# **Supporting Information**

# anti-Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents

In Su Kim, Soo Bong Han and Michael J. Krische\*

University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA

# **Table of Contents**

| General Method -  | <br>S  | 2 |
|-------------------|--------|---|
| Ocheral Michiou - | <br>D. | 4 |

Detailed Procedure and Spectral Data for *anti*-Diastereo- and Enantioselective Crotylation Adducts (**3a-3j**) from Alcohols (**1a-1j**) ------ S3–S32

Detailed Procedure and Spectral Data for *anti*-Diastereo- and Enantioselective Crotylation Adducts (**3a-3j**) from Aldehydes (**2a-2j**) ------ S33–S52

Detailed Procedure and Spectral Data for Experiments Aimed at Probing the Origins of Stereoselection ------ \$53-\$61

Competition Experiment Establishing Rapid Redox Equilibration ------ S62-S63

# **General Methods**

All reactions were run under an atmosphere of nitrogen. Tetrahydrofuran (THF) was purifed using the Pure-Solv MD-5 Solvent Purification System. Anhydrous solvents were transferred using an oven-dried syringe. Sealed tubes (13x100 mL) were purchased from Fischer Scientific and were dried in an oven overnight and cooled under a stream of nitrogen prior to use. Commercially available  $\alpha$ -methyl allyl acetate (acetic acid 3-buten-2-yl ester, TCI), alcohols and aldehydes were purified by distillation or recrystallisation prior to use. Cesium carbonate was purchased from Alfa Aesar and used directly without further purification. Isopropanol was purchased from Fisher was purified by distillation prior to use. Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates (DC-Fertigplatten Kieselgel 60 F<sub>254</sub>). Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. High-resolution mass spectra (HRMS) were obtained on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion (M+1, M or M-1) or a suitable fragment ion. Nuclear magnetic resonance spectra (<sup>1</sup>H NMR and <sup>13</sup>C NMR) spectra were recorded on a Varian Gemini (400 MHz) spectrometer in CDCl<sub>3</sub> solution. Chemical shifts are reported as parts per million (ppm) relative to residual CHCl<sub>3</sub>  $\delta_{\rm H}$  (7.26 ppm) and CDCl<sub>3</sub>  $\delta_{\rm C}$  (77.0 ppm), respectively, as internal standards. Coupling constants are reported in Hertz (Hz).

# **Detailed Procedure and Spectral Data for** *anti***-Diastereo- and Enantioselective** Crotylation Adducts (3a-3j) from Alcohols (1a-1j)

(1S,2S)-2-Methyl-1-phenylbut-3-en-1-ol (3a)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Benzyl alcohol **1a** (43.3 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:20) provides **3a** (42.4 mg, 0.261 mmol, *anti:syn* = 6:1) as a colorless oil in 65% yield.

<u>**TLC** (SiO<sub>2</sub>)</u>:  $R_f = 0.26$  (ethyl acetate:hexanes, 1:15).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.26-7.38 (m, 5H), 5.86-5.76 (m, 1H), 5.24-5.17 (m, 2H), 4.35 (d, J = 8.0 Hz, 1H), 2.52-2.45 (m, 1H), 2.07 (br s, 1H), 0.87 (d, J = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.6, 140.9, 128.5, 127.9, 127.1, 117.1, 78.1, 46.6, 16.8.

<u>**HPLC**</u>: (Chiralcel OD-H column, hexanes:*i*-PrOH = 99:1, 0.5 mL/min, 210 nm),  $t_{major} = 27.5$  min,  $t_{minor} = 30.8$  min; ee = 95%.<sup>1</sup>

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> Nemoto, T.; Hitomi, T.; Nakamura, H.; Jin, L.; Hatano, K.; Hamada, Y. *Tetrahedron: Asymmetry* **2007**, *18*, 1844–1849.

<sup>&</sup>lt;sup>2</sup> Jiang, S.; Agoston, E. G.; Chen, T.; Cabal, M.-P.; Turos, E. Organometallics 1995, 14, 4697–4709.





#### (1*S*,2*S*)-1-(3-Methoxyphenyl)-2-methylbut-3-en-1-ol (3b)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 3-Methoxybenzyl alcohol **1b** (55.3 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:15) provides **3b** (53.9 mg, 0.280 mmol, *anti:syn* = 6:1) as a colorless oil in 70% yield.

