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Calculating the Transition Probabilities for the Markov Model of
Influenza Spread

Using the framework provided in [1], the transition probabilities of the Markov chain {(XS(t), XI(t)) :
t = 0, 1, . . .} can be calculated in 4 steps, which are outlined below. The reader is referred to [1] for
detailed discussion of each step.

Step 1 - Define the classes and form the dynamics state equation:
For a population with fixed size N , the dynamics state equation will be XS(t) + XI(t) + XR(t) = N ;
hence two classes are sufficient to construct the Markov model. We select (XS(t), XI(t)) as the state of
the Markov model.

Step 2 - Find the joint probability distribution of the driving events:
There are two driving events in the model: (1) the number of new infections during period [t, t + ∆t],
denoted by I(t), and (2) the number recovered from infection during period [t, t+ ∆t], denoted by R(t).
The probability distribution of the driving event I(t) given the current state, PI(t)(i|XS(t), XI(t)), is given
by Eq. (5). As explained in the main manuscript, we assume that a susceptible who just became infected
remains infectious during the next period, and then is removed from the population (or recovered). This
assumption implies that any infective in the population at time t, will be removed at time t+ ∆t; hence,
the probability distribution of the driving event R(t) given the current state, PR(t)(r|XS(t), XI(t)), will
be:

PR(t)(r|XS(t), XI(t)) =

{
1, for r = XI(t),
0, otherwise.

(S1)

Step 3 - Form the dynamics driving and feasibility constraints:
Dynamics driving constraints for this model are as follows:

I(t) = XS(t)−XS(t+ ∆t), (S2)

R(t) = XI(t)−XI(t+ ∆t) +XS(t)−XS(t+ ∆t). (S3)

The dynamics feasibility constraints will be:

0 ≤ XS(t)−XS(t+ ∆t) ≤ XS(t), (S4)

0 ≤ XI(t)−XI(t+ ∆t) +XS(t)−XS(t+ ∆t) ≤ XI(t). (S5)
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Since the joint probability distribution of the driving events (I(t), R(t)) is nonzero only if R(t) = XI(t)
(by probability function (S1)), the dynamics driving and feasibility constraints (S2)-(S5) can be simplified
as:

I(t) = XS(t)−XS(t+ ∆t) = XI(t+ ∆t), (S6)

0 ≤ XS(t)−XS(t+ ∆t) ≤ XS(t). (S7)

Step 4 - Calculate the transition probability of the Markov chain {(XS(t), XI(t)) : t = 0, 1, . . .}:
By Eqs. (S6)-(S7), the support of the probability function

Pr{(XS(t+ ∆t), XI(t+ ∆t)) = (xS , xI)|XS(t), XI(t)}

is calculated as:

Ω(XS(t),XI(t)) = {(xS , xI) ∈ N2|0 ≤ xS ≤ XS(t), 0 ≤ xI ≤ XS(t), xS + xI = XS(t)} (S8)

Using the probability support Ω(XS(t),XI(t)) of Eq. (S8) and the fact that I(t) = XI(t+ ∆t) from Eq.
(S6), the transition probability (6) is then obtained.

Approximating the State Space for Influenza Spread

For a population of size N , the transition probability matrix of the Markov chain {(XS(t), XI(t)) : t =
0, 1, . . .} is of size 0.5(N + 1)2, which for large populations causes computational problems for finding
optimal health policies [2]. As a solution, we propose an approach for approximating the potentially
enormous Markov chain {(XS(t), XI(t)) : t = 0, 1, . . .} with the Markov chain {(ΘS(t),ΘI(t)) : t =
0, 1, . . .}, where ΘC(t), C ∈ {S, I} is the proportion of population in class C ∈ {S, I} at time t, and can
only take a limited number of values from the set {θC1 , θC2 , . . . , θCdC

}, C ∈ {S, I}.
To determine the sets {θC1 , θC2 , . . . , θCdC

}, C ∈ {S, I}, we note that by transition probability (6), the
state of the disease at time t, i.e. (XS(t), XI(t)), restricts the feasible states which the disease may reach
by time t+ 1; that is, the state (XS(t+ ∆t), XI(t+ ∆t)) should satisfy XS(t+ ∆t) +XI(t+ ∆t) = XS(t).
Equivalently, for the approximate Markov chain {(ΘS(t),ΘI(t)) : t = 0, 1, . . .}, we have:

ΘS(t+ ∆t) + ΘI(t+ ∆t) = ΘS(t). (S9)

Therefore, the sets {θC1 , θC2 , . . . , θCdC
}, C ∈ {S, I} cannot be independently determined. For the

proportion of susceptibles, let the control points {0 = bS0 , b
S
1 , b

S
2 , . . . , b

S
dS

= 1}, 0 ≤ bS1 < bS2 < . . . < bSdS
=

1, divide the interval [0, 1] into dS equal regions; that is bSi = i/dS for i = 0, 1, . . . , dS . The possible values
of ΘS(t), i.e. {θS1 , θS2 , . . . , θSdS

}, are determined by θSi = (bSi−1 + bSi )/2 = (i − 1/2)/dS , for i = 1, . . . , dS .

