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Data.Our wildlife reservoir data are from the PreBalkhash plague
focus of southeastern Kazakhstan (74–78°E and 44–47°N). Each
spring (May and June) and autumn (September and October)
during the period 1949–1995, gerbil density estimates, together
with flea counts, were done on a number (1–78, median = 54) of
different squares in a 20 × 20-km grid (1). The consistency of
these data is indeed very high, because they were obtained
through a rather strict regime. Kazakhstan is the last Soviet
Republic that declared independence (December 16, 1991).
Moreover, Kazakhstan enjoys relatively stable political and so-
cioeconomic developments since independence (2). Because the
host densities are spatially autocorrelated over large areas, most
likely through large-scale climate forcing (3), we suspect that the
monitoring data from the PreBalkhash focus capture essential
variation over much of Kazakhstan. By developing a series of
statistical models, we find support for this view, because we find
a clear correspondence between the plague/host dynamics of the
PreBalkhash focus and the fluctuations in the annual number of
human plague cases aggregated across Kazakhstan.
Here, we use the mean of measurements for each season,

thereby eliminating smaller-scale spatial variations and mea-
surement errors. The high degree of spatial correlation (3) means
that this large scale still retains most of the temporal variation.
The human plague cases are recorded annually and aggregated

spatially.

Next Generation Matrix for the Basic Reproduction Number. The
basic reproduction number R0, the expected number of new cases
generated by a typical infected individual in a totally suscep-
tible population in a demographic steady state, is defined as the
dominant eigenvalue of the so-called next generation matrix for
systems with a finite number of different types of infected in-
dividuals (details and algorithms are given in ref. 4). The basic
reproduction number is a threshold quantity in the natural dy-
namic sense, meaning that a steady state of a dynamical system
changes stability when the value of the quantity passes the
threshold. In the rodent–flea–human system, we, in principle,
have three types of infected individuals, and the next generation
matrix M is a 3 × 3 matrix. The elements mij of M are defined as
the expected number of new cases of type i caused by an infected
individual of type j. If we number the types as 1 for fleas, 2 for
rodents, and 3 for humans, we obtain (Eq. S1)

M ¼
0
@ 0 m12 0

m21 0 0
m31 m32 m33

1
A: [S1]

Here, m12 = KF, the number of fleas produced by one infected
rodent at carrying capacity (where we assume that all fleas on
a rodent become infected during the rodent’s infectious period)
(5). Effectively, this number of fleas contacting a rodent is
multiplied by the probability per unit of time that a rodent in-
fects a flea and the average duration of the infectious period in
the rodent. Because fleas are assumed to be attached to the
rodent for a longer period, we assume, basically, that each flea
becomes infected during that time (i.e., that the product of the
transmission probability per unit of time and the time period of

transmission is one). The element m21 ¼ ð1− e− aKRÞβR
1
dF

equals

the number of rodents infected by one infected flea; it is the
product of the probability that a flea successfully finds a rodent

when searching for a host, the transmission rate to rodents, and
the average time that the flea is infectious. We have chosen the
elements m13 and m23 to be zero, signifying that humans infect
neither fleas nor rodents, respectively, consistent with the view
that human cases are the result of spillover from the wildlife
system but that there is no spillback from humans. Furthermore,
we only regard bubonic plague and neglect the pneumonic form
(6). Consequently, we assume that m33 = 0, meaning that hu-
mans do not directly infect other humans. We have already as-
sumed that fleas do not directly infect other fleas and that
rodents do not directly infect other rodents.
The consequence of these reasonable assumptions is that the

R0 for the natural system does not depend on the human host.
The dominant eigenvalue of M is given by (Eq. S2)

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k12k21

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KFβRð1− e− aKR Þ

dF

s
: [S2]

This constitutes the threshold quantity for the plague outbreaks in
the wildlife system. Note that, as is to be expected, the quantity
depends on the rodent and flea population size, the transmission
rate (from flea to rodent), and the average length of the infectious
period (in fleas). It can also be derived by specifying a full
compartmental transmission model, which has indeed been done
by Keeling and Gilligan in ref. 7. In the text, we use the derived
quantity Reff, depending on time and interpreted as the effective
reproduction number of the wildlife system, with the fixed car-
rying capacities KF and KR replaced by the respective actual
population sizes Bt and Rt (in the text). In case of a mosquito-
borne infection like malaria in humans, the traditional expres-
sion for R0 is also the product of two terms, one number char-
acterizing the number of mosquitoes infected by one human and
the other number characterizing the number of humans infected
by one mosquito [this finding was introduced by Macdonald (8),
and an example is given in the work by Bailey (ref. 9, pp. 94–
100)]. This finding arises in the same way from a 2 × 2 next
generation matrix having mosquitoes and humans as its types.
The expression from Macdonald (8) is actually the square of the
R0 from the next generation matrix, because the generations of
vectors and hosts alternate so that taking the expression without
the square root actually amounts to looking two generations
ahead. Although the mathematical approach is the same, the
difference in biology between a mosquito- and flea-based system
causes the resulting expressions to be different.
It is clear from the above, however, that this threshold quantity

