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Supplementary Figures 

 

Figure 1  Lack of memory for successive steps. The estimated probabilities for taking a forward step or a 
backward step are given by P+ = n+/(n+ + n−) and P− = n−/(n+ + n−), where n+ and n− are the numbers of positive 
and negative steps scored at any given force and ATP concentration, respectively. The probability of observing 
two backward steps in succession will be given by P−  −  = n− −/(n+ + + n− − + n+ − + n− +), where the nij represent the 
numbers of pairs of successive forward steps (++), pairs of successive backward steps (− −) , or pairs consisting 
of a step in each direction (+ −, − +). From these expressions, it follows that P+ − = n+ −/(n+ +  + n− −  + n+ −  + n− +).  
(a) The ratio of (P−)2 to P− − as a function of load. When successive steps are uncorrelated (zero memory), this 
ratio will tend to unity, since P− − will simply equal the probability of taking a single backward step, P−, times the 
probability of taking another, statistically independent backward step, P−. The experimentally determined ratio 
is statistically consistent with unity for all forces and ATP concentrations, demonstrating that steps have no 
memory of the preceding step direction (Markov property). (b) Analogous reasoning applies to the forward 
steps. The ratio of (P+ ⋅ P−) to P+ − as a function of load. As in (a), the ratio is unity for uncorrelated steps. 
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Figure 2  The ATPase rate per dimer for KinWT and Kin6AA. The plot shows the MT-stimulated ATPase rates for 
KinWT (red filled circles; mean ± s.e.m.; N = 3) and Kin6AA (purple filled circles; mean  ± s.e.m.; N = 3) as a 
function of the MT concentration. The solid lines represent fits to the standard Michaelis-Menten expression. 
KinWT has an ATPase rate of 102 ± 4 s-1 per dimer and a K0.5, MT of 82 ± 14 nM. This is in contrast to Kin6AA, 
which has an ATPase rate of 143 ± 6 s-1 per dimer and a K0.5, MT of 38 ± 8 nM, roughly half that of KinWT. Under 
unloaded conditions, the average velocity of KinWT is 762 ± 7 nm s-1; Kin6AA is slower, averaging 323 ± 4 nm s-1. 
Assuming an 8 nm step size, these velocities imply head-stepping rates of 95 s-1 and 40 s-1 for KinWT and Kin6AA, 
respectively. The very similar values for ATP-hydrolysis and mechanical-stepping rates for KinWT (102 s-1, 95 s-1) 
imply that ATP hydrolysis is coupled 1:1 to motion. However, for Kin6AA (143 s-1, 40 s-1) the rate of ATP 
hydrolysis is significantly greater than the head-stepping rate, suggesting that, on average, multiple ATP 
molecules are hydrolyzed per 8-nm advance by this motor. This inefficiency is likely to be a consequence of futile 
hydrolysis, although some backstepping may contribute. 
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Figure 3  2′dmD release from KinWT and Kin6AA in the presence of microtubules.  (a) The rate of 2′dmD release 
was measured by rapidly mixing KinWT (pre-incubated with equimolar amounts of 2′dmD) with MTs and 2 mM 
ATP, or MTs without ATP. When KinWT is mixed with MT without added nucleotide, the fluorescence amplitude 
is 66% of the amplitude in the presence of MTs and 2 mM ATP. (b) When the same experiment is performed 
with Kin6AA, mixing the motor with MTs without added nucleotide results in a fluorescence amplitude change 
that is 99% of the amplitude change experienced with the addition of 2 mM ATP. 
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Figure 4  An independent test of the five-state model. The graph shows the unloaded velocity of forward 
stepping for Kin6AA as a function of ATP concentration. The experimental data (blue filled circles; mean ± s.e.m.; 
N = 8−179) are displayed together with the prediction of the five-state model (red solid line) using the rate 
constants of Table 1. The forward velocity values represent an independent dataset, because these were not 
used as a part of the global data for the model fit that generated the rate constants of Table 1. There are 
therefore no adjustable parameters involved in modeling the data shown here. 
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Figure 5  Processivities of KinWT, Kin6AA, and Kin6P. Run-length distributions were acquired under unloaded 
(F = 0) and saturating ATP (2 mM) conditions. Histograms are displayed with std. statistical errors and fits to an 
exponential, A⋅exp(-x/x0) (red lines); bins with <6 counts were not included in fits. (a) Distribution of run lengths 
for KinWT. The characteristic run length estimate, based on fit parameter x0, is 728 ± 73 nm. (b) Distribution of 
run lengths for Kin6AA. The characteristic run length estimate is 1,327 ± 155 nm. (c) Distribution of run lengths 
for Kin6P. The characteristic run length estimate is 1,743 ± 340 nm. All three constructs were found to be fully 
processive; the processivities of Kin6AA and Kin6P were comparable and somewhat longer than for KinWT. 
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Figure 6  Average backward velocities under load for the Kin6AA and Kin6P constructs carrying neck-linker 
inserts. The KinWT linker insert sequence is AEQKLT; the Kin6P (6-proline) insert is KKPPPPPPG. Data were 
acquired under −7  pN hindering load and 2 mM ATP. (a) Histogram of velocities for Kin6AA, with associated 
errors. The mean velocity for the distribution is 25.6 ± 1.8 nm/s (mean ± s.e.m.) Velocities were computed from 
the slopes of linefits to single-molecule records of position vs. time.  (b) Histogram of velocities for Kin6P. The 
mean velocity for the distribution is 28.4 ± 1.8 nm/s (mean ± s.e.m.) The Kin6AA and Kin6P velocities are 
statistically indistinguishable, within error. 
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Supplementary Methods 

