Supplementary Figure Legends

Supplementary Figure 1 CXCR3 promotes DMBA/TPA tumorigenesis but has no role in MCA primary tumorigenesis or in rejection of RAG regressor transplantable fibrosarcomas. (A) Separate experiments from those in Figure 1 show decreased DMBA/TPA tumor development in CXCR3^{-/-} female mice compared to WT females (***p<0.001, n=14 for CXCR3^{-/-}(filled squares) and n=12 for WT females (filled triangles) and (B) in an independent experiment with CXCR3^{-/-} male and WT male mice (***p<0.001, n=15 for CXCR3^{-/-} and n=13 for WT males). Note the difference between WT and CXCR3^{-/-} mice is more robust for males than females. In addition, the experiments in A and B were performed independently and in experiments where male and female cohorts were used concurrently, no significant difference in tumor development between CXCR3^{-/-} male and female mice was noted (data not shown). (C) MCA tumorigenesis at 6.25 µg dose shows no difference between CXCR3^{-/-} and WT mice (n.s.= not significant, n=33 for CXCR3^{-/-} and n=30 for WT). (D) CXCR3 is not required for the rejection of a majority of RAG regressor tumors (note, data shown for 7/21 tumors). Twentyone immunogenic RAG regressor tumors, which grow progressively in RAG2^{-/-} mice and are rejected in WT mice, were transplanted into the flanks of the indicated mice and monitored for tumor growth (1 $\times 10^6$ cells/mouse, n=2 for RAG2^{-/-}, n=4-5 for WT and CXCR3^{-/-} mice). The d42m1 tumor is the only one that grows in RAG2^{-/-} and CXCR3^{-/-} mice whereas it is rejected in WT mice. Twenty other tumor cell lines tested rejected in both WT and CXCR3^{-/-} mice and grew in RAG2^{-/-} mice (tumor cell lines F535, F510, d27m2, H31m1, F515 and d30m4 are shown).

Supplementary Figure 2 Reconstitution of CXCR3^{-/-} mice with WT fetal liver cells restores T and NK cell CXCR3 expression to WT levels. Recipient mice were radiated, adoptively transferred with either WT or CXCR3^{-/-} fetal liver cells and were then rested for 12 weeks. FACS analysis of splenocytes at the end of experiments, with the indicated gating first either on CD8⁺ or CD4⁺, revealed CXCR3 expression in the T cell, CD44⁺ population of WT mice (compare A to B and G to H). All recipients that received WT cells had similar CXCR3 expression (includes C, D and E for CD8⁺ T cells and I, J and K for CD4⁺ T cells). As expected, RAG2^{-/-} mice that received CXCR3^{-/-} cells had no CXCR3 expression (F and L). RAG2^{-/-} mice were used as

recipients instead of WT mice to avoid any contribution of radio resistant CXCR3 expressing B or T cells. Note that splenocyte counts were similar in all mice (data not shown) and these plots are representative of all mice examined (numbers of mice in Figure 4 legend).

<u>Supplementary Figure 3</u> FACS analysis of DMBA/TPA treated skin revealed no differences in CXCR3^{-/-} compared to WT mice for CD11b⁺ cells, Gr1⁺CD11b⁺ cells and $\gamma\delta/v\gamma5^+$ cells. Epidermal preparations were generated from untreated WT and CXCR3^{-/-} mice or short course DMBA/TPA treated skin (designated as D/T) and FACS analysis was performed for CD11b⁺ cells, Gr1⁺CD11b⁺ cells and $\gamma\delta/v\gamma5^+$ cells. Each point represents an individual mouse and data are expressed as percentage of cells relative to total CD45⁺/PI⁻ cells and revealed no significant reductions.

% Mice with Tumors

Winkler et al., Supplementary Figure 1

Gated first on CD4⁺ cells

Winkler et al., Supplementary Figure 3