Supporting Information

for

Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold-triethynylphosphine complex: construction of azepine frameworks by 7-exo-dig cyclization

Hideto Ito, Tomoya Harada, Hirohisa Ohmiya and Masaya Sawamura*

Address: Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Email: Masaya Sawamura* - sawamura@sci.hokudai.ac.jp

Experimental procedures and NMR spectra for 4a-o and 5a, b, g-m, o, 6a, n, 7, 8, 9, 10.

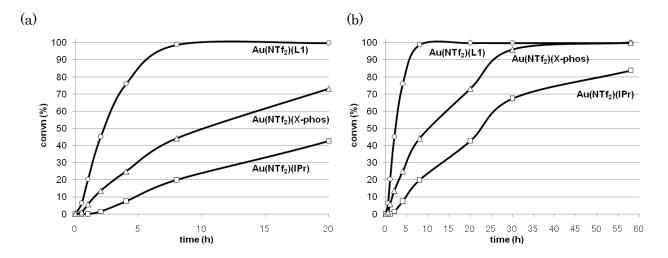
Table of contents

1. General	S2
2. Time-conversion profiles for the gold-catalyzed cyclization of 4a with L1, X-Phos and IPr	
ligands	S2
3. Preparation of substrates	S3
4. Cyclization products	S7
5. References	S10

^{*} Corresponding author

1. General

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for ¹H NMR, 75.4 MHz for ¹³C NMR and 121.4 MHz for ³¹P NMR. Chemical shift values for ¹H, ¹³C and ³¹P NMR are referenced to Me₄Si, the residual solvent resonances and external aqueous 85% H₃PO₄ respectively. Mass spectrometry (JEOL JMS-FABmate for EI-MS, JEOL JMS-700TZ for ESI-MS) and elemental analysis were performed at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. Triethynylphosphine ligand L1 was prepared according to the reported procedure [1]. AgNTf₂ was prepared from Ag₂O and HN(SO₂CF₃)₂ [2]. AgSbF₆, AgBF₄ and AgOTf were purchased from Aldrich. Phosphine ligands, PPh₃ and P(OPh)₃ were commercially available. Gold complexes [AuCl(ligand)] were synthesized by the reported method. MS4A was purchased from Junsei Chemical Co. Anhydrous solvents used in the synthesis of materials were purchased from Kanto Chemical Co. and used without further purification. Anhydrous CH₂Cl₂ and DCE were purchased from Kanto Chemical Co. and Aldrich, respectively, and these were degassed and dried with MS4A before use. Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, CHCl₃, 3.5 mL/min, UV and RI detectors). TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. PTLC purification was performed on commercial glass plates bearing 1-mm layer of Merck Silica gel 60F₂₅₄. All reactions were carried out under argon atmosphere unless otherwise noted.


2. Time-Conversion Profiles for the Gold-Catalyzed Cyclization of 4a with L1, X-Phos and IPr Ligands

[Au(NTf₂)(**L1**)] (2.6 mg, 1.0 µmol, 0.5 mol %) was placed in a NMR tube equipped with a screw cap. Separately, the alkynyl sulfonamide **4a** (55 mg, 0.20 mmol) was weighed into a micro tube. The tubes were placed in a glove box. The gold complex and **4a** were dissolved in degassed dry CDCl₃ (0.25 mL), in their respective tubes. Then $Cl_2CHCHCl_2$ as an internal standard was added to a solution of the gold complex. A solution of **4a** was transferred to a solution of the catalyst with a syringe. The remaining solutions in the micro tube and the syringe were washed with CH_2Cl_2 (2 × 0.25 mL) and added to the reaction mixture. The tube was sealed with a cap equipped with a Teflon-coated silicon rubber septum. The tube was taken from the glove box, and was shaken at room temperature. The results with the corresponding ligands are shown in Table S1 and Figure S1.

Table S1: Time–Conversion/Yield Profiles for the Gold-Catalyzed Cyclization of 4a with L1, X-Phos and IPr Ligands.

			time							
entry	Au cat.		0.5 h	1 h	2 h	4 h	8h	20 h	38 h	58 h
1	Au(NTf ₂)(DTBM-P)	conv.	6%	20%	45%	76%	99%	100%	-	-
		yield	6%	18%	40%	67%	88%	89%	_ -	-
2	Au(NTf ₂)(IPr)	conv.	0%	0%	1%	7%	20%	43%	67%	88%
		yield	0%	0%	1%	7%	18%	38%	60%	84%
3	Au(NTf ₂)(X-phos)	conv.	1%	6%	14%	25%	44%	73%	96%	100%
		yield	1%	5%	12%	22%	39%	65%	85%	88%

 $^{^{\}it a}$ Conversions and yields were determined by $^{\rm 1}{\rm H~NMR}$

Figure S1: Time–Conversion Profiles for the Gold-Catalyzed Cyclization of 4a with L1, X-Phos and IPr Ligands. (a) the reactions between 0 to 20 h. (b) the reactions between 0 to 58 h.