cannot be expected to explain the second epidemiological
threshold that we have statistically observed in the analysis of the
human cases of plague in Kazakhstan. The elements m31 andm32
are also not likely to be very relevant, because they are based on
homogeneous mixing of humans with the wildlife system.

The Threshold Quantity λ. One might imagine that, in other time
periods than the 1949–1995 period under study, there was a dif-
ferent distribution for the contact parameter c and hence, a dif-
ferent distribution for λ. For example, in the period before our
study period, there was likely to have been more activity of no-
madically living people in the region in Kazakhstan (before more
fixed agricultural communities became established, usually out-
side the plague-affected areas). Exposure and contacts are,
therefore, likely to have been distributed differently from what
we assume here, leading more frequently to a situation, perhaps,
where λ is above threshold. Certainly, there were many more
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human cases in the period before control. This drop is, of course,
influenced (or reasonably caused) by the control measures that
were taken after 1949, but there may also be a visible decline in
the frequency of outbreaks in humans before that period, co-
inciding with the change in nomadic activity.

Statistical Modeling. Seasonal wildlife reservoir model. We test the
significance of the assumption of heteroscedasticity and de-
pendence among observations defined in the structure of the
variance–covariance matrix Σ. We find that, when the spring and
fall forces of infection are both in the upper regime, Σ is of the
form (S3)

where if the infectious-flea force in the spring season is in the
lower regime, the variance–covariance matrix Σ of the condi-
tional distribution would have dimension reduced by one (i.e.,
reduced by the number of seasons in the lower regime). Hence,
the rodent growth rate model, the flea burden model, and the
change in infectious-flea force model have different variances
across models and seasons. Moreover, the rodent growth rates
are correlated across seasons and uncorrelated with the flea
burden and change in infectious-flea force models. The flea
burden is correlated with the change in infectious-flea force
within each season. The flea burden and the change in in-
fectious-flea force are not correlated across seasons.
The model is fitted using the gnls function in the nlme package

of the R software (10). Fig. 1A summarizes the results of our
analysis, where Rsu

t is the summer rainfall at time t. The subscript
t − 0.5 refers to the previous season [i.e., if the response is in the
spring (fall) of year t, then t − 0.5 refers to the fall of last year
(spring of current year)]. The subscripts t − 1, t − 1.5, and t − 2
are similarly defined. Table 1 summarizes the maximum likeli-
hood estimates of the parameters in the model along with their
asymptotic SEs and asymptotic 95% confidence intervals. The
plots of the normalized residuals vs. the fitted values in the ro-
dent growth rate model, the flea burden model, and the change
in infectious-flea force model reported in Fig. S2A do not in-
dicate any significant heteroscedastic patterns. The normal
probability plots of the normalized residuals in Fig. S2B do not
show any significant departure from the assumption of normality.
The plots of the empirical autocorrelation function, displayed in
Fig. S3, indicate that the normalized residuals behave like un-
correlated noise, which was expected under the above correla-
tion model. The observed time series, along with the fitted
counterparts, are displayed in Fig. S4 for each of the three
models (rodent growth rate, log flea burden, and change in
infectious-flea force). Clearly, the fitted values are close to their
observed counterparts in each of the three models.
We justify the use of the seasonal threshold model for the

wildlife plague data by comparing the deviance of our fittedmodel
with the deviance of a simple multivariate linear model in which

the threshold is removed. The fitted model (i.e., the threshold
model with seasonal delay and threshold) is compared with the
simple linear multivariate model by assessing the difference in
deviance when simulating from the associated smaller model
based on a parametric bootstrap size of 1,000. Note that the
asymptotic null χ2 distribution for comparing changes in de-
viance may be invalid, because the threshold parameter is absent
under the null hypothesis of no threshold effects (11). We find
that the observed deviance difference between the simpler model
and our fitted seasonal threshold model is 79.94 compared with
the bootstrap 95% quantile of the deviance difference given by
12.28. Similarly, our fitted seasonal threshold model is compared

