Assessing Helical Protein Interfaces for Inhibitor Design

Brooke N. Bullock, Andrea L. Jochim and Paramjit S. Arora*

Department of Chemistry, New York University, New York, New York 10003

Supporting Information

	Page
Description of methods	S2
Figures S2 and S3	S 5
Supplementary references	S 6
Table S1. Dataset of HIPP interactions with hotspots on one helical face	S 7
Table S2. Dataset of HIPP interactions with hotspots on two helical faces	S 38
Table S3. Dataset of HIPP interactions with hotspots on three helical faces	S54

Methods used to Identify Helical Interfaces in Protein-Protein (HIPP) Interactions

Protein structures were obtained from the Protein Data Bank (http:://www.pdb.org/). In addition to using Rosetta, we wrote computer code in Perl, C and C++ programming language to identify and analyze HIPP interactions. The key steps to identifying HIPP interactions are listed below and shown in Figure S1.

1) Using the advanced search function on the PDB website, we extract all structures with more than one protein entity.

2) Sequence alignment of all complexes was performed using the CD-HIT clustering algorithm. CD-HIT clusters similar chains according to a similarity threshold. Although this method allows for all unique chains to be clustered it does not allow for all unique protein complexes to be clustered. То overcome this problem we removed chain identifiers in the FASTA files. The popular BLAST(1) method was not used because the computing of "all versus all" similarities would likely not be able to identify unique complexes properly since the chain

Figure S1. Protocol for the evaluation of structures from the Protein Data Bank to identify and assess helical interfaces in protein–protein (HIPP) interactions.

identifiers in the FASTA files were removed. Since CD-HIT uses a "short word filter" method it can cluster properly even with these FASTA file modifications.

3) **Perl script to construct individual PDB files for each interacting chain within the parent PDB file**. This script reads a PDB, identifies atoms from different chains that interaction with each other, then creates a new formatted PDB file with those two chains. This process is repeated until all interacting chains have a new PDB file. If the parent PDB file contains more than one structure (*ei*. NMR structure), only the first structure is considered.

Perl script to identify protein partner chains between separate entities. This script reads a PDB file, identifies chains that belong to separate entities within the PDB file, and creates a list of the PDB code and partnering chains that are part of the separate entities. This enables us to find those helix interfaces that are between separate protein entities as opposed to helical interfaces between chains in a single protein.

4) Modifications within Rosetta written in C++ programming language to identify helical interfaces between interacting protein chains. Rosetta contains programs that identify

interface residues and assigns secondary structure to a protein backbone using ϕ and ϕ dihedral angle analysis. We then link the interface and secondary structure assignment subroutines to find protein chains with interface residues that lie within a helix. We define helical segment as one that contains at least four contiguous residues with ϕ and ϕ angles that are characteristic of the α -helix ($\phi = -47^\circ \pm 25^\circ$, $\phi = -57^\circ \pm 25^\circ$).

The Dictionary of Secondary Structure of Proteins (DSSP)(2) and STRIDE(3) are common methods for obtaining information on protein secondary structure of proteins in the PDB. DSSP relies on hydrogen-bonding patterns in proteins to determine secondary structure and STRIDE uses a knowledge-based structure assignment. Although these methods are reliable for determining secondary structure, similar results are also obtained with ϕ and ϕ analysis as in Rosetta.(3) We performed random checks on secondary structures as calculated by Rosetta and defined by DSSP and STRIDE and found the that the three methods are comparable. We used Rosetta for secondary structure analysis to retain consistency across our computer codes.

Often, protein-protein interfaces are defined according to geometrically continuous patches of residues on the surface of a protein that exclude solvent by binding to another chain.(4) This definition might include some residues that are not really involved in the interaction or exclude some residues that play a key role in the interaction.(5) Therefore, we use a distance threshold between residues of different chains. When parsing PDB files, it is difficult to determine when contacting chains reflect crystal packing or a genuine biological assembly. The problem is amplified when hundreds of PDB files are automatically parsed. Two approaches are suggested for remedying this problem. One calculates the reduction of solvent accessibility due to oligomerisation(6) and while the other is based on measuring the conservation of contacting residues.(7) Instead of relying of these prediction algorithms, we visually inspected each candidate target in categories 1-3 for crystal packing multimers and eliminated those few interactions that were artifacts of crystal packing.