**<u>TLC (SiO<sub>2</sub></u>**):  $R_f = 0.30$  (ethyl acetate:hexanes, 1:10).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.27-7.23 (m, 1H), 6.92-6.80 (m, 3H), 5.85-5.76 (m, 1H), 5.22-5.16 (m, 2H), 4.32 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 2.50-2.44 (m, 1H), 2.22 (br s, 1H), 0.87 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 159.8, 144.4, 140.9, 129.4, 119.5, 117.0, 113.3, 112.5, 78.0, 55.5, 46.4, 16.8.

<u>HPLC</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 96:4, 0.5 mL/min, 254 nm),  $t_{minor} = 24.5$  min,  $t_{major} = 28.0$  min; ee = 95%.

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>2</sup>





**S**8

#### (1*S*,2*S*)-1-(4-Methoxyphenyl)-2-methylbut-3-en-1-ol (3c)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 4-Methoxybenzyl alcohol **1c** (55.3 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 80 °C for 72 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:20:0.01) provides **3c** (51.8 mg, 0.269 mmol, *anti:syn* = 5:1) as a colorless oil in 67% yield.

**<u>TLC (SiO<sub>2</sub></u>**):  $R_f = 0.28$  (ethyl acetate:hexanes, 1:15).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.25 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 5.86-5.76 (m, 1H), 5.23-5.16 (m, 2H), 4.29 (d, J = 8.4 Hz, 1H), 3.80 (s, 3H), 2.48-2.42 (m, 1H), 2.15 (br s, 1H), 0.83 (d, J = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 159.3, 141.2, 134.8, 128.2, 117.0, 113.9, 77.7, 55.5, 46.7, 16.8.

<u>**HPLC</u></u>: (Chiralpak AD-H/AD-H column, hexanes:***i***-PrOH = 95:5, 0.5 mL/min, 230 nm), t\_{minor} = 41.2 \text{ min}, t\_{major} = 48.9 \text{ min}; ee = 90\%.</u>** 

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>2</sup>





#### (1S,2S)-1-(4-Bromophenyl)-2-methylbut-3-en-1-ol (3d)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 4-Bromobenzyl alcohol **1d** (74.8 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:15:0.01) provides **3d** (70.5 mg, 0.292 mmol, *anti:syn* = 8:1) as a colorless oil in 73% yield.

**<u>TLC (SiO<sub>2</sub></u>**):  $R_f = 0.26$  (ethyl acetate:hexanes, 1:15).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.46 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.81-5.71 (m, 1H), 5.22-5.16 (m, 2H), 4.32 (d, J = 7.6 Hz, 1H), 2.45-2.37 (m, 1H), 2.20 (br s, 1H), 0.87 (d, J = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 141.4, 140.1, 131.3, 128.6, 121.4, 117.3, 77.1, 46.4, 16.4.

<u>**HPLC</u></u>: (Chiralpak AS-H/AS-H column, hexanes:***i***-PrOH = 98:2, 0.5 mL/min, 254 nm), t\_{minor} = 30.0 \text{ min}, t\_{major} = 34.4 \text{ min}; ee = 95\%.</u>** 

The spectroscopic properties of this compound were consistent with the data available in the literature.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. *Tetrahedron* **2001**, *57*, 835–843.





| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 30.439           | MM   | 0.5210         | 6.11245e4       | 1955.34973      | 33.8270   |
| 2         | 31.244           | MM   | 0.3686         | 2.76853e4       | 1251.77246      | 15.3213   |
| 3         | 34.965           | MM   | 0.5588         | 6.17850e4       | 1842.82361      | 34.1925   |
| 4         | 36.940           | MM   | 0.4762         | 3.01027e4       | 1053.47668      | 16.6592   |



Methyl 4-((1*S*,2*S*)-1-hydroxy-2-methylbut-3-enyl)benzoate (3e)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-C3-TUNEPHOS (11.9 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Methyl 4-(hydroxymethyl)benzoate **1e** (66.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:8) provides **3e** (67.7 mg, 0.307 mmol, *anti:syn* = 8:1) as a pale yellow oil in 77% yield.