3. Preparation of Substrates

Alkynyl sulfonamides **4a**, **4b** and alkynyl amine **4f** were prepared by the alkylation of TsNH₂, NsNH₂ or PMBNH₂ (2.0 eq) with the 7-iodo-1-trimethylsilyl-1-heptyne (1.0 eq) in the presence of CsCO₃ (1.2 eq) in DMF at 80 °C to 120 °C, followed by the deprotection of TMS group by K₂CO₃ (1.2 eq) in MeOH at rt.

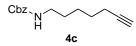
Alkynyl carbamates **4c**, **4d** and **4e** were prepared by the protection of 6-heptyn-1-yl amine hydrochloride (1.0 eq) with N,N-dimethylaminopyridine (0.10 eq), Et_3N (3.0 eq) and CbzCl or Ac_2O or $(Boc)_2O$ (2.0 eq) in CH_2Cl_2 at rt.

 α -Substituted alkynyl sulfonamides **4g**, **4h**, **4i** and **4o** were synthesized by the aziridine opening reactions of the corresponding *N*-tosyl aziridines (1.0 eq) with alkyl cuprates (1.5 eq) prepared from ^tBuLi (6.0 eq), 5-iodo-1-trimethylsilyl-1-pentyne (3.0 eq) and CuCN (1.5 eq) in THF at -78 °C, followed by the deprotection of TMS group by K_2CO_3 (1.2 eq) in MeOH at rt.

 β -Disubstituted alkynyl sulfonamides **4j**, **4k**, **4l** and benzyl sulfonamide **4m** were prepared by the reaction of the corresponding alkynyl amines (1.0 eq) with TsCl (1.5 eq), Et₃N (2.0 eq) and Me₃NHCl (0.1 eq) in CH₂Cl₂ at 0 °C. These amines were synthesized by the reductions of corresponding nitriles (1.0 eq) with LiAlH₄ (2.0 eq) in Et₂O at reflux.

N-Tosylbenzamide **4n** was prepared by the reaction of *N*-tosyl isocyanate (1.0 eq) and *o*-alkynyl benzoic acid (1.0 eq) in the presence of $E_{t_3}N$ (1.0 eq) in THF at reflux.

6a was synthesized by the reaction of *N*-tosyl ε -caprolactam (1.0 eq) with Cp₂TiMe₂ (5.0 eq) in toluene at 70 °C [3].

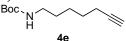

N-(6-Heptyn-1-yl)-4-toluenesulfonamide (4a)

White solid. Mp = 63.9–64.3 °C. ¹H NMR (CDCl₃) δ 1.32–1.53 (m, 6H), 1.94 (t, J = 2.7 Hz, 1H), 2.14 (td, J = 6.9, 2.7 Hz, 2H), 2.44 (s, 3H), 2.95 (q, J = 6.9 Hz, 2H), 4.34 (br s, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H). ¹³C NMR (CDCl₃) δ 17.95, 21.29, 25.34, 27.59, 28.75, 42.80, 68.35, 84.05, 127.06, 129.68, 136.85, 143.34. Anal. Calcd for $C_{14}H_{19}NO_2S$: C, 63.36; H, 7.22; N, 5.28%. Found: C, 63.27; H, 7.27; N, 5.27%.

N-(6-Heptyn-1-yl)-2-nitrobenzenesulfonamide (4b)

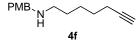
Pale yellow solid. Mp = 70.9–72.7 °C. 1 H NMR (CDCl₃) δ 1.36–1.62 (m, 6H), 1.94 (t, J = 2.7 Hz, 1H), 2.16 (td, J = 6.6, 2.7 Hz, 2H), 3.12 (q, J = 6.6 Hz, 2H), 5.27 (br s, 1H), 7.72–7.80 (m, 2H), 7.84–7.92 (m, 1H), 8.11–8.19 (m, 1H). 13 C NMR (CDCl₃) δ 18.01, 25.33, 27.59, 28.94, 43.57, 68.51, 83.98, 125.45, 131.10, 132.88, 133.65, 133.70, 147.82. Anal. Calcd for $C_{13}H_{16}N_{2}O_{4}S$: C, 52.69; H, 5.44; N, 9.45%. Found: C, 52.62; H, 5.30; N, 9.42%.

