1	
2	

SUPPLEMENTAL INFORMATION

- 3 Supplemental tables

5 TABLE S1. Strains and plasmids used in this study

Strain or plasmid	Relevant genotype or phenotype	Source or reference
Strain		
E. coli		
TOP10	F-mcrA, Δ (mrr-hsdRMS-mcrBC), ϕ 80lacZ Δ M15, Δ lacX74, recA1, deoR, araD139, Δ (ara-leu)7679, galU, galK, rpsL (Str ^R), endA1, nupG	Invitrogen
S17-1λpir	<i>recA</i> , <i>thi</i> , <i>pro</i> , <i>hsdR</i> ⁻ <i>M</i> ⁺ , Sm ^R , <rp4:2-tc:mu:ku:tn7>Tp^R</rp4:2-tc:mu:ku:tn7>	(9)
F. tularensis		
LVS	Live vaccine strain	USAMRIID ¹
$\Delta iglA$	LVS, iglA in-frame deletion of codons 4-174	(3)
$\Delta iglC$	LVS, <i>iglC</i> in-frame deletion of codons 28-205	(5)
$\Delta pdpE$	LVS, <i>pdpE</i> in-frame deletion of codons 4-188	This study
$\Delta iglG$	LVS, <i>iglG</i> in-frame deletion of codons 3-169	This study
$\Delta iglI$	LVS, <i>iglI</i> in-frame deletion of codons 4-361	This study
$\Delta vgrG$	LVS, <i>vgrG</i> in-frame deletion of codons 4-162	M. Lavander, unpublished
U112	F. novicida, wild-type	(1)
KKF108	U112, $\Delta iglI::ermC$, Erm ^R	(2)
S. cerevisiae		
AH109	MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3, GAL2 _{UAS} GAL2 _{TATA} -ADE2, URA3::MEL1 _{UAS} -MEL1 _{TATA} - lacZ, MEL1	Clontech Laboratories
Plasmid		
pCR [®] 4-TOPO [®]	TA cloning vector, Km ^R , Ap ^R	Invitrogen
pBluescript SK+	Cloning vector, Ap ^R	Stratagene
pDM4	Suicide plasmid carrying sacBR, Cm ^R	(7)
pJEB485	2633-bp <i>XhoI/SacI</i> PCR fragment of $\Delta iglA_{4-174}$ with flanking regions on pDM4, Cm ^R	(3)
pJEB750	2469-bp <i>XhoI/SacI</i> PCR fragment of $\Delta pdpE_{4-188}$ with flanking regions on pDM4, Cm ^R	This study
pJEB751	2517-bp <i>XhoI/SacI</i> PCR fragment of $\Delta iglI_{4-361}$ with flanking	This study

	regions on pDM4, Cm ^R	
pJEB753	2425-bp <i>XhoI/SacI</i> PCR fragment of $\Delta iglG_{3-169}$ with flanking regions on pDM4, Cm ^R	This study
pKK289Km	Expression plasmid carrying a gfp gene under the control of the LVS GroESL promoter, Km^R	(4)
pMOL103	pKK289Km encoding IglG-6xHis fusion protein, Km ^R	This study
pMOL42	pKK289Km carrying pUC19 MCS from <i>Hind</i> III to <i>Eco</i> RI, with an upstream <i>Nde</i> I site, Km ^R	This study
pMOL52	pKK289Km derivative used to construct C-terminal fusion proteins to eukaryotic GSK, Km ^R	This study
pMOL59	pMOL52 encoding IglI-GSK fusion protein, Km ^R	This study
pMOL61	pMOL52 encoding PdpE-GSK fusion protein, Km ^R	This study
pKEK1012	pKEK894 encoding VgrG-CyaA fusion protein, Tet ^R	(2)
pKEK1051	pKEK894 encoding IgII-CyaA fusion protein, Tet ^R	(2)
pJEB835	pKEK894 encoding IglG-CyaA fusion protein, Tet ^R	This study
pJEB851	pKEK894 encoding IgII (LVS)-CyaA fusion protein, Tet ^R	This study

¹ US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.