5) Hot spot residues were predicted by a computational alanine scan on each of the complexes in the dataset using the Rosetta 2.0 software. There are additional methods, besides Rosetta alanine scanning, for predicting hot spot residues. These methods are either based on determining hot spot residues based on amino acid sequence or a scoring function.(8-11) Glycine and proline residues were exempted from mutation to alanine as any such event may result in a conformational change in the protein backbone. In cases of multiple side chain orientations for the same residue in a PDB file, we eliminated the residue from consideration as a hot spot residue.

6) The HIPP dataset of 2,561 complexes was further analyzed to screen for potential receptors with binding clefts and extended interfaces that may be targeted by small molecules and helix mimetics, respectively. Any such undertaking inevitably involves a number of subjective decisions.(*12*) Our procedure involved (1) removal of all entries with resolution >4.00 Å and all structures determined by methods other than X-ray crystallography or NMR spectroscopy. We note that hot spot analysis becomes increasingly unreliable with lower resolution structures. (2) Visually inspection of structures to eliminate complexes that we considered too large or complex to target with a small molecule or oligomer; examples include structures of nucleosomes, ribosomes, proteasomes, rubisco, and viral capsids. We also eliminated structures where

proteins containing a helix are complexed with a non-helical peptide such as T-cell receptor proteins, MHC proteins, and antibodies. Duplicate sequences and instances where a protein was identified to target a single helix or a protein with a helix targeting a non-helical peptide of length less than 12 residues were removed by automated procedures and verified by visual inspection.

- 7) HIPP interactions with a $\Delta\Delta G_{avg} \ge 2$ kcal/mol were identified using a C++ program.
- 8) HIPPs with a $\Delta\Delta G_{avg} \ge 2$ kcal/mol from step 7) were classified as

Figure S2. Comparison of amino acid preferences in hot spots from current study, and Bogan and Thorn (Bogan, A. A.; Thorn, K. S. J. Mol. Biol. **1998**, 280, 1.)

Figure S3. Classification of contact residues on partner proteins. Residues on the partner protein that are within 5 Å of the helical hotspot residue were analyzed within Rosetta.

Supplementary References

- 1. Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990) Basic local alignment search tool, *Journal of Molecular Biology* 215, 403-410.
- 2. Kabsch, W., and Sander, C. (1983) Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features, *Biopolymers* 22, 2577-2637.
- 3. Dmitrij, F., and Argos, P. (1995) Knowledge-Based Protein Secondary Structure Assignment, *Proteins: Structure, Function, and Genetics* 23, 566-579.
- 4. Jones, S., and Thornton, J. M. (1997) Analysis of protein-protein interaction sites using surface patches, *Journal of Molecular Biology* 272, 121-132.
- 5. Ofran, Y., and Rost, B. (2003) Analysing Six Types of Protein-Protein Interfaces, *Journal of Molecular Biology* 325, 377-387.
- 6. Henrick, K., and Thornton, J. M. (1998) PQS: a protein quaternary structure file server, *Trends in Biochemical Sciences* 23, 358-361.
- 7. Elcock, A. H., and McCammon, J. A. (2001) Identification of protein oligomerization states by analysis of interface conservation., *Proceedings of the National Academy of Sciences USA* 98, 2990-2994.
- 8. Guney, E., Tuncbag, N., Keskin, O., and Gursoy, A. (2008) HotSprint: database of computational hot spots in protein interfaces, *Nucleic Acids Research 36*, D662-D666.
- 9. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. (2005) The FoldX web server: an online force field, *Nucleic Acids Research 33*, W382-W388.
- 10. Massova, I., and Kollman, P. A. (1999) Computational Alanine Scanning to Probe Protein-Protein Interactions: A Novel Approach to Evaluate Binding Free Energies, J. Am. Chem. Soc. 121, 8133-8143.
- 11. Ofran, Y., and Rost, B. (2007) Protein-Protein Interaction Hotspots Carved into Sequences, *PLoS Comput Biol 3*, e119.
- 12. Tsai, C.-J., Lin, S. L., Wolfson, H. J., and Nussinov, R. (1996) A Dataset of Protein-Protein Interfaces Generated with a Sequence-order-independent Comparison Technique, *Journal of Molecular Biology 260*, 604-620.

