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The following sections describing Tide’s major speed enhancements are organized top-
ically and not strictly in the order the improvements were introduced. Decisions on that
progression were made incrementally, after evaluating the timing and profile following each
change. Consequently, it is impossible in some cases to determine the performance improve-
ment due to each of these changes individually. Moreover, some of the later optimizations
intrinsically rely on earlier ones. For instance, making the theoretical peak set five-fold
sparser (Section 7) cannot happen without the sparse peak representation (Section 1), and
run-time compilation of the dot-product code (Section 10) requires the FIFO memory allo-
cation scheme (Section 9).

Each of the following subsections describes a technique Tide uses to gain performance.

1 Sparse Representation of Theoretical Peaks

Each peptide’s theoretical spectrum consists of ten peaks for each amino acid in the peptide,
for each charge state, corresponding to the major ion types and the related neutral losses.
Since there are roughly 1,000 mass/charge buckets (depending on machine settings), and
since most peptides are short (under 20 amino acids), the theoretical spectrum is typically
sparse, so Tide uses a sparse representation of the theoretical peaks. This change enabled
another technique—making theoretical peaks five-fold sparser (Section 7).
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2 Heapify to find Top Matches

As Crux finds candidate peptide-spectrum matches, it adds them to an array, which it sorts
to find the best five matches. In place of this sort, Tide uses a heapify operation which
requires linear time rather than the O(n log(n)) time required by the sort to find the top
matches.

3 Linearizing Background Subtraction

SEQUEST’s original implementation, and the first Crux implementation of XCorr, take the
sum, over all i, of the expression:
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is the “background” at the ith vector position. It was pointed out in [1] that this computation
could be sped up by pulling the vi out of the sum, and subtracting the background from the
observed spectrum before computing a dot product with each candidate theoretical spectrum
v. That is, one could compute the equivalent expression
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The bracketed portion need be computed only once. This improvement already existed in
Crux and in Tide-v0. However, Crux performs the background subtraction (the bracketed
sub-expression above for each index i) using a double loop as follows:

For each bin’s value b in the bucketed observed spectrum:

For each bin w in the 150-bin window surrounding b:

b -= w/150

In Tide, this double loop is linearized by first computing the array of partial sums roughly
according to the following pseudocode. (The edge cases and array initializations are omitted
for clarity):

For integer i ranging over the array of bins:

partial_sums[i] = partial_sums[i-1] + bin[i]

For integer i ranging over the array of bins:

bin[i] -= (partial_sums[i+75] - partial_sums[i-76])/150

2



At the stage it was introduced, this speedup reduced the total running time by about
47% (see line 5 in Table 1). Figure 2(b) shows profiles just before and after this change: the
background subtraction loop had been occupying most of the spectrum preprocessing time.

Following this change, on benchmark datasets tested, spectrum preprocessing occupied
surprisingly little of the total run time, even though it has not otherwise been optimized. The
relatively low cost of spectrum preprocessing is due mostly to the large number of peptide
candidates per spectrum. The main consequence of this relatively low cost is that it was
usually correct to move as many computations as possible from computing theoretical peaks
and the dot product to the spectrum preprocessing stage.

4 Caching Multiplications

Crux and Tide-v0 computed the dot product of each observed spectrum with each candidate
theoretical spectrum. Tide-v0 did so in a straightforward manner with a single multiplication
and addition at each bucket. However, each of the theoretical peaks may have one of only
three possible intensities: 10, 25 or 50. The common case is that there are many candidate
peptides for each observed spectrum, so it pays to scale the observed spectrum by each of
these factors and to cache the results. An array, peaks, of the original values is stored and
then three caches, peaks10, peaks25, and peaks50 are computed before iterating over the
candidate peptides. For each candidate peptide, the dot product is performed by simply
looking up the correct cache entry, and adding the correct entries together. This eliminates
the multiplications during dot product computation.

To accommodate this change, the theoretical spectra are represented as a sparse vector
of pairs (scalar enum, bucket) where scalar enum is an enumeration:

enum { Peaks10 = 1; Peaks25 = 2; Peaks50 = 3; }

indicating which scaled cache to use, and bucket indicates the correct entry in the scaled
cache.

The dot product loop then requires two array lookups and an addition per theoretical
peak:

dot_prod += cache[scalar_enum][bucket];

5 Array Striping

The dot-product code above was further improved by interleaving (striping) the three cache
arrays together, eliminating one of the memory lookups in the tight dot-product loop above.
This is possible even though the extent of the observed spectrum is not known at the time
the theoretical spectrum is computed. At the time this change was introduced, performance
improved by about 17%, as shown in line 10 of Table 1.
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Figure 1: Data flow after introducing the rolling window join
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6 Join with Rolling Window

Crux implements an index, not present in early versions of SEQUEST, containing all input
peptides sorted by precursor mass. As each spectrum in the input file is received, Crux seeks
to the beginning of a user defined window around the precursor mass. Then it computes
the theoretical spectrum for each peptide in that window, comparing each successively in
turn against the observed spectrum from the input. Two significant downsides remain in
this approach: there is a call to the seek() function per spectrum, and the same theoretical
spectrum may be recomputed many times over the course of a run. Tide-v0 did not suffer
the disk seek problem, but only because it allowed peptide sets of only very limited size and
kept them in memory.

