

2 kb

2 kb

2 kb

2 kb

Supplementary Figures

Figure S1 Supporting data for Figure 2: Transcriptional regulatory activities of Sef1, Sfu1, and Hap43

- a) Validation of $sfu1\Delta\Delta$ microarray results using RT-PCR. $sfu1\Delta\Delta$ and wild type strains were grown in iron-replete medium vs. iron-depleted medium, and RT-PCR was used to compare the expression of the 5 genes that were found to be highly downregulated in a previous analysis of $sfu1\Delta\Delta$ (Lan et al., 2004) but not in our own analysis. Error bars depict the standard deviation among triplicate samples.
- b) Complementation analysis using Myc-tagged alleles of Sef1, Sfu1, and Hap43. Wild type, homozygous knockout, heterozygous knockout, and complemented strains were spotted onto the indicated media and incubated at 30°C. Sef1 and Hap43 activity were assessed on low iron medium, whereas Sfu1 activity was assessed on high copper medium (that is predicted to promote the assembly of Fet3/iron permease complexes and to increase the uptake of environmental iron).
- c) Validation of predicted direct DNA binding targets of Sfu1-Myc. Four additional ChIP experiments were done comparing strains with and without Sfu1-Myc. qPCR was used to quantify the abundance of immunoprecipitated DNA in each extract corresponding to each of the 9 predicted Sfu1 direct binding targets (*CFL4, FTR1, FRE9, SIT1, FTH1, FRP1, orf19.5475, SEF1,* and *RBT5; PGA7* was not included since it shares a promoter region with *RBT5*), as well as 4 negative controls (*CFL1, HAP43, FRE10,* and *FET3*). White bars correspond to the control strain, black bars the epitope-tagged strain. Each of the 9 direct targets was at least 2 times as abundant in ChIP pellets from the epitope-tagged extracts, but none of the control promoters differed significantly between the tagged and control extracts.
- d) Heat maps of promoters bound by Sef1, Sfu1, and Hap43. For each transcription factor, ChIP results in the untagged control extract are presented on the left, and results for the Myc-tagged strain are on the right. Promoter sequences include 1 kb upstream and downstream of the start codon, except in cases of larger promoters, in which 2kb upstream and downstream of the start codon are included. Note that all direct binding events are included in these maps, not just those with corresponding changes in RNA expression in the deletion mutants.

Figure S2 Supporting data for Figure 3: Analysis of transcription factor orthologs in *C. albicans, S. cerevisiae*, and *S. pombe*

- a) Growth of viable knockouts of *S. pombe* zinc binuclear proteins on iron-depleted medium. Wild type *S. pombe*, the *php4* Δ mutant (that disrupts the CCAAT-binding complex), and 29 viable *S. pombe* zinc binuclear finger knockout mutants were plated on iron replete (YES) and iron-depleted (YES + 140 μ M DIP) media and incubated at 30°C. Wild type and *php4* Δ were included as resistant and sensitive controls.
- b) *S. cerevisiae SEF1* is not induced in low iron medium. RT-PCR was used to assess transcript levels in wild type *S. cerevisiae* (S288C) grown in YEPD (black

bars) vs. YEPD+ 100 μ M BPS (white bars). Unlike *ScSEF1*, the *S. cerevisiae AFT1* gene was 2-fold induced in low iron medium. Error bars depict the standard deviation among triplicate samples.

Supplementary Tables

Table S1aExpression microarray results depicted in Figure 2Table S1bChIP-Chip results depicted in Figure 2The genomic coordinates of sequences used for MEME analysis appear in bold.Table S2aStrains used in Figure 3 and throughout this studyTable S2bPrimers used for construction of strains in Figure 3 and throughout this study

Supplementary Methods

Heat Maps

Heat maps of Sef1, Sfu1, and Hap43 enrichment at promoter sequences (Figure S1d) were generated by subtracting the background Cy3 and Cy5 median of the two replicate experiments and calculating the mean of log₂ probe signal values of IP/whole cell extract. Genomic coordinates were extracted for 1kb upstream and downstream of the start codon of each ORF and 80bp wide bins were created in these extractions. Probe values were assigned to the bins based on the genomic coordinate of the center of each probe.