Benzyl 6-heptyn-1-ylcarbamate (4c)



Colorless oil. ¹H NMR (CDCl₃) δ 1.36–1.60 (m, 6H), 1.94 (t, J = 2.7 Hz, 1H), 2.19 (td, J = 6.6, 2.7 Hz, 2H), 3.20 (q, J = 6.3 Hz, 2H), 4.75 (br s, 1H), 5.10 (s, 2H), 7.28–7.39 (m, 5H). ¹³C NMR (CDCl₃) δ 18.09, 25.58, 27.82, 29.28, 40.76, 66.48, 68.38, 84.21, 126.96, 128.10, 128.52, 136.64, 156.47. HRMS (ESI⁺) Calcd for C₁₅H₁₉NO₂Na [M+Na]⁺: m/z 268. 13066. Found: m/z 268.13080.

N-(6-Heptyn-1-yl)-acetamide (4d)


Colorless oil. ¹H NMR (CDCl₃) δ 1.30–1.62 (m, 6H), 1.95 (t, J = 2.7 Hz, 1H), 1.98 (s, 3H), 2.20 (td, J = 6.6, 2.7 Hz, 2H), 3.26 (q, J = 6.6 Hz, 2H), 5.46 (br s, 1H). ¹³C NMR (CDCl₃) δ 17.56, 22.28, 25.33, 27.40, 28.27, 38.76, 68.07, 83.63, 170.28. HRMS (ESI⁺) Calcd for C₉H₁₅NONa [M+Na]⁺: m/z 176.10459. Found: m/z 176.10457.

tert-Butyl 6-heptyn-1-ylcarbamate (4e)

Colorless oil. ¹H NMR (CDCl₃) δ 1.44 (s, 9H), 1.38–1.66 (m, 6H), 1.95 (t, J = 2.7 Hz, 1H), 2.20 (td, J = 6.9, 2.7 Hz, 2H), 3.12 (q, J = 6.9 Hz, 2H), 4.52 (br s, 1H). ¹³C NMR (CDCl₃) δ 18.10, 25.66, 27.87, 28.23, 29.40, 40.27, 68.29, 78.89, 84.22, 156.03. HRMS (ESI⁺) Calcd for C₁₂H₂₁NO₂Na [M+Na]⁺: m/z 234.14645. Found: m/z 234.14614.

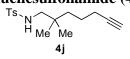
N-(6-Heptyn-1-yl)-4-methoxybenzylamine (4f)

Colorless oil. ¹H NMR (CDCl₃) δ 1.31 (br s, 1H), 1.36–1.62 (m, 6H), 1.94 (t, J = 2.4 Hz, 1H), 2.15–2.50 (m, 2H), 2.62 (t, J = 6.9 Hz, 2H), 3.72 (s, 2H), 3.80 (s, 3H), 6.87 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.12, 26.26, 28.16, 29.38, 49.01, 53.30, 55.65, 68.14, 84.40, 113.68, 129.23, 132.65, 158.59. HRMS (ESI⁺) Calcd for C₁₅H₂₂NO [M+H]⁺: m/z 232.16959. Found: m/z 232.16932.

(S)-N-(7-Octyn-2-yl)-4-toluenesulfonamide (4g)

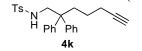
White solid. Mp = 79.8-81.0 °C. ¹H NMR (CDCl₃) δ 1.03 (d, J = 6.6 Hz, 3H), 1.20–1.46 (m, 6H),

1.93 (t, J = 2.7 Hz, 1H), 2.09 (td, J = 6.6, 2.7 Hz, 2H), 2.43 (s, 3H), 3.25–3.36 (m, 1H), 4.18 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.05, 21.39, 21.57, 24.42, 27.82, 36.74, 49.72, 68.35, 84.17, 127.09, 129.71, 138.24, 143.32. Anal. Calcd for $C_{15}H_{21}NO_2S$: C, 64.48; H, 7.58; N, 5.01%. Found: C, 63.27; H, 7.79; N, 4.99%.