1 TABLE S2. Oligonucleotides used in this study

Purpose	Oligonucleotide pair(s)
LVS null mutants	
PdpE Δ4-188 (pJEB750)	PdpE_a: 5'-CTC GAG GTA AGA TCG GAG TTG ATT CTA A-3' (XhoI) and PdpE_b: 5'-GGA TCC ACT ATA ATA TAA CTC TAG TTA AGA A-3' (BamHI)
	PdpE_c: 5'- GGA TCC TTT ACT CAT ATA TTT GTA TCC TTA A -3' (BamHI), PdpE_d: 5'-GAG CTC ATA CGC GAT ATT GCT ACG GA-3' (SacI)
IglG Δ3-169 (pJEB753)	IglG_a: 5'- <i>CTC GAG</i> GAA TAC ATA TTC TTA GAG ATA ATC-3' (<i>Xho</i> I) and IglG_b: 5'- <i>GGA TCC</i> GTA AAA ACA TCT TAG AAG GTC AT-3' (<i>Bam</i> HI)
	IgIG_c: 5'-GGA TCC TAA CAT TTA AAT TTT CCA ATA AGC T-3' (BamHI) and IgIG_d: 5'-GAG CTC AAA TCA TAT TTC GAT ACG CTC A-3' (SacI)
IglI ∆4-361 (pJEB751)	IglI_a: 5'- <i>CTC GAG</i> GGC ATA AAT GAT GTT AAC TTA TG-3' (<i>Xho</i> I) and IglI_b: 5'- <i>GAT ATC</i> AAT GAC CCC GTA GAA AAA ATT TC-3' (<i>Eco</i> RV)
	IgII_c: 5'- <i>GAT ATC</i> CTG ACT CAT ATA AAT CTC CTC-3' (<i>Eco</i> RV) and IgII_d: 5'- <i>ACT AGT</i> AGT ATT ATC TGT TTA TGA GAA TAA T-3' (<i>Spe</i> I)
Complementation	
IglG-6xHis (pMOL103)	pigD_for: 5'-CAT ATG TTA AAT ATT ATA AAT GAC TCC-3' (NdeI) and pigD_6xH_rev_C: 5'-GAA TTC CTA ATG ATG ATG ATG ATG ATG ATG ATG ATG A
IgII-GSK (pMOL59)	pigG_for: 5'-CAT ATG AGT CAG ATA ATA TCT ACA C-3' (NdeI) and pigG_gsk_rev: 5'- GGT ACC TAT GTC AAA AAG ATC TTC AAA ATA -3' (KpnI)
PdpE-GSK (pMOL61)	pigI_for: 5'-CAT ATG AGT AAA AAA ATA TTT AAA TTA TTA-3' (NdeI) and pigI_gsk_rev: 5'-GGT ACC TAT TAT AGT AAT TTT CTT TTC ATA AT-3' (KpnI)
IglG-CyaA (pJEB835)	IglG_Cya_F: 5´-CCA TGG AAA TGT TAA ATA TTA TAA ATG ACT CCT T-3´ (NcoI) and IglG_Cya_R: 5´-CAT ATG AGA TGT TTT TAC ATT TAT TTG TCC ACT A-3´ (NdeI)
IglI-CyaA (pJEB851)	IgII_Cya_F: 5'- <i>CCA TGG</i> AAA TGA GTC AGA TAA TAT CTA CAC TA-3' (<i>Nco</i> I) and IgII_Cya_R: 5'- <i>CAT ATG</i> TAT GTC AAA AAG ATC TTC AAA ATA GT -3' (<i>Nde</i> I)

- 1 The nucleotide sequences in italics represent the incorporated *NdeI*, *Eco*RI, *Bam*HI, *SacI*, *XhoI*, *KpnI*, *Eco*RV, *SpeI*, and *NcoI* restriction sites used for cloning of
- 2 the PCR amplified DNA fragments.