with a model with the same delay and threshold in the spring and
fall, where the delay is estimated to be 1.5. We find that the
observed deviance difference between our fitted seasonal
threshold model and the nonseasonal threshold model is 27.50
compared with the bootstrap 95% quantile of the deviance dif-
ference given by 11.42. Hence, our seasonal threshold wildlife
reservoir model clearly provides a better fit to the data.
Human–plague model.We justify the use of the threshold model for
the human plague data by comparing the deviance of our fitted
model with the deviance of a simple generalized linear model in
which the threshold is removed. We fitted a simple generalized
linear model with a log link function to the human plague data.
The resulting deviance of the simple generalized linear model
without a threshold effect is 135.5. The fitted human plague
model [i.e., generalized threshold model (GTM) with a deviance
of 60.62] is compared with the simple generalized linear model
by assessing the difference in deviance when simulating from the
associated smaller model based on a parametric bootstrap size of
1,000. Note that the asymptotic null χ2 distribution for comparing
changes in deviance may be invalid, because the threshold
parameter is absent under the null hypothesis of no threshold
effects (11). We find that the observed deviance difference be-
tween the simpler model and our human plague GTM is 74.9
compared with the bootstrap 95% quantile of the deviance dif-
ference given by 6.91. Hence, our human plague GTM clearly
provides a better fit to the human plague data.
To ensure that the threshold variable used in the fitted model,

namely the lag-1 minimum of spring and fall average flea density,
is a good choice, we fitted the model by considering a number
of different threshold variables and assuming the same set of
covariates. Table S2 reports the corresponding Akaike Infor-
mation Criterion (AIC) of each model normalized to account
for slight variation in the sample size because of different lag
structure. The models considered in Table S2 may not be com-
pared directly with respect to the AIC, because they are based on
different number of observations. Therefore, we compare these
models in Table S2 by their normalized AIC [normalized AIC
(NAIC) = AIC/effective number of observations]. Note that the
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fitted model in Fig. 2A has an NAIC of 3.64, which is the smallest
value among the models considered in Table S2.
The human–plague–threshold model is fitted using a likeli-

hood-based estimation procedure (12) with these details. The
threshold parameter r and the delay parameter d in this threshold
model are estimated by minimizing the NAIC. More specifically,
for a fixed integer delay d between 0 and 2, the search for the
threshold is done based on a grid search between the 10th and
90th percentiles of the threshold variable t − d. Then, for given
estimates of the delay and threshold, the associated generalized
linear submodels in each (lower and upper) regime are fitted using
the glm function in R (13). Using this estimation approach, the
optimal delay d and its corresponding threshold r, for which the
NAIC is smallest, are estimated to be 1 y and 148.71, respectively.
The maximum likelihood estimates of the remaining parameters
in the human–plague model are summarized in Table 1.
Model diagnostics are used to check the adequacy of the fitted

model. In particular, the autocorrelation function (ACF) plot of
the standardized residuals, reported in Fig. S5, suggests that the
standardized residuals are serially uncorrelated. The standard-
ized residuals are, indeed, independent over time based on
the nonparametric method of runs test, with a P value of 0.64.
The good agreement between observed and fitted values (on the
original scale) of human plague cases in Fig. 2E attests to the
adequacy of the model.

Forecasting Using the Full Plague Ecoepidemiological Model. We use
the fitted multivariate wildlife reservoir model, described in

Fig. 1A, to forecast the rodent growth rate, the flea burden, and
the infectious-flea force. To illustrate the empirical forecasting
performance of this multivariate model, we fitted the model
using the seasonal observations corresponding to the years
1949–1990 and reserved the seasonal observations corresponding
to 1991–1995 for forecasting evaluation. In addition, the fore-
casting procedure is carried up to year 2003. A parametric
bootstrap procedure is used to compute the forecasts and their
prediction limits based on 1,500 iterations. Each point forecast is
the sample average, and the lower and upper 95% prediction
limits correspond to the 2.5 and 97.5 percentiles, respectively.
The forecasts, along with their 95% interval forecasts displayed
in Fig. S6, show a strong seasonal pattern and closely track the
observed data.
We then use the fitted human–plague model, described in Fig.