(R)-N-(2-Methyl-8-nonyn-3-yl)-4-toluenesulfonamide (4h)

White solid. Mp = 61.5-63.8 °C. ¹H NMR (CDCl₃) δ 0.79 (d, J = 6.9 Hz, 6H), 1.10-1.45 (m, 6H), 1.66-1.82 (m, 1H), 1.92 (t, J = 2.7 Hz, 1H), 2.04 (td, J = 6.9, 2.7 Hz, 2H), 2.43 (s, 3H), 3.03-3.13 (m, 1H), 4.25 (br s, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H). ¹³C NMR (CDCl₃) δ 17.46, 18.03, 18.18, 21.40, 24.60, 27.99, 31.08, 59.03, 68.34, 84.17, 127.11, 129.64, 138.57, 143.24. HRMS (ESI⁺) Calcd for $C_{17}H_{25}NO_2SNa$ [M+Na]⁺: m/z 330.14982. Found: m/z 330.14923.

(R)-N-(1-Phenyl-7-octyn-2-yl)-4-toluenesulfonamide (4i)


White solid. Mp = 49.6-51.7 °C. ¹H NMR (CDCl₃) δ 1.20–1.52 (m, 6H), 1.92 (t, J = 2.4 Hz, 1H), 2.06 (td, J = 6.3, 2.4 Hz, 2H), 2.42 (s, 3H), 2.68 (d, J = 6.3 Hz, 2H), 3.42 (sextet, J = 6.9 Hz, 1H), 4.22 (d, J = 8.1 Hz, 1H), 6.98–7.03 (m, 2H), 7.19–7.30 (m, 5H), 7.66 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.05, 21.39, 24.29, 27.81, 33.62, 41.16, 54.67, 68.37, 84.19, 126.67, 127.07, 128.59, 129.55, 129.70, 137.06, 137.81, 143.30. HRMS (ESI⁺) Calcd for C₂₁H₂₅NO₂SNa [M+Na]⁺: m/z 378.14982. Found: m/z 378.14953.

N-(2,2-Dimethyl-6-heptyn-1-yl)-4-toluenesulfonamide (4j)

White solid. Mp = 74.3–75.0 °C. ¹H NMR (CDCl₃) δ 0.85 (s, 6H), 1.23–1.33 (m, 2H), 1.33–1.45 (m, 2H), 1.97 (t, J = 2.7 Hz, 1H), 2.12 (td, J = 6.9, 2.7 Hz, 2H), 2.44 (s, 3H), 2.69 (d, J = 6.9 Hz, 2H), 4.37 (br s, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.68, 21.27, 22.64, 24.63, 33.43, 38.19, 52.56, 68.32, 84.34, 127.00, 129.65, 136.89, 143.23. Anal. Calcd for C₁₆H₂₃NO₂S: C, 65.49; H, 7.90; N, 4.77%. Found: C, 65.37; H, 7.93; N, 4.75%.

N-(2,2-Diphenyl-6-heptyn-1-yl)-4-toluenesulfonamide (4k)

White solid. Mp = 150.0–152.2 °C. ¹H NMR (CDCl₃) δ 1.06–1.18 (m, 2H), 1.91 (t, J = 2.7 Hz, 1H), 2.03 (td, J = 7.2, 2.7 Hz, 2H), 2.15–2.24 (m, 2H), 2.43 (s, 3H), 3.55 (d, J = 6.6 Hz, 2H), 3.85 (t, J = 6.6 Hz, 1H), 7.04–7.09 (m, 4H), 7.17–7.32 (m, 8H), 7.62 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.46, 21.32, 22.77, 35.46, 49.23, 49.28, 68.47, 83.94, 126.63, 127.06, 127.63, 128.39, 129.71, 136.29, 143.48, 144.77. HRMS (ESI†) Calcd for C₂₆H₂₇NO₂SNa [M+Na]†: m/z 440.16547. Found: m/z 440.16518.

N-[{1-(4-Pentyn-1-yl)cyclohexyl}methyl]-4-toluenesulfonamide (4l)

White solid. Mp = 85.8–87.5 °C. ¹H NMR (CDCl₃) δ 1.16–1.52 (m, 14H), 2.00 (t, J = 2.7 Hz, 1H), 2.11 (td, J = 6.6, 2.7 Hz, 2H), 2.44 (s, 3H), 2.75 (d, J = 6.9 Hz, 2H), 4.36 (t, J = 6.9 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.81, 21.07, 21.42, 21.68, 25.92, 33.36, 33.96, 35.57, 48.88, 68.54, 84.62, 127.17, 129.78, 136.93, 143.43. Anal. Calcd for C₁₉H₂₇NO₂S: C, 68.43; H, 8.16; N, 4.20%. Found: C, 68.26; H, 8.43; N, 4.22%.

