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Supplemental Methods I: Instructions
a. Instructions for the behavioural experiment

Part 1: printout instructions

Hi

Thanks for taking part in this experiment. It's an easy, two-level
computer game.

In each round, you will make a decision:

EITHER take a GAMBLE.

This option is called a gamble because you don't know what you
will get. You might be lucky or unlucky. If you are unlucky, you get
three electric shocks. If you are lucky, you get nothing. It's like a
lottery.

OR take one FIXED SHOCK. You will always get it.

So, which decision should you take? Well, it's easy if the gamble is
very risky. For example, when you are always unlucky and get the
three shocks, many people would choose one fixed shock instead.
It's also easy when you are almost always lucky, because then you
would want to choose the gamble. When your risk is inbetween, it's
more tricky, and it's up to you to decide: is it worth going for the
gamble or not?

But we won't tell you what your risk is. You need to find out! And
you can only find out when you choose the gamble a couple of
times.

In the first level of the computer game, there will be three balls with
different colours. Each colour means a different risk. And your task
is to find out, for each of the colours, whether you want to go for
the three-shock gamble or for the one fixed shock.

There will be more instructions on the screen to explain how you
are supposed to make your choice.
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Part 2: Instructions on the screen for the learning part

Screen 1

You know already what the game is about. Now we will explain what you will see,

and what you are supposed to do.

On each screen, a bowling ball will appear. There are three ball colours, and each ball

gives you a different gamble with a different risk. So you need to decide whether you

want the gamble or not.

Then someone plays the ball. You will see a grey shadow on the screen. This shadow

is a bit like a TIMER, or COUNTDOWN: it will disappear after 1.5 seconds. This is

exactly how much time you have to make your decision.

If you want the gamble, press the … key. If you want the fixed option, press the …

key.

Press SPACE to see what it will look like.

Example screen.

Screen 2

We will start with 5 training rounds without any electric shocks, so you can get used

to the task.

Press SPACE to start.

Screen 3

Now, level one of this game will start. There will be 2 blocks with 72 decisions in

each block, lasting around 8 minutes. Between the blocks, there is a break. Afterwards

you will enter level two.

Do you have any more questions?

If not, press SPACE to start.
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Part 3: Instructions on the screen for the experiment proper

Screen 1

You have done very well in level one. Now the game will change a little.

Imagine these balls are played by bowling ball players. The grey shadow always

appeared above the ball. Imagine this is a player always playing his ball straight on.

Now, new players enter the game. They are VERY BAD players. Their balls can

appear anywhere on the lane.

Press SPACE to see what it will look like.

Example screen.

Screen 2

This doesn''t bother you because both balls have the same colour. So it doesn''t matter

whether it was the left or the right ball that was being played. They give you exactly

the same gambles as in level one.

But often, two players with different balls will be present at each end of the lane - and

only one will play.

By seeing the grey shadow, you won''t know for sure which ball is being played, and

which gamble you are deciding upon.

Press SPACE to see what it will look like.

Example screen.

Screen 3

But at least you can guess which ball is being played. Have you noticed the colour

bars? They show that the ball is likely to land close to the players, where the bar

colour is very intense. Where it is fading out, far away from the player, it is unlikely

to land. Of course, once in a while it will still land here.

Press SPACE to see it again.

Example screen.

Screen 4
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We will start with 5 training rounds without any electric shocks, so you can get used

to the task.

Press SPACE to start.

Example screen.

Screen 5

Now, level two of this game will start. There will be 5 blocks with 72 decisions in

each block, lasting around 8 minutes. Between the blocks, there will be breaks.

Do you have any more questions?

If not, press SPACE to start.
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b: Instructions for the imaging experiment

All instructions were presented as printout

Part 1: Instructions for the learning part

This is a lottery ticket!

Take it!
You’re lucky.

dif

Remember, even on a good lo
row. Remember: you can fl

coinflip. But in the long run, y
you les

Thanks for taking part in this experiment. It's an easy, two-level
computer game.

In this game, you will be asked to make decisions about lotteries. These
lotteries involve electric shocks.

Here is how it works.
WIN Nothing happens.

You’re unlucky. You
get three electric

shocks.

LOSE
There are three different lotteries, with blue, orange and black tickets. They all
have the same payoffs - either you win and you avoid any electric shocks or you

lose and you receive 3 electric shocks. But your chances of winning and losing are

ferent with each lottery.

ttery you can lose. Sometimes even a few times in a
ip a coin five times and get five heads – it's still a
our payoffs even out. And then, a good lottery gives
s shocks than a bad lottery.
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Why should I want a lottery
where I can only lose and win

nothing?

You get this lottery for free!
You don't pay for it!

But I don't want it! Can I get
rid of it?

Yes you can. But it costs you
one shock to give it away.