Thus, by Eq. (S9), ΘI(t + ∆t) can only take values from the set {θSi − θSj |i, j ∈ {1, . . . , dS}, j ≤ i},
which is equal to {i/dS |i = 0, 1, . . . , dS − 1}. The control points for the proportion of infectives, i.e.
{bI0, bI1, bI2, . . . , bIdI

}, can be then determined by: bIi = (i− 1/2)/dS for i = 1, 2, . . . , dS and bI0 = 0.
Given the state of the disease spread at time t, (XS(t), XI(t)), the support of the probability distri-

bution (6) is given by the set Ωst = {(xS , xI)|xI = XS(t) − xS , xI + xS ≤ N, xI ≥ 0, xS ≥ 0}; Figure
S1 shows the support Ωst for current state (XS(t), XI(t)), in which the set Ωst includes the points lying
on the bold line. Now, we must assign each point in the support Ωst to the regions created by the
control points {bS0 , bS1 , bS2 , . . . , bSdS

} and {bI0, bI1, bI2, . . . , bIdI
} in order to create a valid probability transition

matrix for the approximate Markov chain {(ΘS(t),ΘI(t)) : t = 0, 1, . . .}. Table S1 shows an algorithm
for calculating the transition probabilities for Markov chain {(ΘS(t),ΘI(t)) : t = 0, 1, . . .}.

All the arguments presented in the main text for real-time decision making remain valid when the
approximate Markov chains {(ΘS(t),ΘI(t)) : t = 0, 1, . . .} are used to model disease spread.

2



Additional Information for the Illustrative Example

To use the proposed class of models, we also must specify the control points {bC0 , bC1 , bC2 , . . . , bCdC
}, C ∈

{S, I}, dividing the interval [0, 1] for the proportion of susceptibles and infectives. Control points for the
proportion of susceptibles are set to bSi = i/50 for i = 0, 1, . . . , 50, and as discussed above, control points
for the proportion of infectives can then be determined accordingly: bIi = (i− 1/2)/50 for i = 1, 2, . . . , 50
and bI0 = 0.

Figures S3-S5 display three optimal health policies for three different scenarios for willingness-to-pay
for health equal to $0/QALY, $25,000/QALY, and $50,000/QALY.
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Figure S1. Support of the probability distribution (6)
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Figure S2. Calculating the support of probability Pr{(ΘS(t+ ∆t),ΘI(t+ ∆t)) = (θSi , θ
I
j )|ΘS(t),ΘI(t)}
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Table S1. Calculating the transition probabilities for Markov chain {(ΘS(t),ΘI(t)) : t = 0, 1, . . .}

Define operator b·cl as:

bxcl =

{
bxc − 1, if x = bxc
bxc , otherwise.

// To calculate Pr{(ΘS(t + ∆t),ΘI(t + ∆t)) = (θSi , θ
I
j )|ΘS(t),ΘI(t)}: (See the red dot in region O in Figure

S2.)

If bSi−1 + bIj−1 ≥ ΘS(t) Or bSi + bIj ≤ ΘS(t) Then // Region C and Region D respectively

x̄S ← 0

¯
xS ← 0

Else If XS −NbIj−1 ≤
⌊
NbSj

⌋
l

Then // Region F

If bIj−1 = 0 Then
x̄S ← XS

Else
x̄S ← XS − (bNbIj−1cl + 1)− 1

End If
If bSj−1 = 0 Then

¯
xS ← 0

Else

¯
xS ← bNbSj−1cl + 1

End If
Else // Region E

x̄S ← bNbSj cl

¯
xS ← XS − bNbIjcl

End If

Pr{(ΘS(t+ ∆t),ΘI(t+ ∆t)) = (θSi , θ
I
j )|ΘS(t),ΘI(t)} ←

x̄S∑
xS=

¯
xS

PI(t)(Xs(t)− xS |Xs(t), XI(t))
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