Table S1. Dataset of HIPP interactions with hotspots on one helical face

Description of Entries:

- A. PDB code of predicted target.
- B. Chains in the complex featuring a helix at the interface.
- C. Candidate helix to be mimicked is part of the indicated chain.
- D. Title of PDB entry.
- E. Function of protein complex.
- F. $\Delta\Delta G_{avg}$ /helix is derived from Rosetta computational alanine mutagenesis studies and indicates the average free energy penalty for mutating two or more key residues in the helix at the interface to alanine.
- G. $\Delta\Delta G_{sum}$ /helix is derived from Rosetta computational alanine mutagenesis studies and indicates the average free energy penalty for mutating two or more key residues at the interface to alanine.
- H. $\Delta\Delta G_{sum}$ /chain is derived from Rosetta computational alanine mutagenesis studies and indicates the sum free energy penalty for mutating two or more key residues in the helix at the interface to alanine.
- I. Helix contribution refers to the proportion of key contact residues positioned on the candidate helix as compared to the chain (see text for a detailed explanation).
- J. Number of hot spot residues in helix.
- K. Relative positioning of the hot spot residues on a helix.
- L. Hot spot residues derived from Rosetta computational alanine scanning mutagenesis.
- M. Number of residues separating end hot spot residues (see Methods for more details).
- N. Length of candidate helix to be mimicked.
- O. First residue of the candidate helix segment.
- P. Last residue of the candidate helix segment.
- Q. Sequence of candidate helix to be mimicked.
- R. Resolution of PDB structure (NOT APP indicates NMR structure).