N-{2-(3-Butyn-1-yl)benzyl}-4-toluenesulfonamide (4m)

White solid. Mp = 89.8–90.2 °C. 1 H NMR (CDCl₃) δ 1.98 (t, J = 2.7 Hz, 1H), 2.44 (td, J = 7.2, 2.7 Hz, 2H), 2.45 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 4.13 (d, J = 5.7 Hz, 2H), 4.63 (br s, 1H), 7.13–7.31 (m, 4H), 7.34 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.1 Hz, 2H). 13 C NMR (CDCl₃) δ 19.86, 21.41, 30.30, 44.75, 69.50, 83.58, 126.94, 127.29, 128.49, 129.71, 129.77, 129.77, 129.82, 133.81, 136.49, 138.91, 143.66. Anal. Calcd for $C_{18}H_{19}NO_{2}S$: C, 68.98; H, 6.11; N, 4.47%. Found: C, 68.99; H, 6.07; N, 4.60%.

2-(3-Butyn-1-yl)-N-tosylbenzamide (4n)

White solid. Mp = 101.0-104.0 °C. ¹H NMR (CDCl₃) δ 1.96 (t, J = 2.4 Hz, 1H), 2.41 (td, J = 6.9, 2.4 Hz, 2H), 2.46 (s, 3H), 2.86 (t, J = 6.9 Hz, 2H), 7.20–7.33 (m, 2H), 8.03 (d, J = 8.4 Hz, 2H). The peak of N-H (1H) was not found. ¹³C NMR (CDCl₃) δ 20.10, 21.56, 31.51, 69.70, 83.54, 126.82, 127.56, 128.51, 129.68, 131.21, 131.76, 132.51, 135.49, 139.83, 145.28, 166.45. Anal. Calcd for $C_{18}H_{17}NO_3S$: C, 66.03; H, 5.23; N, 4.28%. Found: C, 66.08; H, 5.32; N, 4.34%.

N-{*trans*-2-(4-Pentyn-1-yl)cyclohexyl}-4-toluenesulfonamide (40)

White solid. Mp = 117.0–117.9 °C. 1 H NMR (CDCl₃) δ 0.85–1.21 (m, 7H), 1.22–1.38 (m, 1H), 1.39–1.53 (m, 1H), 1.54–1.70 (m, 2H), 1.74–1.87 (m, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.98–2.08 (m, 2H), 2.43 (s, 3H), 2.68–2.84 (m, 1H), 4.19 (d, J = 8.7 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H). 13 C NMR (CDCl₃) δ 18.35, 21.32, 24.78, 24.89, 25.16, 30.49, 31.18, 34.28, 42.26, 56.96, 68.18, 84.45, 126.97, 129.59, 138.57, 143.11. HRMS (ESI⁺) Calcd for C₁₈H₂₅NO₂SNa [M+Na]⁺: m/z 342.14982. Found: m/z 342.14962.

N-(5-Hexyn-1-yl)-4-toluenesulfonamide (7)

White solid. Mp = 61.8-63.5 °C. ¹H NMR (CDCl₃) δ 1.46–1.68 (m, 4H), 1.93 (t, J = 2.4 Hz, 1H),

2.16 (td, J = 6.6, 2.4 Hz, 2H), 2.45 (s, 3H), 2.97 (q, J = 6.6 Hz, 2H), 4.45 (br s, 1H), 7.32 (d, J = 8.1Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 17.61, 21.31, 25.01, 28.23, 42.44, 68.67, 83.70, 127.06, 129.71, 136.80, 143.39. Anal. Calcd for C₁₃H₁₇NO₂S: C, 62.12; H, 6.82; N, 5.57%. Found: C, 62.16; H, 6.88; N, 5.54%.

N-(7-Octyn-1-yl) -4-toluenesulfonamide (9)

White solid. Mp = 52.8-54.2 °C. ¹H NMR (CDCl₃) δ 1.20–1.40 (m, 4H), 1.42–1.52 (m, 4H), 1.93 $(t, J = 2.7 \text{ Hz}, 1\text{H}), 2.15 \text{ (td}, J = 6.9, 2.7 \text{ Hz}, 2\text{H}), 2.94 \text{ (q}, J = 6.9 \text{ Hz}, 2\text{H}), 4.37 \text{ (br s, 1H)}, 7.32 \text{ (d}, J = 6.9 \text{ Hz}, 2\text{H}), 4.37 \text{ (br s, 1H)}, 7.32 \text{ (d}, J = 6.9 \text{ Hz}, 2\text{H}), 4.37 \text{ (br s, 2H)}, 4.37 \text{ (br s,$ = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.11, 21.41, 25.85, 27.97, 28.04, 29.33, 43.07, 68.29, 84.39, 127.18, 129.78, 137.05, 143.50. Anal. Calcd for C₁₅H₂₁NO₂S: C, 64.48; H, 7.58; 5.01%. Found: C, 64.49; H, 7.61; 5.02%.

