SUPPLEMENTARY DATA for

The Trp-cage: Optimizing the Stability of a Globular Miniprotein

Bipasha Barua, Jasper C. Lin, D. Victoria Williams, Phillip Kummler, Jonathan Neidigh and Niels H. Andersen *

Colour versions of figures in the article text.

Fig. 1. The Trp-cage fold showing the secondary structure features and the buried Trp sidechain as well as the residues that shield the Trp indole ring from solvent exposure.

Fig. 4. Trp-cage NMR structure ensembles: (a) The TC10b structure ensemble (28 structures): heavy atoms are displayed for all residue sidechains and the backbone, the hydrophobic cluster residues are shown in color -- Tyr³ (red), Trp⁶ (blue), Leu⁷ (yellow), Pro¹² (magenta), Pro¹⁸ (green), and Pro¹⁹ (cyan). (b) An overlay of one member each of the TC10b (blue) and TC5b (red) structure ensembles. All atoms are displayed for Tyr³, Trp⁶, Leu⁷, Pro¹², Pro¹⁸, and Pro¹⁹ with only N, CA, C' shown for the remaining residues.

Fig. 6. Differential melting effects upon destabilization of the Trp-cage: fractional CSDs versus T (°C) for TC10b (red) and its S14A- (blue) and P19A-mutants (orange) -- panel (**a**) plots the "cage" (dashed lines) and "helix" (solid line) measures of folding, panel (**b**) plots the G11 α 2 (dashed lines) and G11 α 3 (solid line) CSDs, panel (**c**) shows the P12 δ 3 CSDs, TC10b at 7 °C is the calibration standard for CSD = 1.0 in all panels. The P12 δ 3 CSDs (upfield) for the less stable systems are larger than those observed for TC10b. In the case of the P19A mutant, the only cage measure available for panel (**a**) are the P18 α and β 3 CSDs.

Fig. 7. Unfolding (melting) scenarios for Trp-cages with different degrees of intrinsic helix stability: (*a*) Trp-cage formation as Pro^{17,18,19} docking onto a stable helix, (*b*) Trp-cage melting producing an unfolded ensemble retaining a measurable population of a residual hydrophobic cluster, a "half-cage" structure.

Fig. 8. (a) The temperature dependence of the CD spectrum of TC10b at pH 7, traces are shown for every 10° increment from 0 to 90 °C. (b) Melting curves (χ_U versus T) for TC10b and some of its single site mutants. To illustrate the agreement between chemical shift and CD melts we have superimposed χ_U values from "cage CSDs" as open symbols on the plots. When the cage is substantially destabilized, illustrated here by Y3A-TC10b, some residual helicity remains after the cage structure melts.

SUPPLEMENTARY DATA AND DISCUSSION.

The Trp-cage displays the same chemical shift deviations over a wide range of mutants.

At this point mutations at all positions in the original sequence, except the three glycines, have been examined. Of those retaining the Trp residue, all but five adopt the Trp-cage fold as the predominant conformation in water. There is a remarkable consistency in the chemical shifts (Table S1) observed for these species under conditions that favor folding (pH 6 - 7, 280K). All of the large structuring shifts, due to ring-current effects in the hydrophobic core, that are used to measure the extent of folding in the Trp-cage appear in Table S1. The shifts are given as chemical shift deviations (CSD = δ_{obs} - δ_{rc} , where δ_{obs} is the observed chemical shift and δ_{rc} is a reference random coil chemical shif; the random coil shifts employed are also listed, with the exception of Gly¹¹ these are the values produced by our current automated CSD computation algorithm (Fesinmeyer et al., 2004). From Table S1, it is apparent that we had nearly achieved the fully folded shift values at the stage of TC5b. Only minor increases in structuring shifts at 280K are observed as the fold stability is increased by mutation or by the addition of TFE. Consistent with this, a recent report from another lab (Naduthambi and Zondlo, 2006) indicates CSDs of -3.58 and +0.51 for G11Ho2 and R16Ho2, respectively, in a stabilized Trp-cage. If we account for the unfolded fraction of TC5b present (estimated from the NH protection data), the sum of the structuring shifts for the folded state of TC5b is greater than 95% of the sum of maximum CSDs at each position observed in higher melting constructs in Table S1. We view this as evidence that the less stable TC5b structure does not show dramatically enhanced structural fluxionality in the folded state.

As additional evidence for a common structure we document that the destabilization of a Trpcage fold by adjusting the pH from 7 to 2.5, and thus eliminating or greatly weakening the Hbonded salt bridge between Asp⁹ and Arg¹⁶ results in changes in the chemical shift deviation melts (Figure S1) that are entirely comparable to those observed by mutational destabilization (Figure 2).

	Seque	ence				CSDs			
			7α	1102 ^(b)	12β3	16α	18α	18β3	19δ3, 19δ2
рН 6 –	7 buffer $^{(c)}$ -								
Randon	n coil reference	chemical shift	4.226	4.02	2.27	4.622	4.69	2.29	3.74, 3.59
TC5b	NLYIQWLKD	GGPSSGRPPPS ^(d)	-0.78	-3.29	0.25	0.41	-2.18	-1.95	-0.56, -0.63
	NLY A QWLKD	GGPSSGRPPPS	-0.81	-3.27	0.26	0.44	-2.20	-1.98	-0.59, -0.66
	DLY A QWLKD	GGPSSGRPPPS	-0.82	-3.35	0.26	0.46	-2.25	-2.03	-0.62, -0.66
	AcA YAQWLKD	GGPSSGRPPPS	-0.83	-3.41	0.27	0.47	-2.30	-2.11	-0.57, -0.67
	N A YAQWLKD	GGPSSGRPPPS	-0.83	-3.35	0.26	0.45	-2.28	-2.06	-0.57, -0.66
TC10b	DAYAQWLKD	GGPSSGRPPPS	-0.84	-3.37	0.27	0.46	-2.29	-2.07	-0.59, -0.66
	DAY U QWLKD	GGPSSGRPPPS	-0.79	-3.31	0.27	0.46	-2.24	-2.01	-0.58, -0.59
	NA U Y U QWLKD	GGPSSGRPPPS	-0.78	-3.42	0.27	0.48	-2.33	-2.12	-0.55, -0.63
	NAYA A WLKD	GGPSSGRPPPS ^(e)	-0.80	-3.04	0.24	0.39	-2.11	-1.86	-0.56, -0.61
	NAYAQWL A D	GGPSSGRPPPS	-0.86	-3.35	0.27	0.46	-2.30	-2.08	-0.57, -0.66
	NAYAQWLKD	GGPS T GRPPPS ^(e)	-0.84	-3.21	0.24	0.29	-2.20	-1.76	-0.58, -0.67
	DAYAQWLKD	GGPSSGR A PPS	-0.84	-3.27	0.26	$0.48^{(1)}$) -2.10	-2.08	-0.51 , - 0.62
	DAYAQWLKD	GGPSSGRP A PS	-0.84	-3.41	0.26	0.46	-2.60	n. a.	-0.60, -0.75
	DAYAQWLKD	GGPSSGRPPP NH 2	-0.84	-3.32	0.27	0.44	-2.23	-2.06	-0.58, -0.63
GAAAA	AA AYAQWLKD	GGPSSGRPPPS	-0.84	-3.42	0.27	0.47	-2.32	-2.08	-0.61, -0.67
30% TH	FE ^(g) -								
Randon	n coil reference	chemical shift	4.261	4.055	2.27	4.657	4.723	2.29	3.74, 3.59
TC5b	NLYIQWLKD	GGPSSGRPPPS	-0.78	-3.20	0.24	0.44	-2.12	-1.95	-0.59, -0.67
	NLY A QWLKD	GGPSSGRPPPS	-0.75	-3.35	0.26	0.47	-2.20	-2.04	-0.64, -0.72
	D A YAQWLKD	GGPSSGRPPPS	-0.77	-3.46	0.26	0.50	-2.30	-2.11	-0.61, -0.70
	AcA YAQWLKD	GGPSSGRPPPS	-0.78	-3.46	0.26	0.49	-2.32	-2.12	-0.59, -0.71
	NAYAQWLKD	GGPS T GRPPPS	-0.80	-3.31	0.23	0.35	-2.21	-1.89	-0.56, -0.64
	DAYAQWLKD	GGPSSGR A PPS	-0.79	-3.44	0.27	0.53 ^(f)) -2.16	-2.14	-0.55, -0.68

Table S1. Chemical shift deviations for representative Trp-cage sequences at 280 K.^(a)

^(a) The reference shift values employed are shown in the first row. Bold values in the body of the table highlight CSDs that are significantly smaller than the largest values observed; these imply fraction folded values (χ_F) less than 0.98. Unusually large shift are italicized.

(b) The CSD of the other Gly H α (11H α 3) is significantly smaller, see text: the range is -0.87 to -1.02 for the systems listed in this Table.

^(c) In most cases the pH was between 6.6 and 7 and spectral data was collected at 280K with 5% D_2O included as the lock signal. In purely aqueous buffers, the fold stability decreases as the pH is lowered to or beyond 4.9.

^(d) The data for TC5b is pH* = 6 in 98+ % D₂O. The ring current shifts are slightly larger (by 3 - 9 %) in D₂O versus H₂O.

^(e) Other data for these two analogs also suggest that χ_F for these two analogs is less than 0.96 under the strictly aqueous conditions at the lowest temperature examined.

 $^{(f)}$ An adjustment in the R16 α reference shift (-0.28 ppm), reflecting the Pro to Ala mutation in the following residue, has been included in the CSD calculation.

^(g) These solutions were prepared by adding TFE to aqueous solutions at pH 6.6. The effective pH is estimated to be about 5.8.

Figure S1. Plots of chemical deviations shift ¹Н (CSDs, the sites are panels) labeled on the versus temperature for TC8a at pH 7 (optimum stability, black) and at pH 2.5 (grev lines and symbols). The lines through the data are polynomial fits with no theoretical significance. The pH effect on stability is due almost exclusively to the loss of the salt-bridge upon protonation of Asp⁹). The format is the same as in textual Figure 2.