Systematic Name	Gene Name	Description	log2(iron-replete/iron					
			Replicate 1	Replicate 2	Replicate 3			
Up-regulated > 2-fold in YEPD vs. YEPD + BPS								
orf19.4674.1	CRD2	Metallothionein; role	6.2295	4.262	4.954			
orf19.2475	PGA26	Putative GPI-anchor	3.945	3.751	2.759			
orf19.4040	ILV3	Putative dihydroxyac	4.1475	3.258	2.609			
orf19.238	CCP1	Similar to cytochrom	6.722	3.013	2.88			
orf19.7498	LEU1	Protein described as	5.6995	2.121	3.201			
orf19.1770	CYC1	Cytochrome c; comp	4.842	3.0725	2.4745			
orf19.637	SDH2	Succinate dehydroge	3.973	3.0245	2.93			
orf19.4495	NDH51	Subunit of nicotinam	4.703	2.9835	2.447			
orf19.2871	SDH12	Protein with similarity	4.003	2.8785	2.4325			
orf19.7590		Protein described as	3.898	2.8335	2.2005			
orf19.2091		Predicted ORF in As	4.3225	3.0265	2.025			
orf19.4365		Predicted ORF in As	2.7905	3.987	2.3685			
orf19.3327	TRM2	Predicted ORF in As	2.948	3.9265	1.5645			
orf19.1744	HEM4	Protein described as	3.727	3.057	2.2425			
orf19.5077		Predicted ORF in As	3.4755	2.988	1.598			
orf19.3223.1		Predicted ORF; desc	2.8655	2.8165	1.8295			
orf19.6794	FESUR1	Protein described as	3.499	2.6505	2.423			
orf19.3175		Predicted ORF in As	4.683	2.5325	2.616			
orf19.4758		Predicted ORF in As	3.896	2.583	2.2365			
orf19.6531	NUC2	Protein described as	3.698	2.562	2.106			
orf19.1710		Protein described as	3.6305	2.523	1.997			
orf19.6257	GLT1	Alkaline downregulat	4.2325	2.722	2.19			
orf19.1517	ARO3	3-Deoxy-D-arabinoh	2.782	2.7755	2.0055			
orf19.5893	RIP1	Protein described as	2.7305	2.618	1.67			
orf19.5629	QCR7	Protein described as	2.48	2.547	1.7285			
orf19.1625		Predicted ORF in As	2.775	2.4785	1.867			
orf19.6385	ACO1	Protein described as	5.6095	2.525	2.1655			
orf19.446.2		Predicted ORF in As	3.0705	2.434	1.909			
orf19.287		Predicted ORF in As	2.827	2.4475	1.6615			
orf19.1179		Transcriptionally reg	2.7435	2.5165	1.7395			
orf19.2821		Predicted ORF in As	2.8575	2.6805	1.311			
orf19.3527	CYT1	Protein described as	3.1615	2.342	1.865			
orf19.2954		Predicted ORF in As	2.7615	2.574	1.5365			
orf19.446.1		Predicted ORF in As	2.6245	2.405	1.334			
orf19.4099	ECM17	Predicted enzyme of	3.5115	2.345	1.5825			
orf19.3290		Predicted ORF in As	3.033	2.4075	1.6705			
orf19.913.2		ORF Predicted by Ar	2.8875	2.353	1.553			
orf19.1957	СҮСЗ	Cytochrome c heme	2.324	2.3695	1.721			
orf19.1549		Predicted ORF in As	2.6315	2.6635	1.6505			
orf19.1873		Predicted ORF in As	3.055	2.5245	1.3415			
orf19.4016		Predicted ORF in As	2.826	2.524	1.804			
orf19.3366.1		ORF Predicted by Ar	3.296	2.4855	1.755			
orf19.5521	ISA1	Reported to have po	3.521	2.2825	2.0735			

Table S1a Microarray results for Wild type *C. albicans* in iron-replete vs. iron-de