4. Cyclization Products

7-Methyl-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (5a)

White solid. Mp = 65.8–66.1 °C. ¹H NMR (CDCl₃) δ 1.30–1.40 (m, 2H), 1.73 (quint, J = 5.7 Hz, 2H), 1.84 (q, J = 6.3 Hz, 2H), 1.96 (s, 3H), 2.42 (s, 3H), 3.41 (t, J = 5.4 Hz, 2H), 5.51 (t, J = 6.9 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃) δ 21.14, 21.78, 23.53, 25.86, 29.49, 49.38, 126.36, 126.84, 129.27, 138.89, 139.33, 142.87. Anal. Calcd for C₁₄H₁₉NO₂S: C. 63.36; H. 7.22; N. 5.28%. Found: C. 63.29; H. 7.16; N. 5.21%.

7-Methyl-1-nosyl-2,3,4,5-tetrahydro-1*H*-azepine (5b)

Pale yellow solid. Mp = 93.7-95.7 °C. ¹H NMR (CDCl₃) δ 1.41–1.52 (m, 2H), 1.77–1.90 (m, 2H), 1.83 (s, 3H), 2.01–2.11 (m, 2H), 3.54 (t, J = 5.4 Hz, 2H), 5.63 (t, J = 6.6 Hz, 1H), 7.61–7.77 (m, 3H), 8.03–8.08 (m, 1H). ¹³C NMR (CDCl₃) δ 21.70, 23.59, 26.27, 30.51, 50.48, 124.12, 127.91, 129.99, 131.68, 133.47, 135.13, 138.72, 148.21. Anal. Calcd for C₁₃H₁₆N₂O₄S: C, 52.69; H, 5.44; N, 9.45%. Found: C, 52.44; H, 5.29; N, 9.30%.

(S)-2,7-Dimethyl-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (5g)

White solid. Mp = 101.2-102.5 °C. ¹H NMR (CDCl₃) δ 1.11 (d, J = 7.2 Hz, 3H), 1.28–1.42 (m, 2H), 1.46–1.58 (m, 1H), 1.70–1.91 (m, 3H), 1.96 (s, 3H), 2.42 (s, 3H), 4.18–4.31 (m, 1H), 5.58–5.68 (m. 1H), 7.28 (d, J = 7.8 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H), 13 C NMR (CDCl₃) δ 17.01, 18.24, 21.38, 24.04, 26.35, 34.72, 51.91, 127.19, 127.97, 129.52, 134.85, 139.17, 142.94. Anal. Calcd for C₁₅H₂₁NO₂S: C, 64.48; H, 7.58; N, 5.01%. Found: C, 64.48; H, 7.82; N, 4.81%.

(R)-2-Isopropyl-7-methyl-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (5h)

White solid. Mp = 108.1-109.0 °C. ¹H NMR (CDCl₃) δ 0.84 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.3 Hz, 3H), 1.13–1.34 (m, 2H), 1.64–1.74 (m, 2H), 1.75–1.90 (m, 2H), 2.04 (s, 3H), 2.42 (s, 3H), 3.60–3.69 (m, 1H), 5.54–5.61 (m, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 8.1 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.93, 19.47, 21.40, 21.54, 24.03, 26.94, 28.68, 30.65, 64.00, 127.51, 128.27, 129.36, 135.12, 138.82, 142.90. HRMS (EI⁺) Calcd for $C_{17}H_{25}NO_2S$ [M]⁺: m/z 307.16060. Found: m/z 307.16042.

(R)-2-Benzyl-7-methyl-1-tosyl-2,3,4,5-tetrahydro-1H-azepine (5i)

Colorless viscous oil. 1 H NMR (CDCl₃) δ 1.31–1.44 (m, 2H), 1.44–157 (m, 1H), 1.62–1.84 (m, 1H), 1.84–1.96 (m, 1H), 1.99 (s, 3H), 2.42 (s, 3H), 2.77–2.85 (m, 1H), 4.28–4.38 (m, 1H), 5.63–5.72 (m, 1H), 7.05–7.10 (m, 2H), 7.17–7.30 (m, 5H), 7.73 (d, J = 8.3 Hz, 2H). 13 C NMR (CDCl₃) δ 18.58, 21.39, 24.03, 26.40, 31.18, 37.77, 57.89, 126.40, 127.29, 128.00, 128.51, 129.08, 129.52, 135.01, 138.60, 138.76, 143.04. HRMS (ESI $^{+}$) Calcd for C₂₁H₂₅NO₂SNa [M+Na] $^{+}$: m/z 378.14982. Found: m/z 378.14954.