Single-molecule experiments 

Global curve fitting.  The single-molecule data in Figs. 1 and 2 (main text) were fit using the mechano-chemical 
model presented in Fig. 3 (main text). Global fits of the M = 10 model parameters (and associated parameter 
errors) of Table 1 to the N = 73 data points displayed in Figs. 1 and 2, corresponding to N−M = 63 degrees of 
freedom, were carried out using software written in Igor (Wavemetrics, Inc.) that implements the Levenberg-
Marquardt algorithm for minimization. Reaction diagrams composed of states connected by rate constants, of 
the type displayed in Fig. 3, are generally modeled by systems of coupled, first-order differential equations. Such 
systems can represented by a single Master Equation, with vectors that correspond to the arrays of input and 
output states connected by a matrix comprised of the transition rates. The eigenvalues of the transition matrix, 
for example, supply the time constants for relaxation of the system. However, unless the transition matrix 
happens to be sparse, it is not generally possible to solve analytically for the eigenvalues and eigenvectors of any 
matrices larger than 4 x 4. However, as Chemla et. al1 have shown using Fourier-Laplace transform techniques, 
expressions for the velocity and randomness of any reaction system can be obtained analytically, in closed form, 
directly from the three lowest order terms of the characteristic equation of the transition matrix, without any 
need to solve for its eigenvalues or eigenvectors. Analytical expressions for the velocity (v), step ratio (SR) and 
randomness (r) were obtained by applying their published formalism to the reaction system in Fig. 3 with the aid 
of Mathematica (Wolfram Research, Inc.). These expressions are: 

𝑣 = 𝑣+ −  𝑣− = (𝛾+′ − 𝛾−′ ) 𝛽⁄   

step ratio, SR = 𝛾+′ 𝛾−′⁄   

𝑟 = (𝛾′′ 𝛾′ + 2𝛽′ 𝛽⁄ − 2𝛼 𝛾′ 𝛽2⁄⁄ )  ∙ 𝑑−1  

where d is the step size and 

𝛾+′ = 𝑑 ∙ [ATP]2 ∙ 𝑘23 ∙ 𝑘31 ∙ 𝑘12 ∙ (𝑘51 ∙ 𝑘45 + 𝑘51 ∙ 𝑘43 + 𝑘54 ∙ 𝑘43) 