Sef1 binding targets				
Peak #	Gene name	Systematic name	Normalized log2 SEF1 enrichme	Agilent Score
1	SOD2	orf19.3340	5.7	10.371
2	ISU1	orf19.6548	5.1	9.9905
3	HGT2	orf19.3668	4.3	9.9135
4		orf19.4901	4.5	9.792
5		orf19.3610	4.25	9.7015
6	ACO1	orf19.6385	4.6	9.6295
7	SAL6	orf19.5758	4.5	9.6105
7		orf19.5757	4.5	9.6105
8	ATM1	orf19.1077	4	9.547
9	ISA1	orf19.5521	4	9.492
9	GCV1	orf19.5519	4	9.492
10	SNM1	orf19.1927	4.25	9.464
10	SEF2	orf19.1926	4.25	9.464
11	YHM2	orf19.4197	4.25	9.42
11	FCA1	orf19.4195.1	4.25	9.42
12	NBP35	orf19.747	4	9.348
12		orf19.746	4	9.348
13	CFL5	orf19.1930	3.9	9.152
14	HAP43	orf19.681	3.8	9.0535
15		orf19.2149	3.85	9.0355
15		orf19.2150	3.85	9.0355
16	HAP3	orf19.4647	5.88	9.024
17	TRR1	orf19.4290	3.8	8.998
18		orf19.6003	4.25	8.856
19	SOD4	orf19.2062	3.5	8.795
20	FRE9	orf19.3538	3.45	8.744
21		orf19.5952	3.7	8.6985
22	GDH3	orf19.4716	3.1	8.6185
23	HMX1	orf19.6073	3.25	8.5975
24	FTR1	orf19.7219	3.25	8.5365
24	RBE1	orf19.7218	3.25	8.5365
25		orf19.7445	3.75	8.4515
26	SMF12	orf19.2270	3.7	8.4475
27	orf19.22	orf19.22	3.25	8.404
28		orf19.5326	3.25	8.3685
29		orf19.4513	3	8.3455
30		orf19.7306	3	8.309
31	CAP1	orf19.1623	3.25	8.2825
31		orf19.1624	3.25	8.2825
32	SAP99	orf19.853	3.45	8.227
33		orf19.6793	3	8.0995
33	RRD1	orf19.6792	3	8.0995
34	CFL2	orf19.1264	3	8.0565
35		orf19.1486	2.75	7.7615
36	IDH1	orf19.4826	2.75	7.681

Table S1b. ChIP-Chip results depicted in Figure 2

Table S2a. Strains used in Figure 3 and th

		Relevant
Strain	Species	Genotype
SN250	C. albicans	Wild type
		Wild type
SN425	C. albicans	(prototroph)
SN320	Calbiaana	
311330	C. albicaris	Serrord
SN/152	Calhicans	sef1D/D (prototroph)
511452		
SN515	C. albicans	sfu1D/D
SN668	C. albicans	sfu1 D/D (prototroph)
SN694	C. albicans	hap43D/D
SN802	Calhicans	aft? D/D
511002		SEE1-
		complemented
SN436	C. albicans	strain
		SFU1-
		complemented
SN664	C. albicans	strain
		HAP43-
CNIGCO	Calhiaana	complemented
511003	C. albicaris	Strain
SN423	C. albicans	SEF1-Mvc/SEF1
SN646	C. albicans	SFU1-Myc/SFU1
SN840	C. albicans	HAP43-Myc/HAP43
SN830	Calhicans	SEE1-Muc/D
511050		SET T-WYC/D
SN858	C. albicans	SFU1-Myc/D
SN860	C. albicans	HAP43-Myc/D
BY4741	S. cerevisiae	Wild type
Weissman lab		
	S. cerevisiae	Wild type (control)
seriu	S. cerevisiae	seriu
N846	S. Cerevisiae	nap40 aft1D
SP286	S pombe	Wild type
0.200	5. pombe	