A. PDB	B. INTERFACE		
CODE	CHAINS	C. CHAIN	D. TITLE
1A0O	AB	А	CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY
1A0O	C D	D	CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY
1A4Y	DE	Е	RIBONUCLEASE INHIBITOR-ANGIOGENIN COMPLEX
1A9N	AB	В	CRYSTAL STRUCTURE OF THE SPLICEOSOMAL U2B"-U2A' PROTEIN COMPLEX BOUND TO A FRAG
1AY7	AB	В	RIBONUCLEASE SA COMPLEX WITH BARSTAR
1B0N	AB	В	SINR PROTEIN/SINI PROTEIN COMPLEX
1B27	ВE	Е	STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE
1B9X	AB	В	STRUCTURAL ANALYSIS OF PHOSDUCIN AND ITS PHOSPHORYLATION- REGULATED INTERACTIO
1BDJ	AB	В	COMPLEX STRUCTURE OF HPT DOMAIN AND CHEY
1BXL	AB	В	STRUCTURE OF BCL-XL/BAK PEPTIDE COMPLEX. NMR. MINIMIZED AVERAGE STRUCTURE
1D2Z	СВ	С	THREE-DIMENSIONAL STRUCTURE OF A COMPLEX BETWEEN THE DEATH DOMAINS OF PELLE AN
1DE4	GI	G	HEMOCHROMATOSIS PROTEIN HFE COMPLEXED WITH TRANSFERRIN RECEPTOR
1DML	CD	D	CRYSTAL STRUCTURE OF HERPES SIMPLEX UL42 BOUND TO THE C- TERMINUS OF HSV POL
1DOA	AB	B	STRUCTURE OF THE RHO FAMILY GTP-BINDING PROTEIN CDC42 IN COMPLEX WITH THE MULTIFU
1DS6	AB	A	CRYSTAL STRUCTURE OF A RAC-RHOGDI COMPLEX
1E50	BA	B	RIBONUCLEASE DOMAIN OF COLICIN F3 IN COMPLEX WITH ITS IMMUNITY PROTEIN
1EM8	AB	B	CRYSTAL STRUCTURE OF CHI AND PSI SUBUNIT HETERODIMER FROM DNA POL III
1ES7	AD	D D	COMPLEX RETWEEN BMP-2 AND TWO BMP RECEPTOR IA ECTODOMAINS
1ES7	C B	B	COMPLEX BETWEEN BMP-2 AND TWO BMP RECEPTOR IA ECTODOMAINS
1EUV	AB	Δ	Y-RAV STRUCTURE OF THE C-TERMINAL UI PI PROTEASE DOMAIN IN COMPLEX WITH SMT3 THE
1EUV	AB	Δ	X-RAY STRUCTURE OF THE C-TERMINAL ULPI PROTEASE DOMAIN IN COMPLEX WITH SMT3, THE
1E47	R A	A	THE BACTEDIAL CELL DIVISION DEOTEIN ZIDA AND ITS INTED ACTION WITH AN ETSZ ED AGMENI
1FM6			THE 2.1 ANGSTROM RESOLUTION OPVSTAL STRUCTURE OF THE HETERODIMER OF THE HIMAN
		C C	CDVSTAL STDUCTUDE OF DACI IN COMDLEY WITH THE CHANNER NUCLEOTIDE EXCHANCE DECL
1FOE		C	CRYSTAL STRUCTURE OF RACT IN COMPLEX WITH THE CUANINE NUCLEOTIDE EXCHANCE REGI
1FOE	C D	C	CRYSTAL STRUCTURE OF RACI IN COMPLEX WITH THE CUANINE NUCLEOTIDE EXCHANCE RECI
1FOE	C D C D		CRYSTAL STRUCTURE OF RACI IN COMPLEX WITH THE GUANINE NUCLEOTIDE EXCHANCE RECI
ITOE		D G	CALIFICATION DI LE LA LEURA DI COMPLEX WITH THE UVANINE NUCLEUTIDE EXCHANGE REUL
1112M	AB	ъ р	FACTOR INFIDITING FIFT ALPHA IN COMPLEX WITH FIFT ALPHA FRAGMENT PETTIDE
11150	AB	В	CRYSTAL STRUCTURE OF THE HUMAN TAF4-TAFT2 (TAFIT155-TAFT120) COMPLEX
11159	AB	В	CUMPLEA OF IGFBF-3 WITH IGF-I
1H6K	AX	X	NUCLEAK CAP BINDING COMPLEX
IHEI	AC	A	CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN THE GAP DOMAIN OF THE PSEUDOMONAS AF
111114	AD	A	RACI-RHOGDI COMPLEX INVOLVED IN NADPH OXIDASE ACTIVATION
111114	BE	В	KACI-KHOGDI COMPLEX INVOLVED IN NADPH OXIDASE ACTIVATION
1HH4	BE	E	RACI-RHOGDI COMPLEX INVOLVED IN NADPH OXIDASE ACTIVATION
IHV2	AB	В	SOLUTION STRUCTURE OF YEAST ELONGIN C IN COMPLEX WITH A VON HIPPEL-LINDAU PEPTIDI
IHWM	AB	A	EBULIN, OKTHORHOMBIC CRYSTAL FORM MODEL
II/W	CD	D	BETA-CATENIN/PHOSPHORYLATED E-CADHERIN COMPLEX
HWQ	AB	A	CRYSTAL STRUCTURE OF MARCKS CALMODULIN BINDING DOMAIN PEPTIDE COMPLEXED WITH
IJID	вс	С	CRYSTAL STRUCTURE OF THE 46KDA DOMAIN OF HUMAN CARDIAC TROPONIN IN THE CA2+ SAT
1 J 2J	AB	A	CRYSTAL STRUCTURE OF GGAT GAT N-TERMINAL REGION IN COMPLEX WITH ARFT GTP FORM
1JPW	BE	E	CRYSTAL STRUCTURE OF A HUMAN TCF-4 / BETA-CATENIN COMPLEX
1KBH	AB	A	MUTUAL SYNERGISTIC FOLDING IN THE INTERACTION BETWEEN NUCLEAR RECEPTOR COACTIV
1K11	AB	А	GUANINE NUCLEOTIDE EXCHANGE REGION OF INTERSECTIN IN COMPLEX WITH CDC42
1L2W	AI	Ι	CRYSTAL STRUCTURE OF THE YERSINIA VIRULENCE EFFECTOR YOPE CHAPERONE-BINDING DO
1L8C	AB	В	STRUCTURAL BASIS FOR HIF-1ALPHA/CBP RECOGNITION IN THE CELLULAR HYPOXIC RESPONSE
1LB1	C D	D	CRYSTAL STRUCTURE OF THE DBL AND PLECKSTRIN HOMOLOGY DOMAINS OF DBS IN COMPLEX
1LB1	ΕF	F	CRYSTAL STRUCTURE OF THE DBL AND PLECKSTRIN HOMOLOGY DOMAINS OF DBS IN COMPLEX
1LQB	BC	В	CRYSTAL STRUCTURE OF A HYDROXYLATED HIF-1 ALPHA PEPTIDE BOUND TO THE PVHL/ELONG
1LTX	AR	А	STRUCTURE OF RAB ESCORT PROTEIN-1 IN COMPLEX WITH RAB GERANYLGERANYL TRANSFER.
1LTX	AR	R	STRUCTURE OF RAB ESCORT PROTEIN-1 IN COMPLEX WITH RAB GERANYLGERANYL TRANSFER.
1MZN	C D	D	CRYSTAL STRUCTURE AT 1.9 ANGSTROEMS RESOLUTION OF THE HOMODIMER OF HUMAN RXR A
1N1J	AB	В	CRYSTAL STRUCTURE OF THE NF-YB/NF-YC HISTONE PAIR
1NRL	B D	D	CRYSTAL STRUCTURE OF THE HUMAN PXR-LBD IN COMPLEX WITH AN SRC-1 COACTIVATOR PEP
1NU7	ΕF	Е	STAPHYLOCOAGULASE-THROMBIN COMPLEX
10L5	AB	В	STRUCTURE OF AURORA-A 122-403, PHOSPHORYLATED ON THR287, THR288 AND BOUND TO TPX2