𝛾−′ = 𝑑 ∙ [ATP] ∙ [𝑘14 ∙ 𝑘51 ∙ 𝑘45 ∙ (𝑘31 + 𝑘34) ∙ (𝑘23 + 𝑘25 + 𝑘21) + [ATP] ∙ 𝑘25 ∙ 𝑘51 ∙ 𝑘12 ∙ (𝑘31 ∙ 𝑘45 + 𝑘31 ∙
𝑘43 + 𝑘45 ∙ 𝑘34)]  

𝛾′ =  𝛾+′ − 𝛾−′  

𝛾′′ =  𝑑 ∙ ( 𝛾+′ + 𝛾−′ ) 

𝛽 = 𝑘14 ∙ (𝑘51 + 𝑘54) ∙ (𝑘31 + 𝑘34) ∙ (𝑘23 + 𝑘25 + 𝑘21) + [ATP] ∙ �𝑘45 ∙ (𝑘14 + 𝑘51) ∙ (𝑘31 + 𝑘34) ∙
(𝑘23 + 𝑘25 + 𝑘21) + 𝑘43 ∙ (𝑘14 + 𝑘31) ∙ (𝑘51 + 𝑘54) ∙ (𝑘23 + 𝑘25 + 𝑘21) + 𝑘12 ∙ �𝑘25 ∙ 𝑘54 ∙ (𝑘31 + 𝑘34) + 𝑘23 ∙
𝑘34 ∙ (𝑘51 + 𝑘54)�� +  [ATP]2 ∙ 𝑘12 ∙ [𝑘45 ∙ (𝑘25 + 𝑘51) ∙ (𝑘31 + 𝑘34) + 𝑘45 ∙ 𝑘23 ∙ (𝑘51 + 𝑘34) + 𝑘43 ∙
(𝑘23 + 𝑘31) ∙ (𝑘51 + 𝑘54) + 𝑘43 ∙ 𝑘25 ∙ (𝑘31 + 𝑘54)]  

𝛽′ = 𝑑 ∙ [ATP] ∙ [𝑘23 ∙ 𝑘31 ∙ 𝑘12 ∙ (𝑘54 + 𝑘51) − 𝑘25 ∙ 𝑘51 ∙ 𝑘12 ∙ (𝑘31 + 𝑘34) − 𝑘14 ∙ 𝑘51 ∙ 𝑘45 ∙ (𝑘23 + 𝑘25 +
𝑘21 + 𝑘31 + 𝑘34)] +  𝑑 ∙ [ATP]2 ∙ 𝑘12 ∙ (𝑘45 + 𝑘43) ∙ (𝑘23 ∙ 𝑘31 − 𝑘25 ∙ 𝑘51)  



𝛼 = (𝑘23 + 𝑘25 + 𝑘21 + 𝑘14) ∙ (𝑘54 + 𝑘51) ∙ (𝑘34 + 𝑘31) + 𝑘14 ∙ (𝑘51 + 𝑘54 + 𝑘31 + 𝑘34) ∙ (𝑘23 + 𝑘25 +
𝑘21) + [ATP] ∙ [𝑘12 ∙ 𝑘23 ∙ (𝑘51 + 𝑘34) + 𝑘12 ∙ 𝑘54 ∙ (𝑘23 + 𝑘25) + 𝑘12 ∙ (𝑘51 + 𝑘54 + 𝑘25) ∙ (𝑘34 + 𝑘31) + 𝑘45 ∙
(𝑘51 + 𝑘14 + 𝑘31 + 𝑘34) ∙ (𝑘23 + 𝑘25 + 𝑘21) + 𝑘45 ∙ (𝑘51 + 𝑘14) ∙ (𝑘31 + 𝑘34) + 𝑘43 ∙ (𝑘51 + 𝑘54 + 𝑘31 +
𝑘14) ∙ (𝑘23 + 𝑘25 + 𝑘21) + 𝑘43 ∙ (𝑘31 + 𝑘14) ∙ (𝑘51 + 𝑘54)] + [ATP]2 ∙ 𝑘12 ∙ [𝑘45 ∙ (𝑘23 + 𝑘25 + 𝑘51 + 𝑘31 +
𝑘34) + 𝑘43 ∙ (𝑘23 + 𝑘25 + 𝑘31 + 𝑘51 + 𝑘54)]  