3,3,7-Trimethyl-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (5j)

White solid. Mp = 62.9–64.4 °C. ¹H NMR (CDCl₃) δ 0.99 (s, 6H), 1.16–1.23 (m, 2H), 1.75 (s, 3H), 2.05 (q, J = 6.0 Hz, 2H), 2.42 (s, 3H), 3.17 (s, 2H), 5.38 (t, J = 6.3 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H). ¹³C NMR (CDCl₃) δ 20.56, 21.37, 21.72, 26.94, 34.64, 37.65, 59.37, 125.73, 127.08, 129.50, 139.36, 139.83, 142.95. Anal. Calcd for C₁₆H₂₃NO₂S: C, 65.49; H, 7.90; N, 4.77%. Found: C, 65.41; H, 7.96; N, 4.78%.

3,3-Diphenyl-7-methyl-1-tosyl-2,3,4,5-tetrahydro-1H-azepine (5k) and 2-Methylene-6,6-diphenyl-1-tosylazepane (6k) [5k/6k = 92/8]

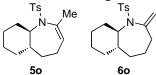
White solid. Mp = 152.1–152.4 °C. ¹H NMR of **5k** (CDCl₃) δ 1.94 (br s, 5H), 2.31–2.41 (m, 2H), 2.39 (s, 3H), 4.40 (s, 2H), 5.15 (t, J = 4.8 Hz, 1H), 7.10–7.30 (m, 12H), 7.35 (d, J = 8.4 Hz, 2H) {**6k**: δ 4.16 (s, 2H), 4.69 (s, 1H), 4.84 (s, 1H), 7.65 (d, J = 8.1 Hz, 2H)}. ¹³C NMR of **5k** (CDCl₃) δ 21.37, 22.31, 23.65, 33.14, 49.64, 57.71, 125.14, 126.03, 126.91, 127.83, 128.08, 129.33, 137.29, 138.51, 142.73, 147.30. HRMS (EI⁺) Calcd for C₂₆H₂₇NO₂S [M]⁺: m/z 471.17625. Found: m/z 417.17611.

9-Methyl-8-tosyl-8-aza-9-spiro[5.6]dodecene (51)

White solid. Mp = 73.6–74.8 °C. ¹H NMR (CDCl₃) δ 1.22–1.50 (m, 12H), 1.77 (s, 3H), 1.97–2.08 (m, 2H), 2.42 (s, 3H), 3.27 (s, 2H), 5.35 (t, J = 6.6 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H). ¹³C NMR (CDCl₃) δ 20.76, 21.04, 21.28, 21.37, 26.29, 34.06, 35.12, 36.40, 59.11, 125.44, 127.00, 129.49, 139.13, 139.80, 142.91. Anal. Calcd for C₁₉H₂₇NO₂S: C, 68.43; H, 8.16; N, 4.20%. Found: C, 68.45; H, 8.37; N, 4.18%.

3-Methyl-2-tosyl-2,5-dihydro-1*H*-benzo[*c*]azepine (5m)

5m


White solid. Mp = 109.0–112.8 °C. ¹H NMR (CDCl₃) δ 2.07 (s, 3H), 2.30 (s, 3H), 3.31 (br d, J = 3.6 Hz, 2H), 4.82 (s, 2H), 5.18–5.24 (m, 1H), 6.77 (d, J = 6.9 Hz, 1H), 6.98 (d, J = 8.1 Hz, 2H), 7.06–7.21 (m, 4H), 7.25 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃) δ 21.27, 23.86, 33.96, 54.11, 118.65, 126.33, 127.14, 127.68, 128.93, 129.27, 129.33, 135.76, 136.93, 137.33, 137.79, 142.60. Anal. Calcd for C₁₈H₁₉NO₂S: C, 68.98; H, 6.11; N, 4.47%. Found: C, 69.04; H, 6.26; N, 4.47%.