A. PDB	E FUNCTION	F. $\Delta\Delta G_{AVG,HELIX}$	G. $\Delta\Delta G_{\text{SUM, HELIX}}$	H. $\Delta\Delta G_{SUM, CHAIN}$
1400	CHEMOTAXIS	2.0	(KCAE/MOE)	(RCAL/MOL)
1400	CHEMOTAXIS	2.0	4.1	4.1
1400	COMPLEY (INHIBITOD/NUCLEASE)	2.2	4.4	5.1
1 A ON	DNA DINDING DOCTEIN/DNA	2.0	3.9	2.0
1A9N	COMDIEV (ENZVME/INHIDITOD)	2.0	5.9	5.9 7 7
1A1 /	TDANSCRIPTION RECHLATOR	2.2	4.4	7.7
1001	IKANSCKIPTION REGULATOK	2.0	5.9	27.4
1D2/ 1D0V	SIGNALING DROTEIN	3.2	0.3	11.2
1097	SIGNALING PROTEIN	2.4	1.2	18.4
	COMPLEX (CHEMOTAXIS/TRANSFERASE)	2.1	4.1	8.0
IDAL	ADODTOSIS	2.4	4.8	/.1
1D2Z	AFOR 10515	2.0	4.0	5.7
IDE4	METAL TRANSPORT INHIBITOR/RECEPTOR	2.0	5.9	14.3
	DNA BINDING PROTEIN/TRANSFERASE	3.8	/.0	14.4
1DOA	CELL CYCLE	2.3	4.5	10.4
1050	SIGNALING PROTEIN	2.5	4.9	13.4
1E44	KIBUNULLEASE	4.0	8.0	11.4
1EM8	GENE REGULATION	3.5	/.0	11.5
1ES/	CYTOKINE	2.5	4.9	4.9
IES/		2.1	4.2	4.2
1EUV	HYDROLASE	3.5	6.9	23.4
IEUV	HYDROLASE CELL CVCLE	2.6	5.1	23.4
1F4/	CELL CYCLE	2.3	4.5	7.4
IFM6	IRANSCRIPTION	2.1	4.2	5.6
IFOE	SIGNALING PROTEIN, IMMUNE SYSTEM/SIGNALING	3.5	10.6	24.2
IFOE	SIGNALING PROTEIN, IMMUNE SYSTEM/SIGNALING	2.9	8.6	24.2
IFOE	SIGNALING PROTEIN, IMMUNE SYSTEM/SIGNALING	4.0	7.8	24.2
IFOE	SIGNALING PROTEIN, IMMUNE SYSTEM/SIGNALING	2.0	4.0	32.8
TH2M	TRANSCRIPTION ACTIVATOR/INHIBITOR	2.3	4.5	5.5
1H3O	TRANSCRIPTION/TBP-ASSOCIATED FACTORS	2.1	4.1	14.3
1H59	INSULIN	2.2	4.4	6.1
1H6K	NUCLEAR PROTEIN	2.2	4.3	9.4
1HE1	SIGNALING PROTEIN	2.4	4.7	9.5
1HH4	SIGNALING PROTEIN/INHIBITOR	2.6	5.1	9.1
1HH4	SIGNALING PROTEIN/INHIBITOR	2.2	4.3	13.6
1HH4	SIGNALING PROTEIN/INHIBITOR	2.2	4.3	7.1
1HV2	SIGNALING PROTEIN	2.2	4.3	4.3
1HWM	HYDROLASE	2.1	4.1	9.2
1I7W	CELL ADHESION	2.1	4.1	22.7
1IWQ	METAL BINDING PROTEIN/PROTEIN BINDING	2.5	4.9	22.1
1J1D	CONTRACTILE PROTEIN	2.0	4.0	19.6
1J2J	PROTEIN TRANSPORT	2.4	4.7	8.3
1JPW	CELL ADHESION	2.1	4.1	14.0
1KBH	TRANSCRIPTION	2.2	4.3	7.8
1KI1	SIGNALING PROTEIN	2.7	5.3	7.3
1L2W	CHAPERONE	2.1	4.1	8.3
1L8C	GENE REGULATION	2.3	4.6	16.8
1LB1	SIGNALING PROTEIN	2.1	4.1	16.3
1LB1	SIGNALING PROTEIN	2.0	3.9	10.6
1LQB	GENE REGULATION	2.3	4.5	13.8
1LTX	TRANSFERASE/PROTEIN BINDING	2.4	4.7	6.6
1LTX	TRANSFERASE/PROTEIN BINDING	3.2	6.3	9.7
1MZN	TRANSCRIPTION	2.1	6.2	7.8
1N1J	DNA BINDING PROTEIN	2.6	5.1	43.7
1NRL	TRANSCRIPTION	2.0	6.0	6.0
1NU7	HYDROLASE/PROTEIN BINDING	2.2	4.3	5.3
10L5	TRANSFERASE/CELL CYCLE	3.0	6.0	18.6