Structural Characterization of TC10b

The NMR structure ensemble for TC10b was generated from 186 NOE distances, including 28 long-range (i/ i+n, n>4) constraints. The NOE intensities were obtained directly from the NOESY spectra and these were converted to distances by an automated program, DIS (Fesinmeyer, 2005), which also calculates the allowed ranges, from $d - d_{-}$ to $d + d_{+}$, using the relation $d = A^* i^B$, where d is the distance in Å, i is the NOE intensity, and A, B are constants that were obtained by fitting a power function to a plot of distance *versus* intensity for a set of intensities for which the distances are 'known'. The following 'known' distances for a helical span (residues 3 - 8, in the present case) were used for the calibration: NN (i, i+1) = 2.8, α N (i, i) = 2.8, α N (i, i+1) = 3.5 Å in the helical span, geminal $\beta\beta$ ' and Pro $\delta\delta$ ' = 1.9 Å *(the geminal methylene distance is larger than the actual distance, 1.76 Å, to account for the fact that geminal NOEs are not in the linear growth regime at the mixing times employed)*. This contrasts with the procedure employed for TC5b, where the NOEs were grouped by size category and the distances were adjusted further during the refinement procedure rather than relying on an automated program for generating distance constraints. Twenty eight structures (from 40 random starts) met

the acceptance criteria. The structural and convergence statistics for the ensemble appear in Table S2.

The NOE derived constraints employed for the CNS derivation of an NMR ensemble for TC10b appear in Table S3. Table S3 uses CNS nomenclature for prochiral CH_2 and CMe_2 groups; while the resonance assignment lists (*vide infra*) are given using the most recently formalized IUPAC nomenclature (Markley *et al.*, 1998). The dihedral values derived for TC10b are compared to those in the prior TC5b ensemble in Table S4.

Distance constraints an	d r.m.s. deviatio	ns in the CNS ensemble:
Type of constraint	Number	r.m.s. deviation ^b
Intraresidue	85	0.0506 ± 0.0036
Sequential	52	0.0303 ± 0.0031
i/i+n, n = 2-4	21	0.0098 ± 0.0036
i/ i+n, n ≥ 5	28	0.0158 ± 0.0059
Structure statistics ^b :		
E _{TOTAL} (kcal/mol)		-30.5 ±4.2
E _{NOE} (kcal/mol)		20.7 ± 1.9
E _{vdW} (kcal/mol)		-74.2 ± 3.3
Bond violations (Å)		0.0037 ± 0.0001
Angle violations (°)		0.478 ± 0.008
Improper torsion violat	ions (°)	0.181 ± 0.012

Table S2. NMR structure statistics for the TC10b ensemble^a

Convergence within final ensemble, atomic r.m.s. deviations $(\text{\AA})^{c}$: Pairwise over the ensemble (±s.e.)

-			
Heavy atom		1.02 ± 0.17	
Backbone	·	0.41 ± 0.14	
	`	/	

^a All statistics are over the 28 accepted structures of 40 structures.

^{b.} Values are mean ± standard deviation.

^{c.} All convergence measures are over residues 3-19.

Footnote – The TC5b structure ensemble (38/50 structures) was generated from 169 constraints (of which 28 were long-range) with similar acceptance criteria (NOE < 0.15 Å). Subsequent studies (to be reported elsewhere) have revealed that as few as 18 long-range constraints, with the addition of 36 medium- and short-range constraints can generate Trp-cage structure ensembles within a 0.63 \pm 0.17 Å backbone RMSD of the published TC5b ensemble, which had a 0.39 \pm 0.12 Å pairwise backbone RMSD.

	Table S3	NOE co	onstraint	list	for	TC1	0b
--	----------	--------	-----------	------	-----	-----	----

!! i,i			d	d–	d+	δ values
assign (residue	1 and name ha) (re	esidue 1 and name hb) 2.6	5 0.30	0.26	4.25 2.98
assign (residue	2 and name ha) (re	esidue 2 and name hb#	ŧ) 3.0	0 0.50	0.30	4.27 1.52
assign (residue	3 and name ha) (re	esidue 3 and name hb#) 2.5	3 0.27	0.24	4.03 3.14
assign (residue	3 and name ha) (re	esidue 3 and name hd#	ŧ) 2.8	4 0.36	0.71	4.03 7.09
assign (residue	3 and name ha) (re	esidue 3 and name hn) 2.9	0.41	0.33	4.03 8.90
assign (residue	3 and name hb#) (r	residue 3 and name hd	#) 2.5	0.24	0.66	3.13 7.10

assign (residue	3 and name hb#) (residue 3 and name hn) $2.47 \ 0.25 \ 0.23$	3.13 8.90
assign (residue	4 and name ha) (residue 4 and name hn) 2.74 0.35 0.28	4.12 8.35
assign (residue	4 and name hb#) (residue 4 and name hn) 2.70 0.23 0.24	1.58 8.34
assign (residue	5 and name ha) (residue 5 and name hb1) 3.19 0.49 0.40	3.90 2.15
assign (residue	5 and name ha) (residue 5 and name hb2) 3.23 0.51 0.41	3.90 2.23
assign (residue	5 and name ha) (residue 5 and name hn) 2.61 0.31 0.26	3.90 8.12
assign (residue	5 and name hb1) (residue 5 and name hn) 2.65 0.32 0.27	2.15 8.13
assign (residue	5 and name hb2) (residue 5 and name hn) 2.64 0.32 0.26	2.24 8.13
assign (residue	6 and name ha) (residue 6 and name hb1) 3.00 0.20 0.20	4.24 3.56
assign (residue	6 and name ha) (residue 6 and name hb2) 2.40 0.40 0.40	4.24 3.14
assign (residue	6 and name ha) (residue 6 and name hd1) 2.98 0.43 0.54	4.23 6.98
assign (residue	6 and name ha) (residue 6 and name hn) 2.94 0.41 0.33	4.24 8.15
assign (residue	6 and name hb1) (residue 6 and name hd1) 3.23 0.51 0.61	3.55 6.97
assign (residue	6 and name hb1) (residue 6 and name he3) 3.07 0.45 0.56	3.55 6.97
assign (residue	6 and name hb1) (residue 6 and name hn) 2.43 0.25 0.23	3.56 8.15
assign (residue	6 and name hb2) (residue 6 and name hd1) 2.83 0.38 0.51	3.14 6.98
assign (residue	6 and name hb2) (residue 6 and name he3) 3.26 0.52 0.62	3.14 6.98
assign (residue	6 and name hb2) (residue 6 and name hn) $2.41 0.25 0.22$	3 14 8 15
assign (residue	6 and name hz^2) (residue 6 and name hel) 2.66 0.32 0.67	7.19 9.71
assign (residue	7 and name ha $(residue 7 and name hb1) 2.50 0.20 0.25$	3 39 1 36
assign (residue	7 and name ha $(\text{residue} 7 \text{ and name hb}^2) = 3.05 0.10 0.10$	3 39 1 90
assign (residue	7 and name ha $(\text{residue} 7 \text{ and name hd}^2)$ 4 25 0 73 0 62	3 40 0 99
assign (residue	7 and name ha $(\text{residue} 7 \text{ and name hd}2\#) 2.86 0.28 0.26$	3 39 0 86
assign (residue	7 and name ha $(\text{residue} 7 \text{ and name hn})$ 2.88 0.40 0.32	3 38 8 37
assign (residue	7 and name hb1) (residue 7 and name hd1 $\#$) 3.56 0.51 0.40	1 34 0 99
assign (residue	7 and name hb1) (residue 7 and name hd2 $\#$) 3.41 0.46 0.37	1 35 0 87
assign (residue	7 and name hb1) (residue 7 and name hn) 349046046	1 36 8 37
assign (residue	7 and name hb2) (residue 7 and name hd1 $\#$) 3 43 0 47 0 37	1 90 0 99
assign (residue	7 and name hb2) (residue 7 and name hd2#) 4 33 0 75 0 65	1 90 0 86
assign (residue	7 and name hb^2) (residue 7 and name ha^2) 1.55 0.75 0.05	1 90 8 37
assign (residue	7 and name $h02^\circ$ (residue 7 and name hn°) 2.00 0.35 0.27 7 and name $hd1^{\#}$) (residue 7 and name hn°) 4.33 0.75 0.64	1.00 8 37
assign (residue	7 and name hd $2^{\#}$) (residue 7 and name hn) 4.35 0.75 0.01	0.87.8.37
assign (residue	7 and name hg $(residue 7 and name hn)$ 2.68 0.33 0.27	1 63 8 37
assign (residue	8 and name ha) (residue 8 and name hb#) $2.0000.3500.27$	3 93 1 90
assign (residue	8 and name ha $(residue 8 and name hn)$ 2.57 0.12 0.51	3 92 8 12
assign (residue	8 and name hb^{\pm}) (residue 8 and name hn) 2.29 0.21 0.40	1 90 8 11
assign (residue	9 and name ha) (residue 9 and name hbl) 2.29 0.21 0.40	4 51 2 94
assign (residue	9 and name ha $(residue - 9 and name hb 1) = 2.51 + 0.20 + 0.21$	4 51 2 71
assign (residue	9 and name ha $(residue - 9 and name hb 2)$ 3.01 0.20 0.20	4 51 8 00
assign (residue	9 and name hal) (residue 9 and name hn) 325048039	2 91 8 00
assign (residue	9 and name hb^2) (residue 9 and name hn) 2.50 0.31 0.26	2 72 8 00
assign (residue	10 and name ha#) (residue 10 and name hn) 2.82 0.38 0.50	3 45 7 51
assign (residue	11 and name hal $)$ (residue 10 and name hn $)$ 2.02 0.30 0.50	3 13 8 51
assign (residue	11 and name ha?) (residue 11 and name hn) $2.52 \ 0.30 \ 0.50$	0.64.8.51
assign (residue	12 and name ha $)$ (residue 12 and name hbl $)$ 2.33 0.32 0.10	4 65 2 54
assign (residue	12 and name ha) (residue 12 and name hol) 2.75 0.55 0.26	4 65 2 18
assign (residue	12 and name hdl $)$ (residue 12 and name hgl $)$ 2.85 0.32 0.35	3 48 2 17
assign (residue	12 and name hd = 12 (residue 12 and name hg = 12.85 0.57 0.51 12 and name hd2 =) (residue 12 and name hb2 =) 3.85 0.70 0.64	3 84 2 07
assign (residue	12 and name hd 2 (residue 12 and name hd 2) 2.94 0.51 0.33	3 83 2 17
assign (residue	13 and name ha $)$ (residue 13 and name hb# $)$ 2.69 0.31 0.55	1 4 9 3 94
assign (residue	13 and name ha) (residue 13 and name hn) 3.35 0.54 0.45	4 40 7 77
assign (residue	13 and name $hh\#$) (residue 13 and name hn) 3.13 0.45 0.36	3 92 7 72
assign (residue	14 and name ha $(residue 14 and name hb1)$ 2.50 0.20 0.20	A 12 2 85
assign (residue	14 and name ha) (residue 14 and name hb1) 2.50 0.20 0.20 14	4 12 2 <i>1</i> 6
assign (residue	14 and name ha $($ (residue 14 and name hn $)$ 2 00 0.40 0.20	4 12 8 25
assign (residue	14 and name hhl) (residue 14 and name hn) $2.50 \ 0.40 \ 0.52$	3 8 2 8 7 5
assign (residue	14 and name hb?) (residue 14 and name hp.) 2.76.0.26.0.20	3.03 0.23
assign (residue	14 and name hole) (residue 14 and name hn) 2.70 0.30 0.29 15 and name hole) (residue 15 and name hn) 2.05 0.42 0.22	5.40 8.25 1 20 7 07
assign (residue	15 and hame hat $f(1estude 15 and hame hit) = 2.95 0.42 0.35$	4.27 /.9/