<u>**TLC** (SiO<sub>2</sub>)</u>:  $R_f = 0.30$  (ethyl acetate:hexanes, 1:6).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.97 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 5.79-5.69 (m, 1H), 5.17-5.12 (m, 2H), 4.40 (d, *J* = 7.2 Hz, 1H), 3.88 (s, 3H), 2.49-2.36 (m, 2H), 0.86 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 167.2, 147.9, 140.1, 129.7, 129.6, 127.0, 117.5, 77.3, 52.3, 46.5, 16.6.

<u>HPLC</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 95:5, 0.5 mL/min, 254 nm),  $t_{minor} = 25.3$  min,  $t_{major} = 30.3$  min; ee = 97%.

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>4</sup>

<sup>&</sup>lt;sup>4</sup> Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2005, 7, 3577–3579.





| Peak | RetTime | Туре | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | 8       |
|      |         |      |        |            |           |         |
| 1    | 25.309  | MM   | 0.3685 | 119.61345  | 5.40966   | 1.4969  |
| 2    | 30.307  | MM   | 0.5063 | 7871.08057 | 259.11520 | 98.5031 |



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. (1-Methyl-1*H*-indol-2-yl)methanol **1f** (64.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 80 °C for 72 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:12:0.01) provides **3f** (63.2 mg, 0.294 mmol, *anti:syn* = 5:1) as yellow solid in 73% yield.

**<u>TLC (SiO<sub>2</sub></u>**):  $R_f = 0.26$  (ethyl acetate:hexanes, 1:10).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 1H), 6.48 (s, 1H), 5.98-5.88 (m, 1H), 5.33-5.25 (m, 2H), 4.60 (d, *J* = 8.4 Hz, 1H), 3.81 (s, 3H), 2.86-2.78 (m, 1H), 2.22 (br s, 1H), 1.03 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 140.7, 140.3, 138.2, 127.5, 121.9, 120.9, 119.8, 117.4, 109.4, 100.8, 71.4, 44.3, 30.7, 17.5.

**<u>FTIR</u>** (neat): v 3512, 3415, 3052, 2972, 2929, 1638, 1611, 1540, 1468, 1416, 1316, 1233, 1138, 1102, 1010, 918, 842, 785, 750, 735, 672 cm<sup>-1</sup>.

**HRMS** (CI) Calcd. for C<sub>14</sub>H<sub>18</sub>NO (M+1): 202.1388, Found: 202.1389.

<u>**HPLC**</u>: (Chiralcel OJ-H column, hexanes:*i*-PrOH = 93:7, 0.5 mL/min, 254 nm),  $t_{major} = 62.8 \text{ min}$ ,  $t_{minor} = 78.9 \text{ min}$ ; ee = 95%.





| Peak<br># | KetTime  | туре | Width  | Area       | Height    | Area    |  |
|-----------|----------|------|--------|------------|-----------|---------|--|
| #<br>     | [[[[]]]] |      |        | [11240-5]  |           |         |  |
| 1         | 44.899   | MM   | 0.8836 | 3449.09595 | 65.05764  | 10.0480 |  |
| 2         | 63.934   | MM   | 1.2225 | 1.34731e4  | 183.68874 | 39.2502 |  |
| 3         | 68.404   | MM   | 1.4447 | 3730.33984 | 43.03532  | 10.8673 |  |
| 4         | 80.037   | MM   | 1.5674 | 1.36736e4  | 145.39421 | 39.8344 |  |
|           |          |      |        |            |           |         |  |



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 62.882           | MM   | 1.2557         | 9796.61719      | 130.02975       | 97.5355   |
| 2         | 78.981           | MM   | 2.2175         | 247.54234       | 1.86049         | 2.4645    |

#### (3R,4S)-4-Methyl-1-phenylhexa-(1E,5)-dien-3-ol (3g)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-C3-TUNEPHOS (11.9 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Cinnamyl alcohol **1g** (53.7 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:15:0.01) provides **3g** (47.5 mg, 0.252 mmol, *anti:syn* = 6:1) as a pale yellow oil in 63% yield.

**<u>TLC (SiO<sub>2</sub></u>**):  $R_f = 0.30$  (ethyl acetate:hexanes, 1:10).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.41-7.23 (m, 5H), 6.61 (d, J = 16.0 Hz, 1H), 6.21 (dd, J = 16.0, 7.2 Hz, 1H), 5.88-5.78 (m, 1H), 5.21-5.16 (m, 2H), 4.06 (t, J = 6.8 Hz, 1H), 2.41-2.35 (m, 1H), 1.99 (br s, 1H), 1.06 (d, J = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 140.4, 136.9, 132.0, 130.4, 128.8, 127.9, 126.8, 117.0, 76.4, 44.9, 16.3.