[ATP] is the ATP concentration and the kij are the rates between states. The minus sign was swapped between 
the second and third terms in the expression for r, above, to account for any change of sign in the velocity (i.e., 
forward or backstepping). Load dependence was introduced by multiplying k23, k25, and k14 by the appropriate 
Boltzmann factor, exp(F⋅δij/ kBT), where F is the force, δij is a characteristic distance, and kBT is the thermal 
energy. The resulting equations for v, SR, and r are explicit functions of the parameters, kij and δij, and the ATP 
concentration. We note that they are not functions of the ADP or Pi concentrations, which are taken to be 
negligible in the domain of applicability of this model. 

All transitions involving the binding of ATP to the kinesin head were taken to proceed at rates proportional to 
the ATP concentration, and therefore modeled by (pseudo) second-order binding constants (k12, k43, k45). This 
approximation is valid over the range of loads and concentrations studied here. In actuality, such rates will 
saturate at the highest ATP levels in a Michaelis-Menten-type fashion, because the formation of a weak collision 
complex between ATP and the motor domain is followed by a transition to a tighter binding state that takes 
finite time. If KD represents the dissociation constant for the ATP-head collision complex, then 

𝑘 =
𝑘max[ATP]
[ATP] + 𝐾𝐷

 

describes the saturation of these binding rates (derived below). Based on the data for Figure 5b, we obtain KD = 
632 ± 270 µM and kmax = 1,517 ± 443 s-1 for the binding of the analog 2′dmT, which likely represents a lower 
bound for ATP itself. At 2 mM ATP, these values imply a binding rate in excess of 1,153 ± 337 s-1. That rate is to 
be compared with the next-fastest rate returned by our fitting, which is the load-dependent stepping transition, 
𝑘23 =  𝑘230 exp[𝐹δ 𝑘𝐵𝑇⁄ ].  From the data in Table 1, the value for the step transition at −1 pN load (i.e., the 
worst-case scenario) is (570 s-1)exp(−4.3/4.05) = 197 s-1, which is already nearly six-fold slower than the ATP 
binding rate. For all other loads studied (−2 pN on up), the stepping transition slows to 68 s-1 or below, which 
becomes comparable to other reaction rates (e.g., to the ATP dissociation rate from the front head), all of which 
are more than an order of magnitude slower than the saturated ATP binding rate. ATP binding is therefore well 
approximated by a second-order binding constant, with a rate proportional to the ATP concentration. 

Ensemble fluorescence experiments 

Derivation of dissociation rate constant for ATP release from ensemble kinetic measurements.  As previously 
demonstrated2, we can depict the reaction of 2′dmT with a microtubule-kinesin complex as follows: 

𝑀 ∙ 𝐾 + 𝑇
𝐾𝐷��𝑀 ∙ 𝐾 ∙ 𝑇

𝑘1/𝑘−1�⎯⎯⎯� 𝑀 ∙ 𝐾 ∙ 𝑇∗
𝑘2/𝑘−2�⎯⎯⎯�𝑀 ∙ 𝐾 ∙ 𝐷∗ ∙ 𝑃𝑖

𝑘3→ 𝑀 ∙ 𝐾 ∙ 𝐷∗ 

where M is the microtubule, K is kinesin, T is 2′dmT, D is 2′dmD, and Pi is inorganic phosphate. The binding of 
2′dmT first occurs via the formation of a collision complex (characterized by the dissociation constant KD) 
followed by a first-order transition that produces enhancement of the 2′dmT fluorescence (designated by an 
asterisk, with associated rate constants k1 and k-1). The hydrolysis of ATP (k2/k-2) is followed by phosphate release 
(k3), which under the conditions of the experiment is essentially irreversible. The solution of the rate equations 
for each state has been described previously3-5. At low [2′dmT], the observed rate constant is c/b, where: 