assign (residue	15 and name ha2) (residue	15 and name hn)	2.41	0.25	0.22	3.80 7.98
assign (residue	16 and name ha) (residue	16 and name hb#)	2.74	0.35	0.48	5.08 1.81
assign (residue	16 and name hb#) (residue	16 and name hn)	2.96	0.42	0.54	1.81 8.16
assign (residue	16 and name hd#) (residue	16 and name he)	3.15	0.48	0.59	3.22 7.75
assign (residue	16 and name hd#) (residue	16 and name hg#	4)	3.10	0.46	0.77	3.31 1.81
assign (residue	17 and name ha) (residue	17 and name hb1)	2.52	0.28	0.24	4.77 2.35
assign (residue	17 and name ha) (residue	17 and name hg1)	3.57	0.61	0.52	4.77 2.00
assign (residue	17 and name hd1) (residue	17 and name hb2	2)	3.70	0.65	0.57	3.86 1.80
assign (residue	17 and name hd2) (residue	17 and name hb2	2)	3.22	0.50	0.50	3.68 1.80
assign (residue	17 and name hd2) (residue	17 and name hg2	2)	2.75	0.39	0.31	3.68 1.99
assign (residue	18 and name ha) (residue	18 and name hb1)	2.40	0.40	0.40	2.40 0.21
assign (residue	18 and name ha) (residue	18 and name hb2	Ś	3.00	0.20	0.20	2.40 1.31
assign (residue	18 and name hd#) (residue	18 and name hb1	1)	3.90	0.70	0.62	3.52 0.21
assign (residue	19 and name ha) (residue	19 and name hb1	Ĵ	2.70	0.38	0.21	4.34 2.21
assign (residue	19 and name ha) (residue	19 and name hb2	Ś	3.30	0.53	0.43	4.34 1.99
assign (residue	19 and name hd1) (residue	19 and name hg	ı ́)	2.70	0.44	0.35	3.14 1.79
assign (residue	19 and name hd1) (residue	19 and name hg2	2 Ś	3.27	0.52	0.42	3.14 1.84
assign (residue	19 and name hd2) (residue	19 and name hg	ī	3 38	0.55	0.46	2 94 1 79
assign (residue	19 and name hd2) (residue	19 and name hg?	$\frac{1}{2}$	3.00	0.55	0.20	2 94 1 84
assign (residue	20 and name ha) (residue)	20 and name hb#	ົ້	2.60	0.29	0.25	4 16 3 77
assign (residue	20 and name ha) (residue 7	20 and name hn	Ń	3.02	0.44	0.35	4 16 7 97
ussign (residue	20 una nume na) (residue 1	20 una nume mi	,	5.02	0.11	0.55	1.10 7.97
11 i i+1								
assign (residue	2 and name ha)	(residue)	3 and name hn)	3 46	0.58	0.48	4 27 8 90
assign (residue	2 and name hd^{-1}	(residue)	3 and name hn	$\mathbf{\dot{1}}$	3.80	0.50	0.57	1 52 8 90
assign (residue	3 and name ha	(residue /	4 and name hn	Ś	3 91	0.00	0.67	4 03 8 35
assign (residue	$3 \text{ and name hh}^{\#}$	(residue)	4 and name hn	$\mathbf{\dot{\mathbf{x}}}$	2 76	0.72	0.28	3 14 8 35
assign (residue	3 and name hd# 3) (residue	4 and name ha	ζ	3 47	0.54	0.28	4 10 7 09
assign (residue	3 and name hn	(residue)	4 and name hn	ζ.	2.47	0.30	0.30	8 35 8 00
assign (residue	$\int and name ha$	(residue 4	f and name hn	<u>,</u>	2.05	0.50	0.50	0.55 0.90
assign (residue	4 and name ha	(residue).	5 and name hn	ζ	3.71 2.70	0.00	0.38	4.11 0.12
assign (residue	4 and name hp	(residue)	5 and name hn	<u>, </u>	2.20	0.42	0.34	1.30 0.12
assign (residue	5 and name hh	(residue)	6 and name hn	Ϋ́	2.00	0.50	0.30	0.33 0.13
assign (residue	5 and name hb?) (residue	6 and name hn	2	2.92	0.41	0.33	2.13 0.14
assign (residue	6 and name ho	(residue)	7 and name hn	$\langle \cdot \rangle$	5.52 4.05	0.54	0.44	<i>2.24</i> 0.14
assign (residue	6 and name hh	(residue	7 and name hn	,	4.05	0.70	0.74	4.24 0.30
assign (residue	6 and name ho?) (residue	7 and name ha	2	2.94	0.41	0.33	2 20 6 00
assign (residue	6 and name he?) (residue	7 and name hd 24	<i>)</i>	2.55	0.04	0.70	3.39 0.98
assign (residue	6 and name he?) (residue	7 and name ho	*)	2.22	0.30	0.04	0.80 0.97
assign (residue	6 and name nes) (residue	7 and name ng	2	2.13	0.45	0.48	1.03 0.9/
assign (residue	6 and name nes) (residue	/ and name nn	<u>)</u>	3.10	0.48	0.59	0.98 8.3/
assign (residue	6 and name m)	(residue)	/ and name in 7 and name hd 2^{\perp})	2.37	0.27	0.23	0.00 0.10
assign (residue	o and name nzo) (residue	/ and name nd_{H}	<i>+</i>)	3.33	0.44	0.60	0.80 /.15
assign (residue	7 and name na)	(residue a	s and name nn) (5.41 2.47	0.50	0.40	3.39 8.11
assign (residue	7 and name not) (residue	8 and name nn	\mathbf{y}	3.4/	0.38	0.49	1.30 8.11
assign (residue	/ and name nn)	(residue	8 and name nn)	2.31	0.21	0.27	8.3/8.12
assign (residue	8 and name na)	(residue y	9 and name nn) (3.41	0.56	0.47	3.93 8.00
assign (residue	8 and name $nb\#$) (residue	9 and name nn	$\mathbf{)}$	3.40	0.50	0.66	1.98 8.00
assign (residue	8 and name hn)	(residue	9 and name hn)	2.4/	0.27	0.33	8.01 8.11
assign (residue	9 and name ha)	(residue 1	0 and name hn)	3.63	0.73	0.55	4.52 /.51
assign (residue	9 and name hn)	(residue 1	U and name hn) (2.96	0.42	0.55	1.51 8.00
assign (residue	10 and name ha#) (residue	11 and name hn)	3.10	0.47	0.57	3.46 8.50
assign (residue	10 and name hn) (residue	11 and name hn)	2.42	0.25	0.23	1.51 8.50
assign (residue	11 and name hal) (residue	12 and name hdl	L)	2.41	0.35	0.22	3.48 3.11
assign (residue	11 and name hal) (residue	12 and name hd2	2)	2.47	0.27	0.23	3.84 3.11
assign (residue	11 and name hn) (residue	12 and name hd2)	3.90	0.72	0.77	3.83 8.50
assign (residue	12 and name hb2) (residue	13 and name hn)	4.04	0.76	0.74	2.07 7.72
assign (residue	12 and name hd1) (residue	13 and name hn)	4.00	0.70	1.00	
assign (residue	12 and name hd2) (residue	13 and name hn)	3.71	0.66	0.58	3.84 7.73