2A, to forecast the number of human plague cases. The biannual
point forecasts of the lag-1 infectious-flea force, the lag-1 flea
burden, the lag-1 flea density, and the lag-1 rodent density,
corresponding to the years 1991–2003, are used in the fore-
casting procedure of the number of annual human plague cases.
A parametric bootstrap procedure is used to compute the fore-
casts and their prediction limits based on 3,000 bootstrap repli-
cations. Each point forecast is the sample average, and the lower
and upper 95% prediction limits correspond to the 2.5 and
97.5 percentiles, respectively. The forecasts, along with their
95% interval forecasts displayed in Fig. 2E, closely track the
observed data.
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Fig. S1. (A) Plots of the infectious-flea force vs. the rodent density at different lags (lag = 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0). The red circles correspond to the
spring season, and the black circles correspond to the fall season. (B) Plots of the rodent growth rate vs. the flea density at different lags (lag = 1.0, 1.5, and 2.0).
The red circles correspond to the spring season, and the black circles correspond to the fall season.
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Fig. S2. (A) Plots of the normalized residuals vs. the fitted values for the rodent growth rate, the flea burden, and the change in infectious-flea force models.
(B) Normal probability plots of the normalized residuals for the rodent growth rate, the flea burden, and the change in infectious-flea force models.
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Fig. S3. Plots of the empirical autocorrelation function for the rodent growth rate, the flea burden, and the change in infectious-flea force models.

Fig. S4. Time series plots for the rodent growth rate (Left), the flea burden (Center), and the change in infectious-flea force (Right) models. The time series
indicated in black are observed; the time series in green correspond to the fitted values.
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Fig. S5. ACF plot of the standardized residuals for the human plague model.
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Fig. S6. Out of sample point and interval forecasts for the rodent growth rate (Upper Left), the (log) flea burden (Upper Right), and the infectious-flea force
(Lower). The forecast origin is the fall season of 1990. The solid black line shows the actual observations, the solid red line shows the point forecasts, and the
dashed black lines show the 95% interval forecasts.
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Table S1. Notations and variables used in the full ecoepidemiological model summarized in Figs. 1A and 2A

Variable Description Definition

Seasonal reservoir model
Sub- and superscripts s, f Refer to spring and fall seasons, respectively
t − d Time t − d (e.g., t − 0.5 refers to the previous

season and t − 1 refers to the previous year)
Rt Rodent density at time t
Ft Flea density at time t
Gt Gerbil population yearly growth rate at time t Gt = log(Rt/Rt − 1)
Bt Flea burden on the log scale at time t Bt = log(Ft/Rt)
It Infectious-flea force at time t (computed as the

product of flea density and prevalence of
plague in rodents averaged across sites)

If Rt − l < z, It is a degenerate random variable
such that It = 0, where l is estimated to be 1.5 y
(2 y) if t is spring (fall), and z is estimated to be
3.25 (4.94) if t is spring (fall)

Jt Change in infectious-flea force at time t J t = log(1 + It) − log(1 + It − 1)
Rsu
t Summer precipitation at time t Average amount of rainfall over June, July, and

August
Yearly human plague model
t Year t
Dt Rodent density in year t Seasonalflea density averaged across all sites and

then maximized across seasons

t Flea density in year t Seasonalflea density averaged across all sites and
then minimized across seasons (Table S2)

Ht Number of infectious human cases in year t
Ct Flea burden in year t Ratio of the flea density divided by the rodent

density averaged across all sites and then
maximized across seasons

Infectious-flea force in year t Product of flea density and prevalence of plague
in rodents averaged across all sites and then
maximized across seasons

Tsp
t Spring temperature in year t Average monthly temperature over March and

April
Tsu
t Summer temperature in year t Average monthly temperature over June, July,

and August
Rfa
t Fall precipitation in year t Average amount of precipitation over

September, October, and November

Table S2. Normalized AIC (NAIC) of models fitted with various threshold values

Threshold variable Threshold lag NAIC Effective sample size

Minimum of spring and fall average flea density 0 4.44 38
Minimum of spring and fall average flea density 1 3.64 39
Minimum of spring and fall average flea density 2 4.69 37
Maximum of spring and fall average flea density 0 4.71 38
Maximum of spring and fall average flea density 1 4.17 39
Maximum of spring and fall average flea density 2 5.08 37
Mean of spring and fall average flea density 0 4.71 38
Mean of spring and fall average flea density 1 4.17 39
Mean of spring and fall average flea density 2 4.87 37
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