You'll have to decide on each
round of this game whether
you want to keep the lottery

or to give it away.

So how do I make my
decision?

Now let's start with a very
bad lottery: if you (almost)
always lose and get three

shocks, then its best to give it
away and take one shock

instead. With a good lottery
you might (almost) always

win, therefore its best to keep
the lottery.

And when it's inbetween?

Well – thats up to you. You
have to use your own
judgements to try to

minimise the number of
shocks you recive
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No. Its like real life. You have
to learn by experience by

taking the lotteries a couple
of times. And it is really

important, and also in your
best interest, that you find
out properly, because level

two of this game depends on
this.

But I don't want to decide. I
won't press a key.

Ok. But if you don't press the
key in time, the computer will
always give you three shocks.

Now let's have a look at how
this works on the computer

screen.

... hmm ...!
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decide.

3. Here, you will be
shown which keys
to press for your

decision.

If you have
understand th

sessions of
Afterwards,
three lotter
1. This is the "lottery ticket",
represented by a bowling ball.

It can be blue, orange, or

black.

any questions, please ask. It's really im
e instructions properly. In this level on
72 rounds each. Between the sessions, t
it gets a bit more complicated. Howeve
ies will always be constant throughout
2. This is the timer.
After it first

appears on the
screen, you have 2

seconds time to
portant that you
e, there will be two
here is a break.
r, the odds of the
the whole game.
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Part 2: Instructions for the experiment proper

This would be a bad player. His ball can go almost
anywhere. Well, it's most likely to land close to the player,

but sometimes it goes right to the other side of the lane.
We call this player Mr Lefty because he stands on the left

of the lane, and that's where his ball lands most often.

1. This shows you what colour
bowling ball is being played at

the moment.

2. Imagine you are
looking down a

bowling lane. This
silhouette of the
ball shows where

the ball has landed
at the end of the
lane. Here it has
directly in the

middle. He's a good
player!

It seems you have done quite well in level one of this game. Now you will
proceed to level two, and it gets a bit more complicated. You will play

level two in the scanner, but before that, you can practise a bit.

This is how it works.



11 Bach et al.: The known unknowns
Supplemental Material

This is another bad player. We call this player Mr Righty
because he stands on the right.

Now both players line up to play– but only one plays. You see
the silhouette, but you can't see the true colour. Still you have to

decide whether you want this – unknown – lottery ball or not.
How can you decide? Remember it’s the colour of the ball that

determines your chances of winning or losing
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After you have made your decision (take the lottery or
not), you will be shown which ball it really was. This helps
you in the long run to figure out how these players play.

It's not difficult. The closer the shadow is to one of the balls, the more
likely it is to be this ball. You see the colour bars? The more intense
the colour is, the more likely it is that the ball causing the shadow at
this place has this colour. When the shadow is exactly in the middle –

you can't know for sure.
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So remember: you DON'T decide between the two balls.
You DON'T bet which ball it is. You simply say whether
you want this lottery or not. And to make this decision, it

will help you to figure out which lottery it might be.

Each of the two players can play any of the three ball
colours. So they might both have the same ball colour.
Then it's really easy: it's just the same as in level one.
That's because the odds of the lotteries never change!

Now you can practise a bit before we go into the scanner. During these
five training rounds, you won't get any electric shocks.
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Supplemental Methods II
a: Model comparison

(A) Assumptions

The following assumptions were made in this model comparison: (a) the value, and

utility, of not getting an electric shock, was assumed to be zero. (b) unless otherwise

stated, we assume the reduction of compound lotteries axiom according to expected

utility theory (von Neumann and Morgenstern, 1944), that is, two-stage bets can be

collapsed into a single stage bet. In this section we adopt the economic terminology

where a non-ambiguous gamble is called risky.

(B) Model comparison

Model parameters were individually optimised for each participant and each model,

using a maximum likelihood criterion and gradient search. The ensuing loglikelihood

was then penalised for model complexity by using the Akaike information criterion

(AIC) and Bayes information criterion (BIC). These result in two different

approximations to the Bayesian model evidence. Model evidence was then compared

on the group level in a random effects analysis, assuming that the true model might be

different between individuals. This was implemented using group level Bayesian

model selection (Stephan et al., 2009).