assign (residue	13 and name ha) (residue	14 and name hn) .	3.50	0.59	0.50	4.48 8.25
assign (residue	13 and name hn) (residue	14 and name hn) 1	2.72	0.34	0.28	7.73 8.25
assign (residue	14 and name ha) (residue	15 and name hn) (3.80	0.73	0.68	4.13 7.98
assign (residue	14 and name hn) (residue	15 and name hn)	3.09	0.46	0.37	7.99 8.25
assign (residue	15 and name hal) (residue	16 and name hn) (3.98	0.74	0.70	4.30 8.16
assign (residue	15 and name ha2) (residue	16 and name hn) (3.79	0.68	0.62	3.80 8.16
assign (residue	15 and name hn) (residue	16 and name hn) i	2.83	0.38	0.30	7.99 8.16
assign (residue	16 and name ha) (residue	17 and name hd1) 1	2.51	0.38	0.24	5.08 3.87
assign (residue	16 and name ha) (residue	17 and name hd2	Ĵ.	3.01	0.44	0.35	5.09 3.68
assign (residue	16 and name hb#) (residue	17 and name hd2	2) :	3.29	0.53	0.63	3.68 1.92
assign (residue	17 and name ha) (residue	18 and name hd#) í	2.14	0.14	0.18	4.77 3.51
assign (residue	17 and name hb1) (residue	18 and name hd#	ŧ́) :	3.31	0.51	0.41	3.51 2.35
assign (residue	18 and name ha) (residue	19 and name hd1) í	2.55	0.29	0.20	3.15 2.40
assign (residue	18 and name ha) (residue	19 and name hd2) í	2.84	0.25	0.29	2.93 2.40
assign (residue	18 and name hb2) (residue	19 and name hd2	Ó	3.89	0.72	0.66	2.94 1.30
assign (residue	19 and name ha) (residue 2	20 and name hn	ົ່	2.42	0.25	0.23	4.34 7.97
assign (residue	19 and name hb2) (residue	20 and name hn	Ó I	3.91	0.72	0.67	2.00 7.96
0)(,				
!! i,i+2								
assign (residue	8 and name ha) (residue 1	0 and name hn) (3.93	0.73	0.68	3.93 7.51
assign (residue	8 and name hn) (residue 1	0 and name hn) i	3.86	0.71	0.75	8.11 7.52
assign (residue	9 and name hn) (residue 1	1 and name hn) i	3.87	0.71	0.65	8.01 8.50
assign (residue	13 and name ha) (residue	15 and name hn) í	3.81	0.69	0.62	4.49 7.98
ε				/				
!! i,i+3								
assign (residue	2 and name ha) (residue	5 and name hb1) (3.63	0.63	0.55	4.27 2.15
assign (residue	2 and name ha) (residue	5 and name hb2)	3.67	0.65	0.56	4.27 2.25
assign (residue	2 and name ha) (residue 5	5 and name hn) í	3.36	0.55	0.45	4.27 8.13
assign (residue	2 and name hb#) (residue	5 and name hn) 4	4.54	0.82	0.83	1.52 8.12
assign (residue	3 and name ha) (residue (6 and name hb1) 1	2.56	0.30	0.25	4.03 3.56
assign (residue	3 and name ha) (residue	6 and name he3	ý 4	4.00	0.80	0.60	
assign (residue	3 and name ha) (residue (6 and name hn) í	3.79	0.68	0.61	4.03 8.15
assign (residue	3 and name he#) (residue	6 and name hz3) 3	3.11	0.45	0.98	6.83 7.13
assign (residue	4 and name ha) (residue	7 and name hb2	Ĵ ĺ	3.41	0.56	0.47	4.12 1.90
assign (residue	4 and name ha) (residue	7 and name hd1#) í	3.62	0.53	0.42	4.12 0.99
assign (residue	6 and name ha) (residue	9 and name hb1	ý 4	4.00	0.20	1.00	
assign (residue	6 and name ha) (residue	9 and name hb2) í	3.20	0.50	0.40	4.23 2.71
assign (residue	6 and name ha) (residue	9 and name hn) í	3.81	0.69	0.62	4.22 8.00
Ũ X		<i>,</i> , , , , , , , , , , , , , , , , , ,	,					
!! i,i+4								
assign (residue	3 and name hd#) (residue	7 and name hd1#	ŧ)4	1.12	0.66	1.04	0.99 7.10
assign (residue	3 and name he#) (residue	7 and name hd1#	•) 3	.46	0.45	0.86	0.99 6.83
assign (residue	3 and name he#) (residue	7 and name hd2#	5)4	.11	0.66	1.03	0.86 6.83
assign (residue	7 and name ha) (residue 1	1 and name hn) 2	.74	0.45	0.29	3.39 8.50
!! i,i+n								
assign (residue	3 and name ha) (residue 1	9 and name hb1) 4	.00	0.50	1.50	
assign (residue	3 and name ha) (residue 1	9 and name hb2) 4	.00	0.50	1.50	
assign (residue	3 and name ha) (residue 1	9 and name hd2) 3	.67	0.64	0.56	4.04 2.93
assign (residue	3 and name ha) (residue 1	9 and name hg1) 3	.39	0.56	0.46	4.04 1.80
assign (residue	3 and name ha) (residue 1	9 and name hg2) 3	.44	0.57	0.48	4.03 1.85
assign (residue	3 and name hd#) (residue	19 and name hd2) 3	3.29	0.51	0.82	2.93 7.10
assign (residue	3 and name he#) (residue	18 and name hb1) 3	.87	0.59	1.12	0.20 6.83
assign (residue	3 and name he#) (residue	18 and name hb2) 3	.41	0.54	0.85	1.31 6.83
assign (residue	6 and name hd1) (residue	16 and name hb#) 2	2.94	0.41	0.73	1.81 6.98
assign (residue	6 and name hd1) (residue	16 and name he) 3	.51	0.60	0.70	6.99 7.75
assign (residue	6 and name hd1) (residue	16 and name hg#) 2	2.52	0.28	0.64	1.65 6.98
assign (residue	6 and name hd1) (residue	18 and name ha) 3	.33	0.54	0.64	2.40 6.98

assign (residue	6 and name hd1) (residue	19 and name hd2)	3.58	0.62	0.73	2.93 6.99
assign (residue	6 and name he1) (residue	16 and name hb#)	3.50	0.59	0.90	1.82 9.71
assign (residue	6 and name hel) (residue	16 and name hg#)	3.68	0.65	0.97	1.66 9.71
assign (residue	6 and name he1) (residue	16 and name hn)	3.83	0.70	0.83	8.17 9.71
assign (residue	6 and name he1) (residue	18 and name ha)	3.50	0.59	0.70	2.40 9.71
assign (residue	6 and name hh2) (residue	12 and name ha)	3.51	0.59	0.80	4.64 7.22
assign (residue	6 and name hh2) (residue	12 and name hd1)	2.92	0.41	0.53	3.49 7.22
assign (residue	6 and name hh2) (residue	12 and name hg#)	3.24	0.51	0.81	2.17 7.22
assign (residue	6 and name hz2) (residue	12 and name ha)	2.92	0.51	0.53	4.64 7.18
assign (residue	6 and name hz2) (residue	12 and name hg#)	3.44	0.57	0.87	2.17 7.19
assign (residue	6 and name hz2) (residue	18 and name hd1)	2.76	0.34	0.49	3.51 7.18
assign (residue	6 and name hz2) (residue	18 and name hg1)	3.65	0.64	0.75	1.65 7.18
assign (residue	9 and name hb1) (residue	14 and name hb1)	3.00	0.43	0.34	3.84 2.94
assign (residue	9 and name hb1) (residue	14 and name hb2)	3.57	0.61	0.52	3.47 2.94
assign (residue	9 and name hb2) (residue	14 and name hb1)	4.30	0.40	2.00	
assign (residue	9 and name hb2) (residue	14 and name hb2)	4.30	0.40	2.00	

Table S4. Comparison of dihedral angles (\pm s.d.) between the TC10b (28 structures) and TC5b (24 structures) NMR ensembles.

	Residue	φ	Ψ	χ1	Residue	φ	Ψ	χ1
--	---------	---	---	----	---------	---	---	----

TC5	b			TC1	0b		
N1		-48.2(69.5)	-100.3(62.9)	D1		-111.2(93.2)	-117.1(72.3)
L2	-28.0(68.4)	-22.2(19.7)	-87.6 (58.2)	A2	-103.5(61.8)	-0.7 (32.0)	
Y3	-58.2 (3.1)	-35.6 (3.0)	-146.3 (8.4)	Y3	-69.5 (11.7)	-38.3 (2.0)	-152.1 (7.9)
I4	-61.3 (2.5)	-48.1 (2.8)	-52.3 (4.3)	A4	-57.8 (1.1)	-41.5 (1.4)	
Q5	-62.3 (3.3)	-41.6 (5.5)	-109.5(30.4)	Q5	-73.4 (2.9)	-36.1 (2.3)	-149.5 (2.6)
W6	-63.1 (4.1)	-44.6 (2.9)	-180.0 (2.2)	W6	-55.4 (1.5)	-44.6 (1.2)	-171.8 (1.9)
L7	-62.7 (2.1)	-38.2 (3.1)	-74.7 (2.3)	L7	-70.2 (2.2)	-37.6 (2.2)	-68.4 (2.9)
K8	-56.1 (2.3)	-33.6 (4.6)	-124.5(61.0)	K8	-58.0 (1.1)	-32.7 (4.4)	-124.6(31.8)
D9	-72.6 (4.6)	-18.0(10.6)	-125.7(37.9)	D9	-87.4 (8.7)	20.4(22.0)	-73.0 (9.5)
G10	119.5(13.3)	-10.3 (6.2)		G10	83.2(22.4)	21.7 (13.8)	
G11	55.9 (3.3)	-126.3(7.6)		G11	59.0 (3.6)	-119.9(3.4)	
P12	-56.6 (1.9)	-27.1 (3.7)	-20.5 (1.7)	P12	-77.1(14.5)	8.2 (18.1)	14.7 (24.9
S13	-76.9 (10.1)	-0.5 (18.2)	-31.2 (84.0)	S13	-79.5(10.4)	-34.3(12.2)	-104.4(68.7
S14	-94.6 (15.8)	-1.8 (7.5)	-55.7 (33.2)	S14	-71.7(12.6)	-28.9(18.7)	-32.1 (24.8
G15	73.1 (3.8)	-1.7 (28.7)		G15	86.3(12.1)	13.6(15.8)	
R16	-112.3(38.7)	136.3(4.6)	109.6 (68.0)	R16	-96.4(19.5)	134.5 (7.0)	125.5(73.0)
P17	-68.6 (2.8)	161.2 (2.4)	28.6 (1.7)	P17	-63.5(12.0)	129.4 (9.4)	-4.5 (23.8)
P18	-69.2 (2.4)	148.7 (8.0)	26.7 (1.5)	P18	-62.2 (3.4)	135.9 (5.2)	19.7 (2.3)
P19	-79.1 (3.0)	97.2 (73.5)	31.5 (1.7)	P19	-81.8 (1.6)	112.2(20.6)	30.8 (0.8)
S20	-119.0(82.0)		-102.7(96.0)	S20	-121.3(26.3)		-79.9 (76.2)

Incorporating other NMR data into TC10b structural models

Method details –

The NMR ensemble of TC10b, which was calculated without any H-bonding restraints, was sequentially modified by including a distance restraint (D9C γ /R16C ζ = 3.9 – 5.1 Å) intended to maintain the ends of the Asp⁹ and Arg¹⁶ sidechains within salt-bridging distance and the consensus H-bonds (6H_N-2O', 6H ϵ 1-16O', 7H_N-3O', 8H_N-4O') from the initial TC10b ensemble were restrained with H_N-O' distances corresponding to those observed over the entire NMR ensemble. This produced a more converged ensemble (residue 3-19 backbone RMSD = 0.41 ± 0.15 Å) with a decrease in the E_{NOE} parameter (11.6 versus 20.7 kcal/mol), and remained structurally consistent with the ensemble generated without H-bond restraints as reflected in the inter-ensemble residue 3-19 backbone rmsd (0.43 ± 0.15 Å). A control MD annealing run applying the original NOE constraints to the same folded structure ensemble did not improve convergence and resulted in a smaller decrease in the E_{NOE} parameter compared to runs with added non-NOE constraints.