A. PDB	I. HELIX	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	CONTRIBUTION	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$
1A0O	100%	2	K122, 2.0; E125, 2.0;
1A0O	100%	2	V211, 1.1; F214, 3.3;
1A4Y	76%	2	R5, 1.9; H8, 2.0;
1A9N	100%	2	R28, 1.8; Y31, 2.1;
1AY7	57%	2	D35, 1.5; D39, 2.9;
1B0N	22%	3	I32, 1.1; Y35, 2.6; L36, 2.2;
1B27	56%	2	D36, 1.5; D40, 4.8;
1B9X	39%	3	F540, 3.8; Y543, 2.4; V544, 1.0;
1BDJ	51%	2	E750, 1.3; E754, 2.8;
1BXL	68%	2	L578, 2.7; I581, 2.1;
1D2Z	70%	2	N112, 1.6; R115, 2.4;
1DE4	27%	2	E146, 1.6; H150, 2.3;
1DML	53%	2	F1231, 5.2; L1234, 2.4;
1DOA	43%	2	Y51, 2.8; L55, 1.7;
1DS6	37%	2	R66, 1.6; L67, 3.3;
1E44	70%	2	F2, 5.4; Y5, 2.6;
1EM8	61%	2	R118, 1.6; W122, 5.4;
1ES7	100%	2	F785, 3.3; K788, 1.6;
1ES7	100%	2	F285, 2.6; K288, 1.6;
1EUV	29%	2	D451, 4.6; E455, 2.3;
1EUV	22%	2	F474, 3.3; T477, 1.8;
1F47	61%	2	F11, 2.1; I8, 2.4;
1FM6	75%	2	E394, 1.2; Y397, 3.0;
1FOE	44%	3	K1195, 4.4; L1198, 5.0; L1199, 1.2;
1FOE	36%	3	I1187. 1.2: I1190. 3.6: O1191. 3.8:
1FOE	32%	2	11231. 3.7: N1232. 4 1:
1FOE	12%	2	R66. 2 1: L67. 1.9:
1H2M	82%	2	L818 2 1: L819 2 4:
1H3O	29%	2	L66 2 6: V70 1 5:
11150	72%	2	L70 3 1: L74 1 3:
1H6K	46%	2	Y100 2 6: R99 1 7:
1HE1	49%	2	0182 200 0183 27
1HH4	56%	2	(102, 2.0, (103, 2.))
1HH4	32%	2	R66 24: 167 19:
1HH4	61%	2	V351 2 5: L 355 1 8:
1HV2	100%	2	L 158 3 2: R161 1 1:
1HWM	45%	2	F235 2 8 1239 1 3
117W	18%	2	K717 1 1: L718 3 0:
117 W	22%	2	L 105 1 2: M109 3 7:
1110	20%	2	K72 2 9 176 11:
1121	57%	2	177, 2, 7: H80, 2, 0:
1 IDW	20%	2	$V_{44} = 20$; $K_{45} = 21$;
1KBH	55%	2	124 2 0: 128 1 2:
11/11	730/2	2	154, 5.0, V 56, 1.5, 1.67, 3.0: 1.70, 2.3:
11 OW	109/	2	V20 1 0: 1 /2 2 2:
1L2 W	4970	2	1 39, 1.9, L43, 2.2, L 141, 2 4, L 145, 2 2,
11.D1	2770	2	L (0, 1, 0, L 72, 2, 2).
	2370	2	L_{07} , 1.7, L_{12} , 2.2, H105, 2.0, F106, 1.0,
	3/70	2	1110J, 2.0, 1 100, 1.7, 1 101 1 4, 1 104 2 1.
1LUB	33%0 710/	2	L101, 1.4, L104, 3.1, ()216, 2.4, E220, 2.2,
ILIA ILTV	/170	2	Q210, 2.4, F220, 2.5, D275, 2.5, F270, 2.9,
ILIX IM7N	03%0	∠ 2	
	/ダ%0 1.20/	с С	L14/J, 2.2, L14/8, 1.4, L14/9, 2.0, D47 1 5: 151 2.6:
1INIJ 1NDJ	1270	2	K_{4} , 1.3, 131, 3.0, L 600, 2.6, 11601, 1.0, 1.604, 2.4,
INKL	010/	<i>с</i>	LU7U, 2.U, 11091, 1.U, L094, 2.4;
1NU /	ð1%0 2004	2	E14, 2.0, E14, 1.7, W24, 2.9, E25, 2.2,
IOL5	32%	2	w 54, 2.8; r 55, 5.2;