(C) Models accounting for a categorical effect of ambiguity

All of the following models are similar in how a choice is calculated from the net

shock probability. They differ in how the net shock probability is derived in

ambiguous and non-ambiguous trials, thus accounting for a categorical effect of

ambiguity.
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(0) Simple model, based on EU theory

This is a general model to describe how individuals compute expected utilities and

transform them into choices. It uses a power rule to compute utilities and a logit

function to generate choice probabilities. It does not take into account the position of

the ball and averages across the two possible outcome probabilities for ambiguous

trials, while for risky trials, this collapses to the unambiguously indicated outcome

probability. Thus, the model does not treat risky and ambiguous gambles differently

and follows the reduction of compound lotteries axiom.
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with

EU: expected utility

V: value (V = -1 for the fixed option and V = -3 for the gamble)

λ > 0, β > 0: subject-specific constants

(1) Baseline model, based on EU theory

As does the simple model, the baseline model does not treat risky and ambiguous

gambles differently and follows the reduction of compound lotteries axiom. In

contrast to the simple model, it takes shade positions into account. Outcome

probability calculations are based on the true, linear density distribution of shade

positions.
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with

EU: expected utility

V: value (V = -1 for the fixed option and V = -3 for the gamble)

λ > 0, β > 0: subject-specific constants

(2) Utility weighting model: A simple formulation of ambiguity aversion can be

derived by keeping the reduction of compound lotteries, but assuming that the value,

or utility, of choice options are different under ambiguity and risk (see Camerer, 1999

for an overview). With only one gamble value, this can be formulated by using

different risk parameters under ambiguity and risk in equation (2). Ambiguity

aversion would predict β1 < β2.

  nshockVpositionshockpEU )(*|

with

β1, 2 > 0: subject specific constants for risky, and ambiguous gambles

(3) Expected utility weighting model, additive: Ambiguity influences the expected

utility (EU) of the gamble by adding a subject-specific constant in equation (2).

Different from model (2), the effect of ambiguity does not depend on outcome

probability. Ambiguity aversion would predict a2 < 0.

  nashockVpositionshockpEU  )(|
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with

a1 = 0 (for risky gambles)

a2: subject specific constant (for ambiguous gambles)

(4) Expected utility weighting model, multiplicative: Similar to model (3),

ambiguity influences expected utility (EU) of the gamble by multiplying with a

subject-specific constant in equation (3). Given negative values and utilities,

ambiguity aversion would predict m2 > 1.

  nmshockVpositionshockpEU  )(|

with

m1 = 1 (for risky gambles)

m2: subject specific constant (for ambiguous gambles)

(5) Expected probability weighting model: In this model, the expected probability is

weighted in a non-linear manner (see Camerer, 1999 for an overview). The particular

functional form used here was previously applied to data from a neuroimaging

experiment by Hsu et al. (2005). In this formulation, ambiguity modifies expected

probability by exponentiating with a subject-specific constant in equation (2). Given

negative values and utilities, ambiguity aversion would predict pc2 < 1.

  )(| shockVpositionshockpEU npc


with

pc1 = 1 (for risky trials)

pc2: subject specific constant (for ambiguous trials)
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(6) Pessimistic weighting model: This model assumes that in calculating expected

utility from several possible outcome scenarios, some weight is put on the minimum

expected outcome, as prescribed by the α-Maxmin Utility function (Ghirardato et al.,

2004; applied to data from a neuroimaging experiment in Huettel et al., 2006). The

original α-Maxmin Utility function does not assign crisp second order probabilities

[SOPs] and assumes equal weight to worst and best outcome scenario under

ambiguity-neutral conditions. However, in the present experiment, SOPs were

imposed by the ball position and we showed in the first place that people do take this

into account when calculating expected probabilities (comparison of baseline model

against simple model). Therefore, the functional form of this model was adjusted so

that the second order probability imposed by the ball position was weighted by an

ambiguity constant. We call this a pessimistic weighting model, as ambiguity aversion

would predict a "pessimistic" underweighting of the better outcome scenario (and

ambiguity preference an "optimistic" underweighting of the worse outcome scenario).

Instead of equation (3), this model prescribes, with 0 ≤ α ≤ 2
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(i.e. ambiguity aversion) for α ≤ 1, and
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(i.e. ambiguity preference) for 1 < α ≤ 2

(7) Minimax model: This is a simpler form of model (6) and assumes that only the

minimum expected outcome is taken into account. This model necessarily predicts

ambiguity aversion. Thus, equation (3) collapses to
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 worsecolourshockpshockp |)( 

(8) SOP model: This model assumes unique SOPs but relaxes the reduction of

compound lottery axiom, as proposed by Segal (1987). Recall that EU theory asserts

that given the choice between a certain and a risky option with the same expected

value, a risk-averse decision maker will choose the certain option because his utility

function is concave and the expected utility is therefore lower for the risky option. A

similar idea applies in this model, where EU is computed separately for all possible

values of the first order probabilities p1…n, which are then separately weighted by a

mapping similar to an EU function, and these mappings are combined using the

assigned SOPs for each p. The particular functional form used here draws on the

model proposed by Klibanoff et al. (2005) which was simplified in the sense that it

only works on probabilities, not utilities, which in our experiment is equivalent to the

original model as only one non-zero utility value was used in the gamble. Thus,

equation (3) from the baseline model is modified, and – given negative values and

utilities - predicts ambiguity aversion if α < 0.
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(D) Models accounting for the effect of entropy

The following models all account for categorical ambiguity with the SOP mechanism

described in model C8. They differ in whether and how they additionally account for

entropy.
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Premise for the analysis was that medium entropy should have no effect on decisions

other than the general effect of ambiguity as opposed to risk. Thus, we drew on the

winning model from (C), i.e. SOP model (8), and modified it to accommodate the

effect of H. The zero effect of a medium entropy was ensured by using the quantity

 HmeanHH '

which was set to zero for risky gambles.