The effects of adding, serially in alternative modes, additional H-bond restraints ($16H\epsilon - 140\gamma$, $9H_N$ -50' versus $9H_N$ -60', $11H_N$ -60' versus $11H_N$ -70', and $14H\gamma$ -90' versus $14H\gamma$ -100' versus $14H\gamma$ -110'), and then narrowing the restraint for α -helical H_N/O' H-bonds to 2.0 + 0.2 Å was examined by additional CNS annealing and Powell minimization protocols. Most sets of additional H-bond restraints did not increase the E_{NOE} term or the violations of the 49 medium- and long-range NOE constraints that define the Trp-cage motif. The only pattern that could be eliminated based on a significantly less good fit to the NOE-derived constraints, higher E_{TOT} measures and/or inability to fit expected H-bonding distances were models incorporating the $14H\gamma$ -100' H-bond as a restraint. The discrimination between alternative models increased when the more restrictive H_N/O' distances were employed. The CNS runs with varying added restraints indicated that a 9H_N-5O' was superior to a 9H_N-6O' H-bond but no clear choice could be made between 14Hy-9O' and 14Hy-11O' H-bonding. Defining the H-bond acceptor for the fully exchange protected Gly^{11} -H_N was less problematic. Based on E_{TOT} and E_{NOE} criteria, as well as H-bond geometries, the 11H_N-7O' restraint was better independent of both the 14Hy and 9H_N acceptor specifications. For example with the $14H\gamma$ -90' and $9H_N$ -50' bonding pattern, an $11H_N$ -60' restraint still produces 11H_N-70' H-bonds and the 11H_N-70' bonds displayed geometries that were in closer accord with expectations for a strong H-bond. As a result, the Gly¹¹ amide NH is protected in this model with the buried Trp⁶-C=O also sequestered to a significant extent.

The observation that the Trp-cage can accommodate Thr (and allo-Thr) in place of Ser¹⁴ provides additional tests of the validity of the proposed hydrogen bonding networks. The ensembles accepted based on energies and NOE distance RMSDs position S14H γ pointed toward the carbonyl of D9 or G11. In the best two ensembles, the χ^1 dihedral angles are identical (S14H γ -D9O' with Ser¹⁴ $\chi^1 = -16.8^{\circ} \pm 16.5^{\circ}$; S14H γ -11O' with $\chi^1 = -15.5^{\circ} \pm 16.4^{\circ}$) thus the S14H β protons are positioned uniquely. Given that the Ser to allo-Thr and Ser to Thr mutational effects on stability are small, < 0.7 and circa 2 kJ/mol, respectively(textual Table 3), we can assume that the 14H γ H-bonding is retained in both mutants. As a result, the replacement of S14 with Thr and allo-Thr in these ensembles can be done without changing the χ^1 dihedral angle and provides models for comparison with CSD and NOE data. In the NOESY spectra of S14T, the Thr methyl (H γ 2) displayed only a single non-intraresidue NOE, a very large peak with the shift coincident C_{\beta}H₂ of D9; this was much diminished in the allo-Thr analog (in which the diastereotopic shift difference for D9-C_{\beta}H₂ is restored. The (S14T)-TC10b ensembles based on structures generated with 9H_N-5O'/11H_N-7O'/14H γ -9O' and 9H_N-5O'/11H_N-6O'/14H γ -11O' H-bond restraints displayed the

shortest $14H\gamma 2/9C_{\beta}H_2$ distances and rationalized the changes observed in the chemical shifts of $9C_{\beta}H_2$. The allo-Thr analog displayed a new NOE between $H\gamma 2$ and W6H\delta1 which is fully consistent with the location of this methyl implied by the low energy TC10b structure generated with $9H_N$ -50'/11 H_N -70'/14 $H\gamma$ -90' or $9H_N$ -50'/11 H_N -60'/14 $H\gamma$ -110' H-bond restraints. Distinguishing between a $14H\gamma$ -90' and $14H\gamma$ -110' H-bond is not possible; as this corresponds to nothing more than a change in χ^2 of S14.

Results and Discussion –

The addition of H-bond restraints did not produce significant changes in the $\phi' \psi$ values from residue 3 – 18; there were small but significant changes in a few χ^1 dihedrals: notable a narrowing of D9 and R16 χ -values reflecting the salt bridge and Ser¹⁴ with $\chi^1 \cong -16^\circ$ reflecting H-bonding interactions. The ensemble generated using 9HN-5O', 11HN-7O', 14H γ -9O', and 16H ϵ -14O γ restraints is viewed as that most consistent with both the NOEs and exchange protection data. Views of a representative structure from this ensemble, illustrating the H-bonding network in the vicinity of the Ser¹⁴ sidechain the D9/R16 salt bridge appear in the left hand panel of Figure S2; the right hand panel is a view of this region of the computer simulated fold of TC5b derived by Simmerling and Roitberg. The Cartesian coordinates for our model appear in Table S5 and can be requested from the authors as a PDB file.

Figure S2. The right hand panel is taken from the folded state simulated by Simmerling and Roitberg. A and B are identical views of our model in a framework versus space-filling CPK model.

Panel B illustrates the extent to which the Hbonds of the Arg¹⁶ and Ser¹⁴ sidechains are buried. The atoms involved are not visible when the proline and indole rings are included. There is no firm basis for specifying the atoms of the

D9 and R16 that are involved in H-bond that stabilizes the salt-bridge. In panel A, D9 is shown with a protonated carboxyl.

The present model represents our best model for the structure of TC10b (and other stable Trpcage species). Hopefully, collaborators will eventually obtain an X-ray crystal structure for one of our Trp-cage constructs. Until that time we recommend the use of the model specified by the atomic coordinates in Table S5 as the starting point for computer simulations of Trp-cage unfolding.

Table S5 – Atomic coordinates for a representative low-energy structure of TC10b with added non-NOE salt bridge and hydrogen bond information (D9C γ -R16C ζ , 6H_N-2O', 6H ϵ 1-16O', 7H_N-3O', 8H_N-4O', 9HN-5O', 11HN-7O', 14H γ -9O', and 16H ϵ -14O γ).