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
1A0O	i; i+3;	4	14	113	126
1A0O	i; i+3;	4	12	205	216
1A4Y	i; i+3;	4	9	5	13
1A9N	i; i+3;	4	12	23	34
1AY7	i; i+4;	5	9	34	42
1B0N	i: i+3: i+4:	5	11	29	39
1B27	i: i+4:	5	9	35	43
1B9X	i: i+3: i+4:	5	14	533	546
1BDA	i, i+Δ.	5	14	744	758
1005	i, i ' ' , i · i ⊥ 2 ·	4	0	576	594
1DAL	1, 1 + 3 , 	4	7	370	117
1D2Z	1, 1 + 3 ,	4	12	111	117
IDE4	1, 1+4;	5	12	140	151
IDML	1; 1+3;	4	16	1220	1235
1DOA	1; 1+4;	3	12	46	57
1DS6	i; i+1;	5	5	65	69
1E44	i; i+3;	2	6	2	7
1EM8	i; i+4;	4	14	115	128
1ES7	i; i+3;	5	7	783	789
1ES7	i; i+3;	4	7	283	289
1EUV	i; i+4;	4	14	451	464
1EUV	i; i+3;	5	10	473	482
1F47	i: i+3:	4	9	8	16
1FM6	i: i+3:	4	23	386	408
1FOF	i: i+3: i+4:	4	12	1195	1206
1FOE	i, i+3, i+4.	5	8	1193	1194
1FOE	i, i, j, i,	5	Q Q	1226	1733
1FOE	I, ITI,	3	0 5	65	1233
IFUE	I, I⊤I,	2	5	03	822
TH2M	1; 1+1;	2	/	816	822
TH3O	1; 1+4;	4	12	60	71
1H59	1; 1+4;	2	7	69	75
1H6K	i; i+1;	5	12	91	102
1HE1	i; i+1;	5	5	181	185
1HH4	i; i+1;	5	13	93	105
1HH4	i; i+1;	2	5	65	69
1HH4	i; i+4;	2	12	346	357
1HV2	i; i+3;	2	14	158	171
1HWM	i; i+4;	2	9	233	241
1I7W	i; i+1;	5	7	716	722
1IWO	i; i+4;	4	11	102	112
1J1D	i: i+4:	5	18	63	80
1.J2.J	i: i+3:	2	7	75	81
1 IPW	i: i+1:	5	6	42	47
1KBH	i, i + 1;	5	8	34	41
11/11	i, i + 7,	1	7	67	73
11.2W	1, 1+5, 	4	0	29	15
1L2W	1, 1 + 4,	2	0	58 120	43
1LoC	1, 174,	5		139	149
ILBI	1; 1+3;	4	/	69	/5
ILBI	1; 1+1;	5	19	89	107
1LQB	i; i+3;	5	11	100	110
1LTX	i; i+4;	4	18	205	222
1LTX	i; i+4;	2	7	275	281
1MZN	i; i+3; i+4;	4	9	1473	1481
1N1J	i; i+4;	4	9	45	53
1NRL	i; i+1; i+4;	5	9	688	696
1NU7	i; i+1;	5	8	14	14
10L5	i; i+1;	4	9	33	41