<u>**HPLC</u></u>: (Chiralpak AS-H/AS-H column, hexanes:***i***-PrOH = 98:2, 0.5 mL/min, 254 nm), t\_{minor} = 29.2 \text{ min}, t\_{major} = 35.4 \text{ min}; ee = 90\%.</u>** 

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>5</sup>

<sup>&</sup>lt;sup>5</sup> Kobayashi, S.; Nishio, K. J. Org. Chem. **1994**, 59, 6620-6628.





| Peak<br># | RetTime<br>[min] | Туре     | Width<br>[min] | Area<br>[mAU*s]         | Height<br>[mAU]       | Area<br>% |
|-----------|------------------|----------|----------------|-------------------------|-----------------------|-----------|
| 1         | 30.156           | MM       | 0.3938         | 3920.13306              | 165.92987             | 43.4866   |
| 2<br>3    | 30.846           | MM<br>MM | 0.2934         | 623.55994<br>3878.10742 | 35.42169<br>138.90073 | 6.9172    |
| 4         | 38.499           | MM       | 0.3667         | 592.78198               | 26.94354              | 6.5758    |



| reak<br># | [min]  | Type | [min]  | [mAU*s]    | [mAU]     | Area<br>% |  |
|-----------|--------|------|--------|------------|-----------|-----------|--|
|           |        |      |        |            |           |           |  |
| 1         | 29.261 | MM   | 0.3545 | 1187.95825 | 55.85067  | 5.1279    |  |
| 2         | 35.460 | MM   | 0.4518 | 2.19784e4  | 810.71771 | 94.8721   |  |

#### (3R,4S)-4-Methyl-1-phenylhex-5-en-3-ol (3h)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 3-Phenylpropan-1-ol **1h** (54.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:15) provides **3h** (52.6 mg, 0.276 mmol, *anti:syn* = 7:1) as a colorless oil in 69% yield.

<u>**TLC** (SiO<sub>2</sub>)</u>:  $R_f = 0.31$  (ethyl acetate:hexanes, 1:10).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.31-7.17 (m, 5H), 5.80-5.70 (m, 1H), 5.15-5.10 (m, 2H), 3.43-3.40 (m, 1H), 2.89-2.81 (m, 1H), 2.72-2.64 (m, 1H), 2.26-2.20 (m, 1H), 1.89-1.80 (m, 1H), 1.75-1.62 (m, 2H), 1.03 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.6, 140.4, 128.7, 128.6, 126.0, 116.8, 74.2, 44.6, 36.4, 32.4, 16.5.

<u>**HPLC**</u>: (Chiralcel OD-H column, hexanes:*i*-PrOH = 97:3, 0.7 mL/min, 254 nm),  $t_{minor} = 11.2$  min,  $t_{major} = 17.4$  min; ee = 97%.<sup>6</sup>

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>5</sup>

<sup>&</sup>lt;sup>6</sup> (a) McManus, H. A.; Cozzi, P. G.; Guiry, P. J. Adv. Synth. Catal. 2006, 348, 551–558.

<sup>(</sup>b) Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6, 4375–4377.







| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 11.290           | MM   | 0.2474         | 52.96424        | 3.56858         | 1.4765    |
| 2         | 17.446           | MM   | 0.4725         | 3534.16113      | 124.65968       | 98.5235   |

### (3S,4R)-7-(Benzyloxy)-3-methylhept-1-en-4-ol (3i)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 4-(Benzyloxy)butan-1-ol **1i** (72.1 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:12) provides **3i** (63.9 mg, 0.273 mmol, *anti:syn* = 7:1) as a colorless oil in 68% yield.

<u>**TLC** (SiO<sub>2</sub>)</u>:  $R_f = 0.26$  (ethyl acetate:hexanes, 1:12).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.37-7.25 (m, 5H), 5.82-5.73 (m, 1H), 5.12-5.06 (m, 2H), 4.51 (s, 2H), 3.51 (t, *J* = 6.4 Hz, 2H), 3.45-3.39 (m, 1H), 2.27-2.17 (m, 1H), 2.12 (br s, 1H), 1.82-1.62 (m, 3H), 1.49-1.38 (m, 1H), 1.03 (d, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 140.5, 138.3, 128.4, 127.7, 127.6, 115.9, 74.5, 72.9, 70.4, 44.1, 31.3, 26.2, 16.2.