ATOM	1	Ν	ASP	1	-2.119	13.313	-4.420	/	ATOM	2	HT1	ASP	1	-1.247	13.403	-4.923
ATOM	3	HT2	ASP	1	-2.772	12.774	-4.974	/	ATOM	4	HT3	ASP	1	-2.505	14.232	-4.245
ATOM	5	CA	ASP	1	-1.899	12.628	-3.133	/	ATOM	6	HA	ASP	1	-1.167	13.200	-2.559
ATOM	7	CB	ASP	1	-3.193	12.578	-2.313	/	ATOM	8	HB2	ASP	1	-4.000	13.102	-2.828
ATOM	9	HB1	ASP	1	-3.508	11.548	-2.136	1	ATOM	10	CG	ASP	1	-2.889	13.252	-0.991
ATOM	11	OD1	ASP	1	-3.059	14.487	-0.958	1	ATOM	12	OD2	ASP	1	-2.349	12.532	-0.125
ATOM	13	С	ASP	1	-1.339	11.226	-3.333	1	ATOM	14	0	ASP	1	-1.965	10.421	-4.017
ATOM	15	N	ALA	2	-0.171	10.932	-2.753	1	ATOM	16	HN	ALA	2	0.307	11.628	-2.197
A'I'OM	17	CA	ALA	2	0.429	9.597	-2.816	1	ATOM	18	HA	ALA	2	0.414	9.254	-3.852
ATOM	19	CB	ALA	2	1.892	9.701	-2.3/1	1	ATOM	20	HBI	ALA	2	2.430	10.386	-3.02/
ATOM	21	HBZ	ALA	2	1.952	10.066	-1.345	',	ATOM	22	HB3	ALA	2	2.363	8./19	-2.431
ATOM	23	U N	ALA	2	-0.342	8.500	-1.975	',	ATOM	24		ALA	2	-0.412	7.388	-2.353
ATOM	20		TIR	3	-0.978	0.90/	-0.872	',	ATOM	20	HN	TIR	3	-0.904	9.903	-0.015
ATOM	20	CA	TIK	3	-2 273	0.100	1 216	',	ATOM	20	пА up2	TIK TVD	3	-1.605	0 752	1 305
ATOM	29	ЦВ1	TIK	3	-2.273	0.907 0 327	0 997	',	ATOM ATOM	30	пв2	TIN	3	-2.345	9.752	2 /00
ATOM	33	CD1	TIN	3	-1 444	9.379	3 538	',	ATOM	34	с. ч. п. 1		3	-0 745	9 167	3 153
ATOM	35	CE1	TYR	3	-1 449	7 558	4 700	1	ATOM	36	HE1	TYR	3	-0 757	7 758	5 503
ATOM	37	CZ	TYR	3	-2.365	6.493	4.820	1	ATOM	38	OH	TYR	3	-2.355	5.722	5.941
ATOM	39	нн	TYR	3	-3.007	5.022	5.903	1	ATOM	40	CE2	TYR	3	-3.288	6.237	3.781
ATOM	41	HE2	TYR	3	-3.997	5.430	3.872	1	ATOM	42	CD2	TYR	3	-3.279	7.037	2.623
ATOM	43	HD2	TYR	3	-3.988	6.842	1.833	1	ATOM	44	C	TYR	3	-2.924	7.438	-0.743
ATOM	45	0	TYR	3	-3.235	6.266	-0.519	1	ATOM	46	N	ALA	4	-3.528	8.167	-1.690
ATOM	47	HN	ALA	4	-3.210	9.115	-1.832	1	ATOM	48	CA	ALA	4	-4.574	7.649	-2.560
ATOM	49	HA	ALA	4	-5.394	7.290	-1.935	/	ATOM	50	CB	ALA	4	-5.097	8.789	-3.441
ATOM	51	HB1	ALA	4	-5.422	9.622	-2.817	/	ATOM	52	HB2	ALA	4	-4.314	9.130	-4.120
ATOM	53	HB3	ALA	4	-5.948	8.440	-4.026	/	ATOM	54	С	ALA	4	-4.092	6.471	-3.418
ATOM	55	0	ALA	4	-4.901	5.590	-3.712	/	ATOM	56	Ν	GLN	5	-2.814	6.443	-3.826
ATOM	57	HN	GLN	5	-2.192	7.184	-3.522	/	ATOM	58	CA	GLN	5	-2.216	5.310	-4.535
ATOM	59	HA	GLN	5	-2.960	4.918	-5.225	/	ATOM	60	CB	GLN	5	-0.990	5.762	-5.347
ATOM	61	HB2	GLN	5	-1.182	6.741	-5.787	/	ATOM	62	HB1	GLN	5	-0.123	5.850	-4.691
ATOM	63	CG	GLN	5	-0.672	4.769	-6.479	/	ATOM	64	HG2	GLN	5	0.239	5.091	-6.983
ATOM	65	HG1	GLN	5	-0.497	3.775	-6.066	/	ATOM	66	CD	GLN	5	-1.798	4.713	-7.513
ATOM	67	OE1	GLN	5	-2.122	5.699	-8.158	/	ATOM	68	NE2	GLN	5	-2.473	3.594	-7.678
ATOM	69	HE21	GLN	5	-3.143	3.613	-8.422	1	ATOM	70	HE22	GLN	5	-2.252	2.709	-7.177
ATOM	71	С	GLN	5	-1.844	4.183	-3.567	1	ATOM	72	0	GLN	5	-2.134	3.024	-3.851
A'I'OM	73	N	TRP	6	-1.269	4.528	-2.405	1	A'I'OM	74	HN	TRP	6	-1.046	5.510	-2.265
A'I'OM	75	CA	TRP	6	-0.961	3.579	-1.329	1	ATOM	76	HA	TRP	6	-0.177	2.907	-1.681
ATOM	11	CB UD1	TRP	6	-0.421	4.340	-0.10/	1	ATOM	/8	HB2	TRP	6	0.351	5.034	-0.442
ATOM	/9	HBI GD1	TRP	6	-1.222	4.935	0.328	',	ATOM	80	CG UD1	TRP	6	0.165	3.495	0.983
ATOM	20	CDI NE1	TRP	6	1.453	3.088	2 102	',	ATOM	8Z	HDI UF1	TRP	6	2.215	3.323	0.324
ATOM	00	CE 2	TRP	6	1.040	2.330	2.193	',	ATOM	04	пьі С72	TRP	e e	2.331	1 645	4 160
ATOM	00	U72	TRP	6	0.491	2.243	2.937	',	ATOM	00	C42	TKP	6	-1 109	1 761	4.109
ATOM	80	п42 цц2	TRP	6	-1 354	1 309	4./IU 5.630	',	ATOM ATOM	00 QN	СЛИ	TRP	6	-2 090	2 /69	3 971
ATOM	Q1	11112		6	-3 089	2 554	1 375	',	ATOM	90	CE3		6	-1 774	3 076	2 730
ATOM	93	HES	TRP	6	-2 524	3 637	2 204	1	ATOM	94	CD2	TRP	6	-0 477	2 979	2 189
ATOM	95	С	TRP	6	-2.181	2.706	-1.000	1	ATOM	96	0	TRP	6	-2.092	1,484	-1.080
ATOM	97	N	LEU	7	-3.343	3.318	-0.723	1	ATOM	98	HN	LEU	7	-3.341	4.335	-0.679
ATOM	99	CA	LEU	7	-4.599	2.588	-0.504	1	ATOM	100	HA	LEU	7	-4.435	1.855	0.283
ATOM	101	CB	LEU	7	-5.711	3.549	-0.057	1	ATOM	102	HB2	LEU	7	-5.768	4.372	-0.771
ATOM	103	HB1	LEU	7	-6.664	3.016	-0.085	1	ATOM	104	CG	LEU	7	-5.519	4.113	1.361
ATOM	105	HG	LEU	7	-4.538	4.578	1.436	/	ATOM	106	CD1	LEU	7	-6.582	5.182	1.620
ATOM	107	HD11	LEU	7	-6.490	5.978	0.881	/	ATOM	108	HD12	LEU	7	-7.578	4.742	1.553
ATOM	109	HD13	LEU	7	-6.446	5.609	2.613	/	ATOM	110	CD2	LEU	7	-5.641	3.034	2.445
ATOM	111	HD21	LEU	7	-6.596	2.515	2.352	/	ATOM	112	HD22	LEU	7	-4.832	2.310	2.358
ATOM	113	HD23	LEU	7	-5.583	3.491	3.432	/	ATOM	114	С	LEU	7	-5.062	1.783	-1.725
ATOM	115	0	LEU	7	-5.433	0.621	-1.556	/	ATOM	116	Ν	LYS	8	-5.033	2.370	-2.936
ATOM	117	HN	LYS	8	-4.681	3.317	-2.988	/	ATOM	118	CA	LYS	8	-5.410	1.686	-4.189
ATOM	119	HA	LYS	8	-6.470	1.437	-4.146	/	ATOM	120	CB	LYS	8	-5.129	2.581	-5.416
ATOM	121	HB2	LYS	8	-4.669	3.518	-5.117	1	ATOM	122	HB1	LYS	8	-4.416	2.079	-6.069
ATOM	123	CG	LYS	8	-6.376	2.861	-6.260	1	ATOM	124	HG2	LYS	8	-6.053	3.242	-7.230
A'I'OM	125	HG1	LYS	8	-6.893	1.917	-6.440	1	A'I'OM	126	CD	LYS	8	-7.354	3.856	-5.612
A'I'OM	127	HD2	LYS	8	-8.351	3.415	-5.642	1,	A'I'OM	128	HDI	LYS	8	-/.100	4.027	-4.564
A'I'OM	129	CE	LYS	8	-/.402	5.188	-6.374	1,	A'I'OM	120	HE2	LYS	8	-1.387	4.981	-/.448
AT:OM	ΤQT	пыт	цις	ð	-0.346	J.686	-0.14U	/	ATOM	132	ΝZ	LIS	8	-0.209	0.068	-0.UIJ