(1) SOP model without accounting for entropy: Model C8 was used as a reference

for the model comparison.

(2) Utility weighting model: This model assumed that the risk preference parameter

in equation (2) was varied on ambiguous trials by entropy. Given negative values and

utilities, aversion of entropy would predict β1 > 0.

'
10 H 

β0 < 0: individual risk parameter

β1: scaling factor of the effect of entropy.

(3) Expected utility weighting model, additive: This model assumed that entropy

changes the EU in equation (2) by adding a variable amount. Given negative values

and utilities, entropy aversion would predict a < 0.

  aHshockVpositionshockpEU  ')(| 
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(4) Expected utility weighting model, multiplicative: This model assumed that

entropy changes the EU in equation (2) by multiplying with a variable amount. Given

negative values and utilities, entropy aversion would predict m > 0.

   mHshockVpositionshockpEU  '1)(| 

(5) Expected probability weighting model: In this model, the expected probability

is weighted in a non-linear manner. Given negative values and utilities, entropy

aversion would predict pc > 1.

    )(|
'1

shockVpositionshockpEU
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(6) Pessimistic weighting model: Based on the pessimistic weighting model from C,

this model assumes that the second order probability imposed by the ball position was

weighted by entropy, such that when entropy is above average, the worse outcome is

overweighted, and vice versa when entropy is below average.

Instead of equation (3), this model prescribes:
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for H’α > 1, and

(7) SOP model: This model assumes that the first order probability weighting

function (C8) accounts for both ambiguity aversion, and entropy aversion. The

probability weighting function is modified by entropy:
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Supplemental Results

Figure S1

Estimated BOLD responses for the clusters shown in figure 3 of the main text. Left:

Estimated responses in the left posterior parietal cortex to non-ambiguous and to

ambiguous gambles. Right: Estimated effect of negative entropy on BOLD responses,

for a large bilateral midline cluster as well as for a separate cluster in the left parietal

cortex.
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Figure S2

In the imaging experiment, we measured BOLD responses to outcome probability

(and thus, negative utility and value) in the non-ambiguous trials (panels A and B).

With three objective outcome probabilities (0.2, 0.5, 0.8), the possible outcome

probabilities in ambiguous trials could either have a range of 0.3 (0.2 – 0.5 and 0.5 –

0.8) or 0.6 (0.2 – 0.8). Stronger BOLD responses during trials with lower outcome

probability range than during trials with higher outcome probability range were

observed in the cluster shown in panel C. The clusters shown in panels A and B

survived whole-brain correction at a cluster-level threshold of p < .05 and a voxel-

level threshold of p < .001. The cluster shown in panel C survived small volume

correction at p < .05 around a sphere with 15 mm radius around peak coordinates

reported previously (Huettel et al., 2006).
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Table S1

Blood oxygen level dependent (BOLD) responses to entropy of the ball silhouette,

and surprise of the ball outcome within ambiguous trials. All clusters are reported

cluster-level corrected for family-wise error (FWE) and with p < .05, one cluster at

p = 0.06 (marked with *).

Brain regions

Brodmann

area of

local

maxima

Hemi-

sphere

Voxel

number

Voxel t

score

Montreal Neurological Institute brain

template coordinates of local maxima

Responses to low second-order uncertainty (i.e. entropy) within ambiguous gambles after controlling for the surprise of

the outcome

Posterior cingulate, superior

parietal lobule, postcentral

gyrus, parahippocampal gyrus,

precuneus, middle temporal

gyrus, angular gyrus, superior

& middle occipital gyrus,

30 & 31 Bilateral 4925 7.39 16, -58, 6; -20, -62, 8; 24, -56, 10

Responses to high surprise at the time point of the outcome

Superior parietal lobule 7 & 12 Left 191 5.63 -24, -60, 42; -32, -64, 50; -36, -54, 42

Responses to low surprise at the time point of the outcome

Parahippocampal gyrus 19 Right 358 7.17 24, -58, -4; 4, -62, -4; 12, -70, -4

Posterior cingulate, caudate

tail
29 Right 130 6.00 18, -38, 20; 8, -38, 14

Caudate nucleus Right 96 5.18 34, -38, 2
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