Primer Na	Purpose	Sequence
Primers used	d in <i>C. albican</i> s	
SNO300	Common 5' verificati	CCGTTAATTAACCCGGGGATC
SNO301	Common 3' verificati	ggaacttcagatccactagttctagagc
SNO772	Common 5' verificati	attcagcgaacggggtgtac
SNO778	Common 3' verificati	gctatggcgcattcatcgacc
SNO460	SEF1-Myc Forward	TTAATAATGATAACCAAGATGACGACTTTTTGGGTTGGTT
SNO461	SEF1-Myc Reverse	ACTTATTCATTACAAAATCATATTAACATAATTACTAACTA
SNO503	SEF1-Myc 5' verifica	TGAAATCTTTTGATTCCAGCAAACC
SNO504	SEF1-Myc 3' verifica	CTTCTATTGTTCCACAAGGTGCCAG
SNO1016	HAP43-Myc 5' flank_	ggcgaattggagctccaccgcggtggcggccgctctagaactagtgGATCgttta
SNO1017	HAP43-Myc 5' flank_	GTTCACCGTTAATTAACCCGGGGGATCCGATTATATGCTC
SNO1018	HAP43-Myc 13xMyc	CGAGAATTAGATAGAAGAGCATATAATcggatccccgggttaatta
SNO1019	HAP43-Myc 13xMyc	GTGTCGGAAATACTTCATACTGTAAGTCAAAGCGGCCGC
SNO1020	HAP43-Myc 3' flank_	agatccactagttctagagcggccgcTTTGACTTACAGTATGAAGTAT
SNO1021	HAP43-Myc 3' flank_	GTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAG
SNO1022	HAP43-Myc 5' verific	GACCAAGGATACTTCTTCTGATGG
SNO1023	HAP43-Myc 3' verific	GTGCAGGTAATACTATTGCTGGTG
SNO883	SEF1-Myc/SEF1D 5'	ggcgaattggagctccaccgcggtggcggccgctctagaactagtgGATCgttta
SNO884	SEF1-Myc/SEF1D 5'	CTCGAGGGGGGGGCCCGGTACCCAAAGTTAAGGGAGGAG
SNO885	SEF1-Myc/SEF1D FI	
SNO886	SEF1-Myc/SEF1D Fl	TTTACATTCTAATGAGGTAGAATCGGCGGCCGCTCTAGA
SNO887	SEF1-Myc/SEF1D 3'	tccactagttctagagcggccgccGATTCTACCTCATTAGAATGTAA
SNO888	SEF1-Myc/SEF1D 3'	GTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAG
SNO901	SEF1-Myc/SEF1D 5'	CTGCACGACCTTGCATCATTAC
SNO898	SEF1-Myc/SEF1D 3'	CACAAGGTGCCAGAATATACACAG
SNO1070	SFU1-Myc/SFU1D 5	ggcgaattggagctccaccgcggtggcggccgctctagaactagtgGATCgttta
SNO1071	SFU1-Myc/SFU1D 5	CTCGAGGGGGGGCCCGGTACCCAAATTCATAAACGGTG
SNO1072	SFU1-Myc/SFU1D F	ACAAAGTCAACCACCGTTTATGAATttgggtaccgggcccccctc
SNO1073	SFU1-Myc/SFU1D F	AAGGGGATTGTTTTGCATACTCGGCGGCCGCTCTAGAAC
SNO1074	SFU1-Myc/SFU1D 3	tccactagttctagagcggccgccGAGTATGCAAAACAATCCCCTTT
SNO1075	SFU1-Myc/SFU1D 3	GTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAG
SNO1084	SFU1-Myc/SFU1D 5	TCAAGTACCAGTTACTGTTTGAGAG
SNO1085	SFU1-Myc/SFU1D 3	AGGACGTAATGATGATGATGAAGG
SNO1076	HAP43-Myc/HAP43	ggcgaattggagctccaccgcggtggcggccgctctagaactagtgGATCgttta
SNO1077	HAP43-Myc/HAP43	CTCGAGGGGGGGGCCCGGTACCCAACCGATTACTCGCTG
SNO1078	HAP43-Myc/HAP43	GAAATCAGCGAGTAATCGGttgggtaccgggccccccctcgagga
SNO1019	HAP43-Myc/HAP43	GTGTCGGAAATACTTCATACTGTAAGTCAAAGCGGCCGC
SNO1020	HAP43-Myc/HAP43	agatccactagttctagagcggccgcTTTGACTTACAGTATGAAGTAT
SNO1021	HAP43-Myc/HAP43	GTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAG
SNO1082	HAP43-Myc/HAP43	GACAACAAAAGCAGTTCATTGG
SNO1083	HAP43-Myc/HAP43	TCAAGTACCAGTTACTGTTTGAGAG
SNO1056	qPCR for Sef1 prom	CGGGTCTAGTAGTAAACAAAGC
SNO1057	qPCR for Sef1 prom	CTGTCAGGAAGAAAGGAAGAGA
SNO1062	qPCR for Rbt5 prom	TACGAGGTTTCGCTATTTCTTGAC
SNO1063	qPCR for Rbt5 prom	GTAGCAAATACTTATGCAGCTTGG
SNO1066	qPCR for SFU1 pron	TTCAAGTACCAGTTACTGTTTGAG

Table S2b. Primers used for construction of strains in Figure 3 and through