ATOM	133	H7.1	LYS	8	-6.230	6.185	-5.001	/	ΑΤΟΜ	134	H72	LYS	8	-5.390	5.633	-6.256
ATOM	135	1121	TVQ	8	-6 340	6 967	-6 470	',	ΛΨΟΜ	136	C	TVQ	g	-1 667	0 361	-1 348
ATOM	1 2 7	пд 3	TNO	0	-0.340	0.907	-0.470	',	ATOM	120		700	0	-4.007	0.301	-4.340
ATOM	13/		LIS	8	-5.265	-0.659	-4.680	1,	ATOM	138	IN	ASP	9	-3.371	0.378	-4.054
A'I'OM	139	HN	ASP	9	-2.967	1.285	-3.830	/	A'I'OM	140	CA	ASP	9	-2.453	-0.735	-4.249
ATOM	141	HA	ASP	9	-2.821	-1.362	-5.063	/	ATOM	142	CB	ASP	9	-1.095	-0.164	-4.675
ATOM	143	HB2	ASP	9	-0.700	0.408	-3.834	/	ATOM	144	HB1	ASP	9	-0.438	-1.018	-4.849
ATOM	145	CG	ASP	9	-1.033	0.731	-5.938	/	ATOM	146	OD1	ASP	9	0.117	0.964	-6.381
ATOM	147	002	ASP	9	-2 068	1 219	-6 449	1	ATOM	148	C	ASP	9	-2 375	-1 619	-2 977
ATOM	1/0	0022	ACD	â	-1 203	-2 052	_2 555	',	A TOM	150	N	CTV	10	_3 551	_1 057	-2.369
ATOM	149		ASE	10	-1.293	-2.052	-2.555	',	ATOM	150	IN COL	GLI	10	-3.551	-1.007	-2.300
ATOM	121	HN	GГI	ΤU	-4.358	-1.420	-2.802	1	ATOM	152	CA	GГI	ΤU	-3.804	-2.131	-1.224
ATOM	153	HA2	GLY	10	-4.879	-2.911	-1.161	/	ATOM	154	HA1	GLY	10	-3.334	-3.698	-1.401
ATOM	155	С	GLY	10	-3.355	-2.193	0.138	/	ATOM	156	0	GLY	10	-3.122	-2.970	1.067
ATOM	157	Ν	GLY	11	-3.227	-0.869	0.270	/	ATOM	158	HN	GLY	11	-3.376	-0.298	-0.555
ATOM	159	CA	GLY	11	-2 737	-0 203	1 473	1	ATOM	160	НА2	GLY	11	-2 689	0 869	1 297
ATOM	161	U 7 1	CTV	11	-3 /37	_0 379	2 207	',	A TOM	162		CIV	11	_1 324	-0.680	1 0 3 3
ATOM	1 ()	TAL	GLI	11	-3.437	-0.578	2.207	',	ATOM	102		DDO	10	-1.524	-0.000	2.033
ATOM	163	0	GLY	11	-0.408	-0.522	1.025	1	A'I'OM	164	N	PRO	12	-1.114	-1.294	3.014
ATOM	165	CD	PRO	12	-2.097	-1.577	4.052	/	ATOM	166	HD2	PRO	12	-2.930	-2.161	3.658
ATOM	167	HD1	PRO	12	-2.465	-0.642	4.475	/	ATOM	168	CG	PRO	12	-1.363	-2.380	5.127
ATOM	169	HG2	PRO	12	-1.500	-3.447	4.946	/	ATOM	170	HG1	PRO	12	-1.705	-2.114	6.128
ATOM	171	CB	PRO	12	0 104	-2 007	4 919	1	ATOM	172	HB2	PRO	12	0 776	-2 794	5 264
ATOM	173	ив1	DDO	12	0 316	-1 077	5 447	1	Λ.Π.Ο.Μ	174	C7	DDO	12	0 206	-1 768	3 109
ATOM	175	IIDI	DDO	10	0.017	1.077	2.227	΄,	ATOM	170	CA Q	DDO	10	0.200	1.700	0.400
ATOM	1/5	HA	PRO	12	0.947	-0.990	3.226	1	ATOM	1/6	C	PRO	12	0.658	-3.027	2.649
ATOM	177	0	PRO	12	1.840	-3.362	2.719	/	ATOM	178	Ν	SER	13	-0.226	-3.715	1.902
ATOM	179	HN	SER	13	-1.179	-3.375	1.806	/	ATOM	180	CA	SER	13	0.123	-4.976	1.229
ATOM	181	HA	SER	13	0.476	-5.670	1.992	/	ATOM	182	CB	SER	13	-1.100	-5.615	0.565
ATOM	183	HB2	SER	13	-0.875	-6.658	0.338	/	ΑΤΟΜ	184	HB1	SER	13	-1.955	-5.575	1.241
ATUM	185	00	SED	1 २	-1 /05	-4 951	-0 610	1		186	нс	SED	1 २	-2 155	-5 323	-1 055
777.014	107	00	OPD	10	1 0/7	-1 000	0.0105	',	71014	100	110	0 ED	1 2	2 000	_5 770	1.000
ATOM	TQ /	C	5 ĽK	13	1.24/	-4.833	0.195	1	ATOM	100	0	5 EK	13	2.009	-5.119	0.006
ATOM	189	N	SER	14	1.398	-3.656	-0.435	/	ATOM	190	HN	SER	14	0.720	-2.928	-0.249
ATOM	191	CA	SER	14	2.514	-3.382	-1.347	/	ATOM	192	HA	SER	14	2.661	-4.281	-1.947
ATOM	193	CB	SER	14	2.209	-2.258	-2.362	/	ATOM	194	HB2	SER	14	3.128	-1.700	-2.544
ATOM	195	HB1	SER	14	1 929	-2 719	-3 309	1	ATOM	196	OG	SER	14	1 199	-1 319	-2 013
ATOM	1 9 7	HC	SED	1 /	0 297	_1 715	-2 122	1	λπΟM	1 9 9	Ċ	QFD	1 /	3 861	-3 162	-0 634
ATOM	100	110	OBR	14	4 072	2 004	1 21 0	',	ATOM	200		OLIN	1 5	2.004	2 104	0.034
ATOM	199	0	SER	14	4.8/3	-2.994	-1.316	1	ATOM	200	IN	GLĭ	15	3.926	-3.184	0.708
A'I'OM	201	HN	GLY	15	3.070	-3.335	1.238	1	A'I'OM	202	CA	GLY	15	5.189	-3.215	1.460
ATOM	203	HA2	GLY	15	4.974	-3.490	2.492	/	ATOM	204	HA1	GLY	15	5.838	-3.984	1.038
ATOM	205	С	GLY	15	5.967	-1.894	1.482	/	ATOM	206	0	GLY	15	7.164	-1.894	1.760
ATOM	207	N	ARG	16	5.296	-0.772	1.193	/	ATOM	2.08	HN	ARG	16	4.307	-0.885	1.027
ΔΨΟΜ	209	CA	ARG	16	5 866	0 584	1 152	1	ΔΨΟΜ	210	НΔ	ARG	16	6 949	0 482	1 167
A TOM	202	CD	ADC	16	5.000	1 215	0 157	',	A TOM	210	1112.2	ADC	16	5 5 2 7	2 202	0 015
ATOM		CB	ARG	10	5.510	1.313	-0.157	1	ATOM	212	HBZ	ARG	10	5.537	2.393	0.015
A'I'OM	213	HBI	ARG	16	6.269	1.0/8	-0.904	1	A'I'OM	214	CG	ARG	16	4.142	0.927	-0.729
ATOM	215	HG2	ARG	16	4.207	-0.104	-1.082	/	ATOM	216	HG1	ARG	16	3.371	0.989	0.039
ATOM	217	CD	ARG	16	3.750	1.811	-1.908	/	ATOM	218	HD2	ARG	16	3.367	2.766	-1.549
ATOM	219	HD1	ARG	16	4.629	1.986	-2.531	/	ATOM	220	NE	ARG	16	2.731	1.112	-2.691
ATOM	221	HE	ARG	16	2.227	0.354	-2.233	1	ATOM	222	CZ	ARG	16	2.526	1,201	-3.990
A TOM	223	NU1	ADC	16	2 9 2 9	2 1 9 9	_1 735	',		224	UU11	ADC	16	3 173	2 030	-4 316
ATOM	225	NUL O	ANG	10	2.909	2.100	-4.735	',	ATOM	224	NUO	ANG	10	1 0 5	2.939	-4.510
ATOM	225	HHIZ	ARG	16	2.121	2.1//	-5./15	1	ATOM	226	NHZ	ARG	10	1.855	0.250	-4.560
ATOM	227	HH21	ARG	16	1.463	-0.467	-3.968	/	ATOM	228	HH22	ARG	16	1.369	0.469	-5.445
ATOM	229	С	ARG	16	5.419	1.411	2.368	/	ATOM	230	0	ARG	16	4.230	1.379	2.700
ATOM	231	Ν	PRO	17	6.328	2.183	3.001	/	ATOM	232	CD	PRO	17	7.762	2.227	2.735
ATOM	233	HD2	PRO	17	7.944	2.799	1.824	1	ATOM	234	HD1	PRO	17	8.190	1.228	2.649
ΔΨΟΜ	235	CG	PRO	17	8 389	2 939	3 929	1	ΔΨÓΜ	236	HG2	PRO	17	9 300	3 4 6 9	3 649
711011	200	1101	DDO	17	0.505	2.555	4 710	',	711011	200	002	DDO	17	7 202	2 000	4 272
ALOM	23/	ngi upo	FKU	1 7	0.392	2.214	4./19	΄,	ATOM	230	UB UD 1	FKU	1 7	1.203	2.092	4.3/2
A TOM	239	нв2	FKO	1/	1.335	4./99	3.16/	1	AU.N	24U	нвт	PRO	1/	1.3/1	4.139	5.431
ATOM	241	CA	PRO	17	5.991	3.117	4.075	/	ATOM	242	HA	PRO	17	5.737	2.523	4.950
ATOM	243	С	PRO	17	4.838	4.071	3.690	/	ATOM	244	0	PRO	17	4.922	4.705	2.635
ATOM	245	Ν	PRO	18	3.765	4.190	4.500	/	ATOM	246	CD	PRO	18	3.473	3.386	5.676
ATOM	247	HD2	PRO	18	4.335	3.305	6.337	/	ATOM	248	HD1	PRO	18	3.146	2.395	5.356
ATOM	249	CG	PRO	1 8	2 225	4 098	6 401	'/	ATOM	250	HG2	PRO	1 8	2 75/	4 814	7 100
V TOM	227	UC1	DPO	10	1 600	7.000	6 010	',		250	-102 0D	DPO	10	1 500	1.014	5 202
ALOM	2 J T 2	ng1	F KU	10	1 1 4 0	5.390	0.912	΄,	ATOM	202		F KU	10	T.JAQ	4.049	J.293
A.I.OW	203	нВZ	FKO	Tδ	1.142	5./64	5.6/2	1	A.I.OW	254	нвт	FKO	T β	0.829	4.209	4.865
ATOM	255	CA	PRO	18	2.674	5.131	4.239	/	ATOM	256	HA	PRO	18	2.259	4.904	3.260
ATOM	257	С	PRO	18	3.158	6.596	4.298	/	ATOM	258	0	PRO	18	3.839	6.967	5.255
ATOM	259	Ν	PRO	19	2.822	7.439	3.301	/	ATOM	260	CD	PRO	19	2.097	7.083	2.087
ATOM	2.61	HD2	PRO	19	1.094	6.723	2.320	1	ATOM	2.62	HD1	PRO	19	2.656	6.320	1.542
ATUM	263		PRO	1 9	2 015	8 350	1 2/0	1		261	HC2	PRO	10	1 072	8 861	1 422
777.014	200	TIC1	11/0	10	2.UIJ	0.002	170	',	777.014	201	11.GZ	T 1/0	10	2 1 0 / 2	0 105	1 754
ATOM	200	пGI	FKU	19	2.118	0.120	U.1/9	Τ,	ATOM	200	CB	FKU	19	3.184	9.193 0.070	1.754
A'I'OM	267	HB2	PRO	Т9	3.028	10.261	1.586	1	A'l'OM	268	HB1	PRO	Τ9	4.105	8.870	1.268
ATOM	269	CA	PRO	19	3.248	8.837	3.244	/	ATOM	270	HA	PRO	19	4.280	8.932	3.586
ATOM	271	С	PRO	19	2.357	9.737	4.121	/	ATOM	272	0	PRO	19	1.366	10.290	3.643
дтом	070	Ν	SER	20	2.714	9.886	5.401	/	ATOM	274	HN	SER	20	3.528	9.395	5.746
177 011	213	~~	SER	20	2.018	10.714	6.402	1	ATOM	276	HA	SER	20	1.288	11.345	5.899
ATOM	275	U.A						٢.								
ATOM ATOM	275 275 277	CR	SED	20	1 257	9 800	7 227		ΔΨΟΜ	278	нво	SED	20	Q1⊑	10 450	8 161
ATOM ATOM	275	CA CB	SER	20	1.257	9.822	7.387	/,	ATOM	278	HB2	SER	20	0.815	10.450	8.164
ATOM ATOM ATOM	275 275 277 279	CB HB1	SER SER	20 20	1.257	9.822	7.387	/	ATOM ATOM	278 280	HB2 OG	SER SER	20 20	0.815	10.450	8.164
ATOM ATOM ATOM ATOM	275 275 277 279 281	CB HB1 HG	SER SER SER	20 20 20	1.257 0.455 1.700	9.822 9.310 8.498	7.387 6.854 8.759		ATOM ATOM ATOM	278 280 282	HB2 OG C	SER SER SER	20 20 20	0.815 2.116 2.944	10.450 8.859 11.687	8.164 7.974 7.140
ATOM ATOM ATOM ATOM ATOM	273 275 277 279 281 283	CA CB HB1 HG OT1	SER SER SER SER	20 20 20 20	1.257 0.455 1.700 4.173	9.822 9.310 8.498 11.619	7.387 6.854 8.759 6.935	/////	АТОМ АТОМ АТОМ АТОМ	278 280 282 284	HB2 OG C OT2	SER SER SER SER	20 20 20 20	0.815 2.116 2.944 2.373	10.450 8.859 11.687 12.520	8.164 7.974 7.140 7.886