<u>**HPLC</u>**: Enantiomeric excess was determined by HPLC analysis of the 2-naphthoate derivative of the product (Chiralcel OJ-H column, hexanes:*i*-PrOH = 98.5:1.5, 1.0 mL/min, 230 nm),  $t_{major} = 16.4 \text{ min}, t_{minor} = 25.8 \text{ min}; ee = 97\%$ .</u>

The spectroscopic properties of this compound were consistent with the data available in the literature.<sup>7</sup>

<sup>&</sup>lt;sup>7</sup> Kobayashi, Y.; Tan, C.-H.; Kishi, Y. J. Am. Chem. Soc. 2001, 123, 2076–2078.







### (3S,4R)-3-Methyldodec-1-en-4-ol (3j)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Nonan-1-ol **1j** (57.7 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:30) provides **3j** (54.8 mg, 0.276 mmol, *anti:syn* = 7:1) as a colorless oil in 69% yield.

**<u>TLC (SiO<sub>2</sub></u>**):  $R_f = 0.30$  (ethyl acetate:hexanes, 1:20).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.79-5.70 (m, 1H), 5.12-5.07 (m, 2H), 3.40-3.35 (m, 1H), 2.20-2.16 (m, 1H), 1.59 (br s, 1H), 1.53-1.26 (m, 14H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.86 (t, *J* = 6.8 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 140.6, 116.4, 74.9, 44.3, 34.5, 32.1, 30.0, 29.8, 29.5, 26.0, 22.9, 16.5, 14.3.

<u>HPLC</u>: Enantiomeric excess was determined by HPLC analysis of the 2-naphthoate derivative of the product (Chiralpak AD-H column, hexanes:*i*-PrOH = 99.5:0.5, 0.4 mL/min, 254 nm),  $t_{minor} = 12.9 \text{ min}$ ,  $t_{major} = 18.3 \text{ min}$ ; ee = 97%.

*The spectroscopic properties of this compound were consistent with the data available in the literature.*<sup>8</sup>

<sup>&</sup>lt;sup>8</sup> Takai, K.; Toratsu, C. J. Org. Chem. 1998, 63, 6450-6451.





# **Detailed Procedure and Spectral Data for** *anti***-Diastereo- and Enantioselective** Crotylation Adducts (3a-3j) from Aldehydes (2a-2j)

(1*S*,2*S*)-2-Methyl-1-phenylbut-3-en-1-ol (3a)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Benzaldehyde **2a** (42.4 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:20) provides **3a** (50.0 mg, 0.308 mmol, *anti:syn* = 9:1) as a colorless oil in 77% yield.

<u>**HPLC**</u>: (Chiralcel OD-H column, hexanes:*i*-PrOH = 99:1, 0.5 mL/min, 210 nm),  $t_{major} = 27.8$  min,  $t_{minor} = 30.9$  min; ee = 98%.



S34



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 3-Methoxybenzaldehyde **2b** (54.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:15) provides **3b** (56.8 mg, 0.295 mmol, *anti:syn* = 9:1) as a colorless oil in 74% yield.

<u>**HPLC**</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 96:4, 0.5 mL/min, 210 nm),  $t_{minor} = 25.4$  min,  $t_{major} = 29.7$  min; ee = 98%.





| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 25.432           | MM   | 0.3354         | 83.72932        | 4.16100         | 1.2217    |
| 2         | 29.711           | MM   | 0.5281         | 6769.87207      | 213.67189       | 98.7783   |



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. *p*-Anisaldehyde **2c** (54.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 80 °C for 72 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:20:0.01) provides **3c** (57.7 mg, 0.300 mmol, *anti:syn* = 7:1) as a colorless oil in 75% yield.

<u>**HPLC</u></u>: (Chiralpak AD-H/AD-H column, hexanes:***i***-PrOH = 95:5, 0.5 mL/min, 230 nm), t\_{minor} = 41.8 \text{ min}, t\_{major} = 49.2 \text{ min}; ee = 97\%.</u>** 





#### (1S,2S)-1-(4-Bromophenyl)-2-methylbut-3-en-1-ol (3d)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 4-Bromobenzaldehyde **2d** (74.0 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:15:0.01) provides **3d** (75.5 mg, 0.313 mmol, *anti:syn* = 11:1) as a colorless oil in 78% yield.