The rolling-window join, described presently, eliminates the call to the seek() function
without requiring that the whole index reside in memory, and it eliminates significant re-
computation of theoretical spectra. As SEQUEST, Crux, and Tide-v0 were structured, the
same theoretical peak set is recomputed from a peptide whenever the peptide is a candidate
match for two different spectra. Rather than recompute these, Tide creates opportunities for
theoretical spectra to be reused when possible. To do this, Tide employs a “rolling window”
join of sorted peptides against sorted observed spectra.

Two changes are implemented. First, before any matching begins, all the observed spectra
are read into memory and sorted by mass. In case a spectrum has multiple possible charge
states it appears in the sorted array once for each charge state, as the join is performed on
the neutral (uncharged) mass.

Critics will note that reading all spectra into memory at the start is not scalable to large
sets of spectra. However, it is of much less concern to read the spectra into memory than
the candidate peptides, since there are, for most uses, many fewer spectra than peptides.
Represented compactly, spectra can occupy about 500-1000 bytes each. Once a spectrum
is evaluated, it can be discarded completely. This suggests the following scheme as Tide
scales, if memory becomes saturated by reading in the spectra at once: at the sorting step,
one could sort spectra in batches, store to disk, and merge the files as they were re-read as
input to the join. Because Tide is CPU-bound, disk-based costs of doing this merge could
be managed by threading. All of this is independent of the join method itself.

After the spectra are sorted, the join is performed as follows. Tide iterates over the spectra
sorted by neutral mass. At the same time, Tide reads the presorted candidate peptides into
an “active peptide queue.” The queue contains just the peptides that fall within the user-
specified precursor mass window. As Tide iterates over each successive observed spectrum, it
evicts from the queue and discards any candidate peptides whose masses are too small for the
current observed spectrum. Then Tide reads from the presorted peptide index, enqueueing
each, until it arrives at the first peptide that is too massive. This last peptide is placed in
the queue but does not fall within the active window. The queue must support not only the
standard enqueue and dequeue operations, but also allow iteration over its contents (without
altering them). Iteration over the queue contents creates a “rolling window,” which occupies
only as much memory as is required to store a window’s worth of theoretical spectra. This
enables reuse of the computation of the theoretical spectra so that no theoretical spectrum
need ever be computed more than once. No explicit call to the seek() function is ever
performed.
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At the stage it was implemented, this change cut Tide’s running time by 64%, as shown
in line 6 of Table 1. The changes to the data flow of Tide, following the introduction of the
rolling window, are shown in Figure 1(B).

7 Making the Theoretical Peaks Vector Five-fold Sparser

Theoretical spectra in the SEQUEST algorithm occur in groups corresponding to cleavage
events, with somewhat predictable spacing among the peaks within a group. It is possible
to take advantage of such peak groupings to represent the complete set of theoretical peaks
even more sparsely.

As explained above, the theoretical peaks vector includes ten peaks per amino acid: the
b-ion and y-ion, each with intensity 50; the two bins flanking each of the b- and y-ions, each
with intensity 25 (four peaks total); the neutral loss of ammonia for each b- and y-ion, each
with intensity 10 (two peaks); the neutral loss of water from each b-ion with intensity 10;
and the a-ion with intensity 10. The same pattern is repeated for all the ions of charge two.

Importantly, the position of some of these ions is fixed relative to the positions of some
others. This is not always true, but it is approximately so:

1. The flanking ions around each of the b- and y-ions are always one bin away on either
side.

2. The peak for the neutral loss of ammonia is usually 17 bins away from the corresponding
b- and y-ions, but is occasionally (0.014% of the time) 18 bins away. For charge-2 ions,
the neutral loss of ammonia is either at 8 or 9 bins away, about half the time at each.

3. The peak for the neutral loss of water is usually 18 bins away from the corresponding
b-ion, but is occasionally (0.0015% of the time) 19 bins away. For charge-2 either
usually at 9 bins away, but occasionally (0.46% of the time) 10 bins away.

4. The peak for the a-ion is usually 28 bins away from the corresponding b-ion, but is
sometimes (0.014% of the time) 27 bins away. For charge-2 ions, the corresponding
a-ion is usually at 14 bins away, but 8.6% of the time is 13 bins away.