1 TABLE S3. Quantitative real time PCR analysis of $\Delta pdpE$, $\Delta iglG$ and $\Delta iglI$ mutants

2

		Strain	
Gene	$\Delta pdpE$	$\Delta iglG$	$\Delta iglI$
pdpA	1.80 ± 0.83	0.89 ± 0.45	1.43 ± 0.73
icmF	1.76 ± 0.59	1.62 ± 0.46	1.91 ± 0.75
iglE	1.83 ± 0.75	1.23 ± 0.68	2.07 ± 0.56
vgrG	1.76 ± 0.77	1.25 ± 0.97	2.03 ± 1.05
iglF	1.41 ± 0.53	2.04 ± 0.85	1.67 ± 0.48
iglG	$1.27\pm0.07*$	NA	1.06 ± 0.15
iglH	1.39 ± 0.34	0.80 ± 0.43	1.36 ± 0.47
dotU	1.69 ± 0.75	1.26 ± 0.66	1.27 ± 0.13
iglI	1.88 ± 0.63	1.56 ± 0.41	NA
iglJ	1.57 ± 0.60	1.71 ± 0.60	2.14 ± 0.72
pdpC	1.47 ± 0.70	1.32 ± 0.60	1.17 ± 0.53
pdpE	NA	1.12 ± 0.43	1.83 ± 0.34
iglD	0.81 ± 0.25	0.90 ± 0.48	0.87 ± 0.42
iglC	1.21 ± 0.22	0.74 ± 0.18	1.18 ± 0.18
iglB	1.45 ± 1.00	0.95 ± 0.48	1.47 ± 1.09
iglA	1.74 ± 0.78	1.25 ± 0.10	1.80 ± 1.04
pdpD	1.24 ± 1.31	1.59 ± 1.00	2.15 ± 1.43

3

The N-fold differential expression of each target gene in $\Delta iglG$, $\Delta iglI$ or $\Delta pdpE$ mutants compared to the relative expression of the same gene in LVS was defined as $2^{-\Delta\Delta CT}$ (6). As before (8), the range of mRNA expression was defined by the N-fold change as follows: overexpressed (N-fold change ≥ 2.0 , gray box) or underexpressed (N-fold change ≤ 0.5). Data are mean \pm standard deviation of 3 independent experiments. A 2-sided paired Student's *t*-test was used to estimate if gene expression was significantly different in mutants compared to LVS. * *P* < 0.05. NA = not applicable.

1		REFERENCES
2		
3	1.	Anthony, L. D., R. D. Burke, and F. E. Nano. 1991. Growth of Francisella spp. in
4		rodent macrophages. Infect Immun 59 :3291-3296.
5	2.	Barker, J. R., A. Chong, T. D. Wehrly, J. J. Yu, S. A. Rodriguez, J. Liu, J. Celli, B.
6		P. Arulanandam, and K. E. Klose. 2009. The Francisella tularensis pathogenicity
7		island encodes a secretion system that is required for phagosome escape and virulence.
8		Mol Microbiol 74 :1459-1470.
9	3.	Bröms, J. E., M. Lavander, and A. Sjöstedt. 2009. A conserved α -helix essential for a
10		type VI secretion-like system of Francisella tularensis. J Bacteriol 191:2431-46.
11	4.	Bönquist, L., H. Lindgren, I. Golovliov, T. Guina, and A. Sjöstedt. 2008. MglA and
12		Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-
13		containing phagosomes in murine macrophages. Infect Immun 76:3502-3510.
14	5.	Golovliov, I., A. Sjöstedt, A. Mokrievich, and V. Pavlov. 2003. A method for allelic
15		replacement in Francisella tularensis. FEMS Microbiol Lett 222:273-280.
16	6.	Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data
17		using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-
18		408.
19	7.	Milton, D. L., R. O'Toole, P. Hörstedt, and H. Wolf-Watz. 1996. Flagellin A is
20		essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310-1319.
21	8.	Shou, J. Z., N. Hu, M. Takikita, M. J. Roth, L. L. Johnson, C. Giffen, Q. H. Wang,
22		C. Wang, Y. Wang, H. Su, L. H. Kong, M. R. Emmert-Buck, A. M. Goldstein, S. M.
23		Hewitt, and P. R. Taylor. 2008. Overexpression of CDC25B and LAMC2 mRNA and

1		protein in esophageal squamous cell carcinomas and premalignant lesions in subjects
2		from a high-risk population in China. Cancer Epidemiol Biomarkers Prev 17:1424-1435.
3	9.	Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilisation system for
4		in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria.
5		Biotechnology 1:787-796.