<u>**HPLC</u></u>: (Chiralpak AS-H/AS-H column, hexanes:***i***-PrOH = 98:2, 0.5 mL/min, 254 nm), t\_{minor} = 30.4 \text{ min}, t\_{major} = 34.8 \text{ min}; ee = 97\%.</u>** 



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>१ |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 30.439           | MM   | 0.5210         | 6.11245e4       | 1955.34973      | 33.8270   |
| 2         | 31.244           | MM   | 0.3686         | 2.76853e4       | 1251.77246      | 15.3213   |
| 3         | 34.965           | MM   | 0.5588         | 6.17850e4       | 1842.82361      | 34.1925   |
| 4         | 36.940           | MM   | 0.4762         | 3.01027e4       | 1053.47668      | 16.6592   |



| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |  |
|------|---------|------|--------|------------|----------|---------|--|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | ક       |  |
|      |         |      |        |            |          |         |  |
| 1    | 30.483  | MM   | 0.3222 | 40.87479   | 2.11448  | 1.3788  |  |
| 2    | 34.878  | MM   | 0.5190 | 2923.62842 | 93.88819 | 98.6212 |  |

Methyl 4-((1*S*,2*S*)-1-hydroxy-2-methylbut-3-enyl)benzoate (3e)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-C3-TUNEPHOS (11.9 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Methyl 4-formylbenzoate **2e** (65.7 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:8) provides **3e** (72.2 mg, 0.328 mmol, *anti:syn* = 13:1) as a pale yellow oil in 82% yield.

<u>HPLC</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 95:5, 0.5 mL/min, 254 nm),  $t_{minor} = 25.0$  min,  $t_{major} = 30.1$  min; ee = 97%.





To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 1-Methylindole-2-carboxaldehyde **2f** (63.7 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 80 °C for 72 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:12:0.01) provides **3f** (67.3 mg, 0.312 mmol, *anti:syn* = 6:1) as yellow solid in 78% yield.

<u>**HPLC</u></u>: (Chiralcel OJ-H column, hexanes:***i***-PrOH = 93:7, 0.5 mL/min, 254 nm), t\_{major} = 61.1 min, t\_{minor} = 76.2 min; ee = 97%.</u>** 



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |  |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|--|
|           |                  |      |                |                 |                 |           |  |
| 1         | 44.899           | MM   | 0.8836         | 3449.09595      | 65.05764        | 10.0480   |  |
| 2         | 63.934           | MM   | 1.2225         | 1.34731e4       | 183.68874       | 39.2502   |  |
| 3         | 68.404           | MM   | 1.4447         | 3730.33984      | 43.03532        | 10.8673   |  |
| 4         | 80.037           | MM   | 1.5674         | 1.36736e4       | 145.39421       | 39.8344   |  |
|           |                  |      |                |                 |                 |           |  |



#### (3*R*,4*S*)-4-Methyl-1-phenylhexa-(1*E*,5)-dien-3-ol (3g)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-C3-TUNEPHOS (11.9 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Cinnamaldehyde **2g** (52.9 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes:triethylamine, 1:15:0.01) provides **3g** (51.2 mg, 0.272 mmol, *anti:syn* = 8:1) as a pale yellow oil in 68% yield.

<u>**HPLC</u></u>: (Chiralpak AS-H/AS-H column, hexanes:***i***-PrOH = 98:2, 0.5 mL/min, 254 nm), t\_{minor} = 29.3 \text{ min}, t\_{maior} = 35.6 \text{ min}; ee = 98\%.</u>** 



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           | 30.156           | MM   | 0.3938         | 3920.13306      | 165.92987       | 43.4866   |
| 2         | 30.846           | MM   | 0.2934         | 623.55994       | 35.42169        | 6.9172    |
| 3         | 36.477           | MM   | 0.4653         | 3878.10742      | 138.90073       | 43.0204   |
| 4         | 38.499           | MM   | 0.3667         | 592.78198       | 26.94354        | 6.5758    |



#### (3R,4S)-4-Methyl-1-phenylhex-5-en-3-ol (3h)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 3-Phenylpropionaldehyde **2h** (53.7 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:15) provides **3h** (54.1 mg, 0.284 mmol, *anti:syn* = 11:1) as a colorless oil in 71% yield.

