to the sample size n = 20, there is no clear second stability point, so the Hallin & Liska approach does not give an estimate.



Figure 8. A plot of the estimated number of factors (blue and left axis) and the empirical variance of the estimate for varying set sizes (red and right axis) across a range of coefficients a for a simulated example with r = 18. The second stability point (green bracket) is the second point, moving from left to right, where the variance finds a trough. Hallin & Liska (2007) suggest using the estimate corresponding to this second stability point as a practical estimator of the number of factors. Since r = 18 is close to the sample size n = 20, there is no clear second stability point, so the Hallin & Liska approach does not give an estimate.

#### Table 1

Results from a simulation experiment. For each combination of m, n and r, 100 independent microarray data sets were simulated. The average (s.d.) RMSFE, a measure of how well the eigenvectors of  $W_m$  span the linear space spanned by G, is reported for the Lemma 1 estimator of r and the Bai & Ng (2002) and Buja & Eyuboglu (1992) estimators.

| (m,n)        | r  | $\text{RMSFE}(\hat{r}) \times 10^5$ | $\text{RMSFE}(\hat{r}_{bn}) \times 10^5$ | $\text{RMSFE}(\hat{r}_{be}) \times 10^5$ |
|--------------|----|-------------------------------------|------------------------------------------|------------------------------------------|
| (1000, 10)   | 3  | 403.84(773.88)                      | 2514.19(2881.21)                         | $915.18\ (1571.98)$                      |
| (5000, 10)   | 3  | 78.44(271.25)                       | 3022.17(2409.22)                         | 785.95 (1446.20)                         |
| (10000, 10)  | 3  | 50.18(215.60)                       | 2881.82(2585.60)                         | 817.71 (1753.53)                         |
| (1000, 20)   | 3  | 109.77(23.18)                       | 685.79(1683.42)                          | 133.18(237.64)                           |
| (5000, 20)   | 3  | 22.49(4.67)                         | 426.71(1266.14)                          | 22.49(4.67)                              |
| (10000, 20)  | 3  | 10.42(2.22)                         | 193.79(972.41)                           | 10.42(2.22)                              |
| (1000, 100)  | 3  | 101.24(7.29)                        | $101.24\ (7.29)$                         | $101.24\ (7.29)$                         |
| (5000, 100)  | 3  | 20.26 (1.57)                        | $20.26 \ (1.57)$                         | 20.26 (1.57)                             |
| (10000, 100) | 3  | 10.11(0.82)                         | 10.11(0.82)                              | $10.11 \ (0.82)$                         |
|              |    |                                     |                                          |                                          |
| (1000, 10)   | 5  | $822.46\ (624.17)$                  | 2514.19(1704.76)                         | $3256.58\ (1698.78)$                     |
| (5000, 10)   | 5  | 224.48(309.48)                      | $3022.17\ (1729.20)$                     | $2885.43 \ (1636.53)$                    |
| (10000, 10)  | 5  | 129.70(245.14)                      | $2606.50\ (1371.87)$                     | 2655.60(1474.46)                         |
| (1000, 20)   | 5  | $395.34\ (591.32)$                  | $1378.21 \ (1101.71)$                    | 480.67(718.98)                           |
| (5000, 20)   | 5  | 46.95(151.17)                       | 1298.78(1109.70)                         | 230.22 (563.62)                          |
| (10000, 20)  | 5  | 18.00(78.65)                        | $980.16\ (991.06)$                       | $191.60 \ (478.68)$                      |
| (1000, 100)  | 5  | 99.65(7.22)                         | 99.65(7.22)                              | 99.65(7.21)                              |
| (5000, 100)  | 5  | 20.11(1.31)                         | 20.11 (1.31)                             | 20.11(1.31)                              |
| (10000, 100) | 5  | $10.10 \ (0.63)$                    | $10.10 \ (0.63)$                         | $10.10 \ (0.63)$                         |
|              |    |                                     |                                          |                                          |
| (1000, 20)   | 10 | 1108.28 (435.75)                    | $1732.07 \ (644.47)$                     | $3034.82\ (1076.86)$                     |
| (5000, 20)   | 10 | 297.95(245.09)                      | 1715.14(545.61)                          | $2683.19\ (717.63)$                      |
| (10000, 20)  | 10 | $198.12 \ (164.99)$                 | $1592.15\ (520.36)$                      | $2562.26\ (711.42)$                      |
| (1000, 100)  | 10 | 96.40(5.31)                         | 96.40(5.31)                              | $96.40\ (5.31)$                          |
| (5000, 100)  | 10 | 19.30(1.06)                         | 19.30(1.06)                              | 19.30(1.06)                              |
| (10000, 100) | 10 | 9.60(0.44)                          | 9.60(0.44)                               | 9.60(0.44)                               |
|              |    |                                     |                                          |                                          |
| (1000, 20)   | 18 | 1148.48 (273.08)                    | 1562.41(329.37)                          | $5479.46\ (1011.77)$                     |
| (5000, 20)   | 18 | 497.17(144.31)                      | 1484.74 (312.31)                         | $5033.88\ (832.27)$                      |
| (10000, 20)  | 18 | $336.51\ (104.66)$                  | 1472.69(350.24)                          | $4876.27 \ (867.75)$                     |
| (1000, 100)  | 18 | 314.30(293.42)                      | 90.25 (3.61)                             | 97.64(53.06)                             |
| (5000, 100)  | 18 | 17.88(0.74)                         | $17.88 \ (0.74)$                         | 17.88(0.74)                              |
| (10000, 100) | 18 | 8.88(0.34)                          | 8.88(0.34)                               | 8.88(0.34)                               |