Residue	HN	H α (α 2, α 3) ^a	Ηβ2, Ηβ3 ^a	Others ^b		
Asp 1	Exch ^c	4.245	3.138, 2.963			
Ala 2	Exch	4.277	1.516			
Tyr 3	8.899	4.028	3.136 (both)	δ 7.106; ε 6.827		
Ala 4	8.348	4.120	1.578			
Gln 5	8.126	3.903	2.235, 2.155	γ, γ' 2.454, 2.384; δNH2 7.915, 7.068		
т (0.150	4 0 0 7	2 1 2 0 2 5 5 0	ε1 9.720; δ1 6.987; ε3 6.983;		
Irp 6	8.150	4.237	3.138, 3.558	ζ3 7.133; n 2 7.223; ζ2 7.187		
Leu 7	8.369	3.387	1.901, 1.363	γ 1.635; δ2, δ3 0.866, 0.995		
Lys 8	8.117	3.934	1.975, 1.900	γ2, γ3 1.513; δ2, δ3 1.656; ε2, ε3 2.972		
Asp 9	8.004	4.512	2.726, 2.910			
Gly 10	7.513	3.454, 4.172				
Gly 11	8.507	0.647, 3.128				
Pro 12		4.649	2.080, 2.541	γ2, γ3 2.176; δ2, δ3 3.842, 3.480		
Ser 13	7.732	4.486	3.925 (both)			
Ser 14	8.256	4.134	3.844, 3.465			
Gly 15	7.984	3.795, 4.296		γ, γ' 1.810, 1.652; δ, δ' 3.312, 3.222; ε 7.748		
Arg 16	8.177	5.086	1.918, 1.810			
Pro 17		4.771	1.785, 2.365	γ2, γ3 1.997; δ2, δ3 3.678, 3.888		
Pro 18		2.401	1.312, 0.213	γ2, γ3 1.657, 1.718; δ2, δ3 3.518		
Pro 19		4.343	1.997, 2.213	γ2, γ3 1.788, 1.853; δ2, δ3 2.936, 3.15 1		
Ser 20	7.968	4.162	3.783 (both)			
(P18A)-7	ГС10Ь					
Asp 1	Exch	4.256	3.146, 2.965			
	F 1	1.0.00				

Detailed assignments for four Trp-cage constructs. All assignment at pH 7, 280K: α - β - and δ - CH₂ shifts shown in bold are stereospecifically assigned.

a) T<u>C</u>10b

(1 107)-1				
Asp 1	Exch	4.256	3.146, 2.965	
Ala 2	Exch	4.269	1.514	
Tyr 3	8.917	4.025	3.125 (both)	δ 7.110; ε 6.829
Ala 4	8.357	4.101	1.571	
Gln 5	8.108	3.892	2.234, 2.143	γ, γ' 2.450, 2.376; δNH2 7.908, 7.067
Trp 6	8.166	4.230	3.101, 3.561	ε1 9.754; δ1 6.945; ε3 6.973; ζ3 7.112; τ₽ 7.224; ζ2 7.210
Leu 7	8.366	3.389	1.879, 1.354	γ 1.617; δ2, δ3 0.856, 0.978
Lys 8	8.084	3.929	1.973, 1.888	γ2, γ3 1.497; δ2, δ3 1.661; ε2, ε3 2.967
Asp 9	7.997	4.505	2.722, 2.927	
Gly 10	7.511	3.445, 4.158		
Gly 11	8.536	0.613, 3.139		
Pro 12		4.649	2.074, 2.554	γ2, γ3 2.175; δ2, δ3 3.838, 3.498
Ser 13	7.704	4.487	3.920 (both)	
Ser 14	8.269	4.114	3.835, 3.453	
Gly 15	7.994	3.773, 4.290		
Arg 16	8.173	5.081	1.913, 1.794	γ2, γ3 1.611; δ, δ' 3.298, 3.213; ε 7.760
Pro 17		4.508	1.760, 2.259	γ2, γ3 1.955; δ2, δ3 3.649, 3.841
Ala 18	8.346	1.988	0.303	
Pro 19		4.328	1.970, 2.213	γ2, γ3 1.798; δ2, δ3 2.844, 3.140
Ser 20	7.959	4.159	3.768 (both)	

c) (R16Nva)-TC9b

(11101114	, 10,0			
Asn 1	Exch	4.135	3.136, 3.020	γNH2 7.937, 7.142
Ala 2	Exch	4.259	1.478	
Tyr 3	8.792	4.100	3.089 (both)	δ 7.080; ε 6.817
Ala 4	8.310	4.104	1.518	
Gln 5	8.110	3.939	2.424, 2.173	γ2, γ3 2.173; δNH2 7.959, 6.999
Trp 6	8.151	4.348	3.196, 3.510	ε1 9.663; δ1 7.150; ε3 7.089; ζ3 7.207; η2 7.258; ζ2 7.266
Leu 7	8.322	3.443	1.781, 1.425	γ 1.581; δ2, δ3 0.852, 0.945
Lys 8	8.014	3.961	1.942, 1.888	γ2, γ3 1.472; δ2, δ3 1.654; ε2, ε3 2.967
Asp 9	8.064	4.568	2.692, 2.814	
Gly 10	7.576	3.541, 4.152		
Gly 11	8.218	1.591, 3.023		
Pro 12		4.541	2.042, 2.473	γ2, γ3 2.103; δ2, δ3 3.691, 3.207
Ser 13	7.971	4.421	3.921 (both)	
Ser 14	8.153	4.310	3.940, 3.684	
Gly 15	8.015	3.869, 4.208		
Nva 16	8.012	4.745	1.835, 1.734	γ2, γ3 1.435; δ 0.970
Pro 17		4.622	1.765, 2.200	γ2, γ3 2.003; δ2, δ3 3.668, 3.865
Pro 18		2.909	1.435, 0.790	γ2, γ3 1.736, 1.788; δ2, δ3 3.494, 3.534
Pro 19		4.352	1.946, 2.235	γ2, γ3 1.851; δ2, δ3 3.006, 3.215
Ser 20	8 0 2 3	4 175	3 789 (both)	

d) (S14T)-TC9b

(~) -				
Asn 1	Exch	4.141	3.188, 3.045	γNH2 7.957, 7.159
Ala 2	Exch	4.261	1.504	
Tyr 3	8.949	4.028	3.089 (both)	δ 7.088; ε 6.817
Ala 4	8.360	4.101	1.552	
Gln 5	8.112	3.927	2.188 (both)	γ2, γ3 2.441; δNH2 8.007, 7.037
Trp 6	8.133	4.267	3.169, 3.549	ε1 9.464; δ1 7.122; ε3 7.071; ζ3 7.089; η 7.238; ζ2 7.208
Leu 7	8.408	3.395	1.794, 1.446	γ 1.576; δ2, δ3 0.916, 0.963
Lys 8	8.113	3.916	1.956, 1.893	γ2, γ3 1.479; δ2, δ3 1.667; ε2, ε3 2.969
Asp 9	8.213	4.405	2.707, 2.707	
Gly 10	7.437	3.494, 4.260		
Gly 11	8.512	0.801, 3.156		
Pro 12		4.610	2.055, 2.507	γ2, γ3 2.181; δ2, δ3 3.489, 3.814
Ser 13	7.783	4.300	3.920 (both)	
Thr 14	8.099	4.133	4.239	γ 1.069; OHγ 5.009
Gly 15	7.972	3.876, 4.197		
Arg 16	8.287	4.921	1.890, 1.716	γ, γ' 1.695, 1.644; δ, δ' 3.358, 3.262; ε 7.561
Pro 17		4.667	1.760, 2.280	γ2, γ3 2.000; δ2, δ3 3.661, 3.868
Pro 18		2.496	0.538, 1.383	γ2, γ3 1.701, 1.803; δ2, δ3 3.483
Pro 19		4.346	1.914, 2.238	γ2, γ3 1.845; δ2, δ3 2.926, 3.163
Ser 20	8.011	4.171	3.782 (both)	
() TO 1		11.1 .1 .		11

(a) If the entry is bold, then the atoms are diastereotopically assigned and the first number is the lower IUPAC number (i.e. $\alpha 2$ or $\beta 2$). (b) Entries are diastereotopically assigned if noted by IUPAC numbering. (c) 'Exch' indicates unable to assign due to H_N exchange with solvent.

References

Fesinmeyer, R.M., Hudson, F.M. and Andersen, N.H. (2004) J. Am. Chem. Soc., 126, 7238-7243.

Fesinmeyer, R.M. (2005) Chemical Shifts Define the Structure and Folding Thermodynamics of Polypeptides, Ph. D. thesis, Chemistry Dept., University of Washington.

Lin, J.C., Barua, B. and Andersen, N.H. (2004) J. Am. Chem. Soc., 126, 13679-13684.

Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wuthrich, K. (1998) *Pure Appl. Chem.*, **70**, 117-142.

Naduthambi, D. and Zondlo, N.J. (2006) J. Am. Chem. Soc., 128, 12430-12431.