𝑏 = 𝑘�1 + 𝑘−1 + 𝑘2 + 𝑘−2 + 𝑘3   , 

𝑐 = 𝑘�1(𝑘2 + 𝑘−2 + 𝑘3) + 𝑘−1(𝑘−2 + 𝑘3) + 𝑘2𝑘3   , and 

𝑘1 =
𝑘1 ∙ [𝑇]
[𝑇]+𝐾𝐷

 

The y-intercept of the plot of the observed rate constant versus 2′dmT concentration (Fig. 5b, 61 ± 12 s–1) 
defines an apparent dissociation rate constant, kd, which can be derived by setting [T] to 0 in the ratio c/b: 

𝑘d =
(𝑘2𝑘3 + 𝑘−1(𝑘−2 + 𝑘3))
(𝑘−1 + 𝑘2 + 𝑘−2 + 𝑘3)

 

Previous studies of the kinetics of ATP interaction with kinesin provide estimates for the values of k2 (100-
120 s-1; refs. 2, 6) and k3 (80-100 s-1, ref. 7). Although the hydrolysis step (k2/k-2) is reversible in the presence of 
microtubules under certain conditions8, k-2 << k2 or k3 and can therefore be ignored in the denominator. Using 
these values, we can derive a range of values of k-1, the rate constant for ATP dissociation, from 55-135 s-1 
(Table 1). 

Methods for Figure 5, main text.  The complex of 2.0 µM Kin6AA and 10 µM polymerized tubulin was made 
nucleotide-free by first incubating with apyrase (0.2 U ml-1) and then mixing in the stopped-flow spectrometer 
with 40 µM 2′dmT. Conditions: 100 mM KCl, 25 mM HEPES, 2 mM MgCl2, pH 7.50, 20oC.  

ATPase activity.  The MT-activated ATPase activities of KinWT and Kin6AA were measured in 25 mM HEPES 
(pH 7.5), 2 mM MgCl2, 1 mM EGTA, 2 mM DTT, 20 mM KCl at 20oC with microtubules in a >50-fold molar excess 
over kinesin active site. The reaction was initiated by adding ATP to 2 mM, and was monitored using an 
EnzCheck Phosphate Assay Kit (Invitrogen). 

Mutant construction.  DNA for the kinesin mutants was generated by PCR from the KinWT construct in two 
fragments, and ligated into pET21 vector in a three-way ligation. All mutants utilized the same 5′ primer for the 
final PCR product, 

CACACAGAATTCATGGCGGACCTGGGCGAG TCT AAT,  

with the 3′ primer 

CACACACTCGAGTTTTAGTAAAGATGCCATCTCAGCTGCTCG. 

For both amino acid insert chimeras, the PstI site was used for digestion. For the 6 proline insert9, the 5′ primer 
was 

CACACACTGCAGTTCCTGGTGGTGGTGGTGGTGGCTTCTTTAACTCGCAATTGACACTAACTGTGTTCTTAATTG 

with the 3′ primer 

CACACA CTGCAG AAC AGT GGA AAA AGA AGT ATG AAA AAG AAA AAG AAA AAA ATA AGA TC. 

For the six amino-acid insert, the sequence AEQKLT was introduced, and the identical 5′ primer for the proline 
insert was used, but changing the 3′ primer to 

CACACA CTGC AGT TCC TGG TGG TGG TGG TGG TGG CTTCTT 
ATATATAAATTTTTTTTCCCCTAACTCGCAATTGACACTAACTGTGTTCTTAATTG. 

PCR products were digested with PstI and either XhoI or EcoRI, and ligated into pET21a plasmids for expression 
in BL21 cells. DNA for all constructs made was confirmed by sequencing.  
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