<u>**HPLC**</u>: (Chiralcel OD-H column, hexanes:*i*-PrOH = 97:3, 0.7 mL/min, 254 nm),  $t_{minor} = 11.3$  min,  $t_{major} = 17.8$  min; ee = 97%.



#### (3*S*,4*R*)-7-(Benzyloxy)-3-methylhept-1-en-4-ol (3i)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. 4-(Benzyloxy)butanal **2i** (71.3 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8 µL, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:12) provides **3i** (63.8 mg, 0.272 mmol, *anti:syn* = 11:1) as a colorless oil in 68% yield.

<u>**HPLC</u>**: Enantiomeric excess was determined by HPLC analysis of the 2-naphthoate derivative of the product (Chiralcel OJ-H column, hexanes:*i*-PrOH = 98.5:1.5, 1.0 mL/min, 254 nm),  $t_{major} = 16.0 \text{ min}, t_{minor} = 26.0 \text{ min}; ee = 97\%$ .</u>



#### (3*S*,4*R*)-3-Methyldodec-1-en-4-ol (3*j*)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Nonanal **2j** (56.9 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) and isopropanol (59.8  $\mu$ L, 0.8 mmol, 200 mol%) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:30) provides **3j** (59.4 mg, 0.299 mmol, *anti:syn* = 11:1) as a colorless oil in 75% yield.

<u>HPLC</u>: Enantiomeric excess was determined by HPLC analysis of the 2-naphthoate derivative of the product (Chiralpak AD-H column, hexanes:*i*-PrOH = 99.5:0.5, 0.4 mL/min, 230 nm),  $t_{minor} = 13.5 \text{ min}, t_{major} = 18.6 \text{ min}; ee = 97\%$ .



# **Detailed Procedure and Spectral Data for Experiments Aimed at Probing the Origins of Stereoselection**

Methyl 4-((1*S*,2*S*)-1-hydroxy-2-vinylheptyl)benzoate (5)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), BIPHEP (10.5 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by (*R*)-oct-1-en-3-yl acetate<sup>9</sup> (**4**) (136 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Methyl 4-(hydroxymethyl)benzoate **1e** (66.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:10) provides **5** (53.1 mg, 0.192 mmol, *anti:syn* = 9:1) as a pale yellow oil in 48% yield.

<u>**TLC** (SiO<sub>2</sub>)</u>:  $R_f = 0.26$  (ethyl acetate:hexanes, 1:10).

<sup>1</sup><u>H NMR</u> (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.00 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 5.62 (ddd, J = 16.0, 10.0, 7.6 Hz, 1H), 5.24 (d, J = 10.0, 7.6 Hz, 1H), 5.17 (dd, J = 16.0, 7.6 Hz, 1H), 4.45 (d, J = 7.6 Hz, 1H), 3.90 (s, 3H), 2.29-2.23 (m, 2H), 1.27-1.07 (m, 8H), 0.81 (t, J = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 167.2, 148.1, 139.0, 129.8, 129.6, 127.1, 119.4, 76.4, 53.0, 52.3, 31.9, 30.6, 27.1, 22.7, 14.2.

**<u>FTIR</u>** (neat):  $\upsilon$  3481, 2953, 2928, 2857, 2161, 1979, 1722, 1638, 1611, 1576, 1435, 1416, 1275, 1191, 1176, 1109, 1050, 1018, 999, 967, 913, 859, 809, 774, 736, 721, 709, 667 cm<sup>-1</sup>.

<u>HPLC</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 95:5, 0.5 mL/min, 254 nm),  $t_{minor} = 17.2$  min,  $t_{major} = 23.4$  min; ee = 14%.

<sup>&</sup>lt;sup>9</sup> The optically active (*R*)-oct-1-en-3-yl acetate (98%ee) was prepared from commercially available (*R*)-oct-en-3-ol (ACROS) by acetylation with  $Ac_2O$ .





### Matched Case

#### Methyl 4-((1*S*,2*S*)-1-hydroxy-2-vinylheptyl)benzoate (5)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*S*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by (*R*)-oct-1-en-3-yl acetate<sup>9</sup> (**4**) (136 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Methyl 4-(hydroxymethyl)benzoate **1e** (66.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:30-1:10) provides **5** (68.3 mg, 0.247 mmol, 62% yield, *anti:syn* = 11.9:1) and **4** (62.5 mg, 0.367 mmol, 46% recovered yield), respectively.