These observations suggests the following optimization, which is implemented in Tide. Rather
than compute all ten (or 20 for charge-2) peaks for each amino acid in each peptide, we com-
pute only the b- and y-ion. At the time of spectrum preprocessing, we compute a larger
cache, consisting not only of the scaled vectors Peak10, Peak25, and Peak50 but also the
following new vectors:

PeakY1[i] = Peak50[i] + Peak25[i-1] + Peak25[i+1] + Peak10[i-17];

PeakB1[i] = PeakY1[i] + Peak10[i-18] + Peak10[i-28];

These vectors represent the relative positions of the peaks that get added together as we take
dot products in most cases. Similar cache vectors are computed for the charge-2 versions in
each of the two forms where ammonia is 8 or 9 bins away.
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With these cached values, a theoretical vector five times sparser than before may be used
to compute the dot product. However, some bins will be wrong for some peptides, because
the neutral-loss peaks are not always the same distance from the b- and y-ions. Therefore,
for each theoretical spectrum we compute the very sparse vector, s, of just b- and y-ions
and we separately compute the original sparse vector of peaks, r, which gives the correct
calculations, and then take the difference r − s ≡ d. Because r and s are often the same, d
is often empty, and when not, is very sparse. By computing s, r, and d = r − s, for each
theoretical spectrum we can compute the dot product: 〈u, s〉+ 〈u, d〉 in place of 〈u, r〉 where
u is the observed spectrum.

At first, applying this heuristic led to almost no observable change in performance (see
line 9 of Table 1); however, the profile as shown in Figure 2(c) shifted: the largest consumer of
time is no longer the dot product, but rather the computation of d. This is an improvement,
since the computation of d has not been optimized at this point. In fact, optimizing the
computation of d is not necessary: d is so sparse that it is profitable simply to precompute
it at indexing time, store it to disk and read it back with each peptide. Line 11 of Table 1
shows the 24% savings when d gets precomputed and stored to disk.

8 Fixed Point Arithmetic

Another performance change breaks, albeit very slightly, the aim to preserve exactly the
output of Crux. Rather than compute the dot product in double-precision floating-point
arithmetic, Tide uses fixed-point arithmetic. This approach is possible only because the
normalization procedure applied to the observed spectrum greatly constrains the range of
values of the intensities. To do this, Tide multiplies each entry in the spectrum by a large
constant (107) and rounds to the nearest integer. The constraints imposed by the normal-
ization procedure ensure against underflow or overflow, and the fact that the dot product
is a simple summation assures numerical stability. We therefore achieve the same results as
Crux does to at least five or six decimal places. Because of XCorr’s instability, as mentioned
above, this precision is far beyond where XCorr values remain meaningful. The effects of
this change, however, were small on the benchmark sets, and it remains unclear whether this
change helps. See line 12 of Table 1.

9 FIFO Memory Allocator

Further profiling of a larger dataset showed that significant time was still being spent in
memory heap operations, many of which were tied to allocating and deallocating space for
theoretical spectra and associated data.

The built-in memory allocator typical of most C and C++ programs makes no assump-
tions on the order in which blocks of memory will be allocated and deallocated. It therefore
needs to keep careful track of which blocks of memory are in use at any given time. Updating
this information as a program runs can take significant time in case many allocation and
deallocation operations are performed, as is the case in Tide. However, in Tide, the pattern
of allocations and deallocations closely mirrors the enqueuing and dequeueing of candidates
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in the active peptide queue, described in Section 6. This first-in-first-out (FIFO) memory
usage pattern is entirely predictable: if memory block A is allocated before memory block
B, then A will be freed before B. This greatly simplifies the bookkeeping usually associated
with the built-in memory allocator such that the memory needed by Tide can, for the most
part, be kept in a contiguous region of machine memory. Therefore, we introduced in Tide a
specialized first-in-first-out memory allocator that performs well on data allocated according
to the FIFO usage pattern.

10 Compiled Dot-Product Code

Following the above speed improvements, profiling revealed that most of the remaining time
(about 60%) was spent in the dot product computation:

for (int i = 0; i < num_theoretical_peaks; ++i)

total += cache[theoretical_peaks[i]]

This loop was already improved twice, using cache lookups instead of multiplication
operations, and using two such lookups rather than three. Still, testing showed that unrolling
this loop and hard-coding specific values for the theoretical peaks array was about twice
as fast. To illustrate the difference, suppose theoretical peaks contained these values:
171,226,229,232,525,. . . , etc. Then tests showed it was roughly twice as fast as the above
dot product loop to execute:

total = cache[171] + cache[226] + cache[229] + cache[232] + cache[525] + ...

The speedup is likely due to executing one less memory lookup per array entry. But the spe-
cific values in theoretical peaks are unavailable until the theoretical peak set is computed
at run time. However, the same theoretical peak set may be reused many times.

To take advantage of this, Tide performs a run-time compilation for each theoretical
spectrum to x86 machine code to execute the sum with preset values. The appropriate code
is generated in a buffer for each candidate peptide and the program is instructed to jump to
the buffer to run this peptide-specific dot-product code. The overall savings is shown in line
13 of Table 1.
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