3-Methylene-2-tosyl-2,3,4,5-tetrahydro-1*H*-1-benzo[*c*]azepinone (6n)

6n

White solid. Mp = 126.0-128.1 °C. ¹H NMR (CDCl₃) δ 2.45 (s, 3H), 2.94 (br s, 4H), 5.09 (s, 1H), 5.14 (s, 1H), 7.13 (d, J = 7.5 Hz, 1H), 7.24–7.32 (m, 1H), 7.35–7.43 (m, 3H), 7.64 (dd, J = 7.8, 1.2 Hz, 1H), 8.08 (J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 21.59, 29.95, 37.84, 120.57, 127.32, 128.92, 129.25, 129.57, 129.92, 132.61, 133.42, 136.05, 138.88, 141.97, 145.15, 168.36. HRMS (ESI⁺) Calcd for C₁₈H₁₇NO₃SNa [M+Na]⁺: m/z 350.08214. Found: m/z 350.08177.

trans-2-Methyl-1-tosyl-4,5,5a,6,7,8,9,9a-octahydro-1H-benzo[b]azepine (50) and trans-2-methylene-1-tosyldecahydro-1H-benzo[b]azepine (60) [50/60 = 98/2]

White solid. Mp = 106.6–109.9 °C. ¹H NMR of **50** (CDCl₃) δ 0.85–1.44 (m, 9H), 1.56–2.05 (m, 4H), 2.06 (s, 3H), 2.42 (s, 3H), 3.25–3.36 (m, 2H), 5.40–5.46 (m, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H) {**60** δ 4.83 (s, 1H), 5.17 (s, 1H)}. ¹³C NMR of **50** (CDCl₃) δ 21.41, 23.88, 25.24, 25.99, 26.15, 27.64, 33.84, 35.30, 40.51, 65.15, 126.99, 127.18, 129.43, 133.18, 138.88, 142.89. Anal. Calcd for $C_{18}H_{25}NO_2S$: C, 67.67; H, 7.89; N, 4.38%. Found: C, 67.76; H, 8.14; N, 4.17%.

2-Methyleneazepane (6a)

Pale yellow oil. This compound slowly decomposed to the polar unidentified materials at room temperature. 1 H NMR (CDCl₃) δ 1.44–1.56 (m, 4H), 1.69–1.80 (m, 2H), 2.05–2.13 (m, 2H), 2.42 (s, 3H), 3.51–3.57 (m, 2H), 4.82 (s, 1H), 4.98 (s, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H). 13 C NMR (CDCl₃) δ 21.31, 27.71, 27.94, 28.38, 34.63, 48.86, 110.03, 127.41, 129.39, 136.72, 143.20, 146.13. HRMS (ESI $^{+}$) Calcd for C₁₄H₁₉NO₂SNa [M+Na] $^{+}$: m/z 288.10287. Found: m/z 288.10312.

6-Methyl-1-tosyl-1,2,3,4-tetrahydropyridine (7)

8

White solid. Mp = 77.9–78.9 °C. 1 H NMR (CDCl₃) δ 1.33–1.43 (m, 2H), 1.86–1.92 (m, 2H), 2.11 (br q, J = 1.8 Hz, 3H), 2.43 (s, 3H), 3.59–3.65 (m, 2H), 5.00 (br s, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H). 13 C NMR (CDCl₃) δ 20.22, 21.30, 22.33, 22.94, 46.71, 113.64, 126.91, 129.62, 134.07, 137.53, 143.26. HRMS (ESI⁺) Calcd for C₁₄H₁₉NO₂SNa [M+Na]⁺: m/z 288.10287. Found: m/z 288.10312. Anal. Calcd for C₁₃H₁₇NO₂S: C, 62.12; H, 6.82; N, 5.57%. Found: C, 62.18; H, 6.87; N, 5.54%.

(E)- or (Z)-8-Methyl-1-tosyl-1,2,3,4,5,6-hexahydroazocine (10)

White solid. E/Z configuration was not determined. Mp = 80.3–80.8 °C. ¹H NMR (CDCl₃) δ 1.43–1.65 (m, 6H), 1.68 (s, 3H), 2.10–2.19 (m, 2H), 2.42 (s, 3H), 3.30 (t, J = 4.8 Hz, 2H), 5.71 (td, J = 8.1, 1.2 Hz, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃) δ 18.45, 21.38, 25.91, 26.93, 26.97, 28.80, 49.18, 127.37, 129.59, 133.04, 133.81, 138.41, 143.06. Anal. Calcd for C₁₅H₂₁NO₂S: C, 64.48; H, 7.58; N, 5.01%. Found: C, 64.51; H, 7.61; N, 5.01%.

5. Reference

- [1] Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. **2006**, 128, 16486–16487.
- [2] Williams, D. B; Stoll, M. E.; Scott, B. L.; Costa, D. A.; Oldham, W. J. Jr. *Chem. Commun.* **2005**, 1438–1440.
- [3] Martínez, I.; Howell, A. R. Tetrahedron Lett. **2000**, 41, 5607–5611.