<u>**HPLC for 5**</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 95:5, 0.5 mL/min, 254 nm),  $t_{minor} = 16.4 \text{ min}, t_{major} = 22.1 \text{ min}; ee = 95\%$ .

<u>HPLC for 4</u>: Enantiomeric excess was determined by HPLC analysis of the 3,5-dinitrobenzoate derivative of the alcohol obtained from deacetylation of **4** (Chiralcel OJ-H column, hexanes:*i*-PrOH = 99:1, 1.0 mL/min, 254 nm),  $t_{major} = 10.3 \text{ min}$ ,  $t_{minor} = 11.3 \text{ min}$ ; ee = 39%.



HPLC for 5





### Mismatched Case

Methyl 4-((1*R*,2*R*)-1-hydroxy-2-vinylheptyl)benzoate (*ent*-5)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), (*R*)-SEGPHOS (12.2 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by (*R*)-oct-1-en-3-yl acetate<sup>9</sup> (**4**) (136 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Methyl 4-(hydroxymethyl)benzoate **1e** (66.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) was added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:30-1:10) provides *ent-5* (37.8 mg, 0.137 mmol, 34% yield, *anti:syn* = 4.6:1) and **4** (80.3 mg, 0.472 mmol, 59% recovered yield), respectively.

<u>**HPLC for** *ent-5*</u>: (Chiralpak AD-H column, hexanes:*i*-PrOH = 95:5, 0.5 mL/min, 254 nm),  $t_{major}$  = 17.6 min,  $t_{minor}$  = 21.8 min; ee = 73%.

<u>HPLC for 4</u>: Enantiomeric excess was determined by HPLC analysis of the 3,5-dinitrobenzoate derivative of the alcohol obtained from deacetylation of **4** (Chiralcel OJ-H column, hexanes:*i*-PrOH = 99:1, 1.0 mL/min, 254 nm),  $t_{major} = 10.0 \text{ min}$ ,  $t_{minor} = 11.0 \text{ min}$ ; ee = 30%.



HPLC for 4



0.3037 4376.46777 240.19214

34.9922

2 11.045 MM

## **Competition Experiment Establishing Rapid Redox Equilibration**



### **Reaction between Alcohol (1a) and Aldehyde (2e)**

To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), BIPHEP (10.5 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Benzyl alcohol **1a** (43.3 mg, 0.4 mmol, 100 mol%) and methyl 4-formylbenzoate **2e** (65.7 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) were added to the reaction mixture and the reaction mixture was allowed to stir at 90 °C for 48 hr, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:20-1:10) provides **3a** (22.1 mg, 0.136 mmol, 34% yield, *anti:syn* = 8:1) and **3e** (42.8 mg, 0.194 mmol, 49% yield, *anti:syn* = 13:1).

### Reaction between Aldehyde (2a) and Alcohol (1e)



To an oven-dried sealed tube under one atmosphere of nitrogen gas charged with  $[Ir(cod)Cl]_2$  (6.7 mg, 0.01 mmol, 2.5 mol%), BIPHEP (10.5 mg, 0.02 mmol, 5 mol%), Cs<sub>2</sub>CO<sub>3</sub> (26.1 mg, 0.08 mmol, 20 mol%) and 4-cyano-3-nitrobenzoic acid (7.7 mg, 0.04 mmol, 10 mol%) was added THF (0.2 mL) followed by acetic acid 3-buten-2-yl ester (91.3 mg, 0.8 mmol, 200 mol%). The reaction mixture was allowed to stir at 90 °C for 0.5 hr and was then cooled to room temperature. Benzaldehyde **2a** (42.4 mg, 0.4 mmol, 100 mol%) and methyl 4-(hydroxymethyl)benzoate **1e** (66.5 mg, 0.4 mmol, 100 mol%) in THF (0.2 mL) were added to the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO<sub>2</sub>: ethyl acetate:hexanes, 1:20-1:10) provides **3a** (22.7 mg, 0.140 mmol, 35% yield, *anti:syn* = 10:1) and **3e** (34.1 mg, 0.155 mmol, 39% yield, *anti:syn* = 9:1).