
1 Statistical Methods

1.1 Linear Model Approach to Compare Two Generations of Custom Microarray Chips for
Salamanders

Let Y g
ijk be the expression level for gene g on chip generation i (i = 1: Affy 001, i = 2: Affy 002), under

treatment j (j = 1: group D18 after thyroid treatment, j = 2: group D0 after thyroid treatment), from subject
(salamander) k(j) (k = 1, . . . , 3). The notation k(j) indicates that subjects are nested within treatments.

A gene-wise linear statistical model for the effect of chip generation and treatment on gene expression, taking
into account the subject (salamander) effect can be formulated as follows.

Y g
ijk = µg + αg

i + βgj + (αβ)gij +Dg
k(j) + εgijk (1.1)

Here, αg
i and βgj denote the fixed effects due to chip generation and treatment, respectively, whereas (αβ)gij is

the fixed two-way interaction between these effects. All fixed main effects and interactions are assumed to satisfy
the usual identifiability constraints. The subject effect Dg

k(j) due to variation between individual salamanders is
assumed to follow a normal distribution with variance σ2Dg , that is,Dg

k(j)i.i.d. ∼ N(0, σ2Dg). Finally, the random
measurement error is denoted by εgijki.i.d. ∼ N(0, σ2εg), and the random terms Dg

k(j) and εgijk are assumed to be
independent of each other. The superscript g indicates that models are fit separately for each gene.

The experimental design can be described as a two factor study with repeated measures, or as a split plot
design where the experimental units (subjects) are the salamanders. See the data schema in Table 1.

Table 1: Data Schema for Comparison of Two Chip Generations

Chip Generation
Treatment Subject old new difference

k = 1 Y g
111 Y g

211 Y g
211 − Y g

111 = Zg
11

j = 1 k = 2 Y g
112 Y g

212 Y g
212 − Y g

112 = Zg
12

k = 3 Y g
113 Y g

213 Y g
213 − Y g

113 = Zg
13

k = 4 Y g
121 Y g

221 Y g
221 − Y g

121 = Zg
21

j = 2 k = 5 Y g
122 Y g

222 Y g
222 − Y g

122 = Zg
22

k = 6 Y g
123 Y g

223 Y g
223 − Y g

123 = Zg
23

The hypothesis that treatment differences do not depend on chip generation can be formulated as no interac-
tion between the factors chip generation and treatment,H0 : (αβ)gij ≡ 0. It can be tested using the corresponding
analysis of variance F test, or equivalently using the differences Zg

jk = Y g
2jk − Y g

1jk.

Using differences to test for interaction.

The expected value of the differences Zg
jk is αg

2−α
g
1+(αβ)g2j−(αβ)g1j , and the expected value of the differences

of means Z̄g
1· − Z̄g

2· is (αβ)g21 − (αβ)g11 − (αβ)g22 + (αβ)g12, which equals zero under the null hypothesis of
no interaction effect. Under model (1.1), the variance of the difference of means is 4/3σ2εg , which can be
consistently estimated by (s2

Zg
1k

+ s2
Zg
2k

)/3, where s2
Zg
jk

is the sample variance of the differences Zg
jk in group j
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. We can thus test H0 : Z̄g
1· − Z̄g

2· = 0 in a two-sample t-test assuming equal variance in both treatment groups.
Alternatively, we can relax the assumption of equal error variances and estimate adjusted degrees of freedom df

using the Welch-Satterthwaite approximation

df =
[(s2

Zg
1k

+ s2
Zg
2k

)/3]2

[(s2
Zg
1k
/3)2 + (s2

Zg
2k
/3)2]/2

. (1.2)

Using analysis of variance F tests for interaction

The analysis of variance table for the design above is (see, e.g., Kutner, Nachtsheim, Neter, Li, “Applied Linear
Statistical Models, 5e”, McGraw-Hill, New York; Ch. 27) given in Table 2.

Table 2: Analysis of Variance Table for Two-Factor Experiment with Repeated Measures

Factor Sums of Squares df Error Term
Treatment SST = 6

∑
j(Ȳ·j· − Ȳ···)

2 1 Subjects
Subjects SSS = 2

∑
j

∑
k(Ȳ·jk − Ȳ·j·)

2 4
Chip Generation SSG = 6

∑
i(Ȳi·· − Ȳ···)

2 1 Error
Interaction SSTG = 3

∑
i

∑
j(Ȳij· − Ȳ·j· − Ȳi·· + Ȳ···)

2 1 Error
Error SSE =

∑
i

∑
j

∑
k(Yijk − Ȳij· − Ȳ·jk + Ȳ·j·)

2 4
Total SSTo =

∑
i

∑
j

∑
k(Yijk − Ȳ···)

2 11

According to the table, the test for interaction is performed by calculating Fobs as the ratio of SSTG and
SSE/4 and comparing it to an F -distribution with numerator and denominator degrees of freedom of 1 and 4,
respectively.

1.2 Estimating the proportion of false null hypotheses

Meinshausen and Rice (2006) suggest a procedure that estimates a lower bound for the proportion of false
hypotheses in a large set of independent hypothesis tests. Letting n denote the number of genes, and F (t) the
empirical distribution of p-values, the estimated proportion λ of false hypotheses is

λ̂ = sup
t∈(0,1)

F (t) − t−
√

1
2n log 2/α

1 − t
. (1.3)

If p-values are independent and uniformly distributed when their corresponding null hypotheses are true, then
the estimator is conservative (i.e., λ̂ < λ) with probability 1 − α.

1.3 Clustering of time series expression profiles

The expression data from Amby 002 were examined to identify genes that were differentially expressed be-
tween the three times points (D0, D8 and D18) using the statistical software SAS 9.2 (SAS Institute Inc, Cary,
NC, USA). Standard ANOVA F-tests were performed on genes for which the equal variance assumption was
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Figure 1: Histogram of p-values of t-tests for no treatment-by-generation interaction assuming equal variance

not rejected by Bartlett’s test at α = .01. Otherwise, differences between time points were tested using the
variance-weighted one-way ANOVA according to (Welch 1951). All following analyses were conducted using
the software R (version 2.9.2, 2009 The R Foundation for Statistical Computing). For genes that were identi-
fied as differentially expressed, post-hoc unequal-variance t-tests with degrees of freedom calculated according
to the Welch-Satterthwaite approximation were performed. F-tests and subsequent post-hoc comparisons were
conducted at α = 0.1, 0.05 and 0.01, final results are presented for α = 0.05. Based on the direction of signifi-
cant gene expression changes between time points, DEGs were classified into 9 expression profiles. For example,
an expression change between two consecutive time points can be described as up, down, or unchanged (i.e., no
significant difference). Thus, each gene was assigned to one of the 3 x 3 = 9 expression profiles (e.g. up up; up
down, up unchanged, etc).

2 Statistical Results

2.1 Using differences to test for interaction.

The distribution of p-values across 2601 genes for the two-sample test is shown in Figures 1 (assuming equal
variance) and 2 (allowing unequal error variances). In the first case, 192 genes out of 2601 have a significant
interaction at the α-level of 0.05. Using the Welch-Satterthwaite estimation of degrees of freedom, 130 genes
have a significant interaction. For the equal-variance t-tests, the Meinshausen-Rice procedure estimates 139
(5.3%) false hypotheses (i.e., true interactions) while it estimates 74 (2.9%) false hypotheses for the t-tests
modeling unequal variances.
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Figure 2: Histogram of p-values of t-tests for no treatment-by-generation interaction allowing for unequal vari-
ances
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