A. PDB		
CODE	Q. HELIX SEQUENCE	R. RESOLUTION
1A00	AATLEEKLNKIFEK	2.95
1A0O	EDDITAVLCFVI	2.95
1A4Y	RYTHFLTQH	2.00
1A9N	KEELKRSLYALF	2.38
1AY7	LDALWDCLT	1.70
1B0N	PEEIRKYLLLN	1.90
1B27	LDALWDALT	2 10
1B9X	VSKCCFFFRDYVFF	3.00
1BDI	WEDNVGEWIEEMKEE	2.68
1DDJ		NOT APP
1DAL		2.00
1D2Z		2.00
IDE4		2.80
1DML		2.70
IDOA	ESLRKYKEALLG	2.60
IDS6	DRLRP	2.35
1E44	FKDYGH	2.40
1EM8	PTARAALWQQICTY	2.10
1ES7	SDFQCKD	2.90
1ES7	SDFQCKD	2.90
1EUV	DTIIEFFMKYIEKS	1.60
1EUV	SFFYTNLSER	1.60
1F47	IPAFLRKQA	1.95
1FM6	PAEVEALREKVYASLEAYCKHKY	2.10
1FOE	KYPLLLRELFAL	2.80
1FOE	IKPIQRVL	2.80
1FOE	KVASHINE	2.80
1FOE	DRLRP	2.80
1H2M	EELLRAL	2.50
1H3O	KKKLQDLVREVD	2.30
1H59	PLHALLH	2.10
1H6K	RADAENAMRYIN	2.00
1HE1	LQQWG	2.00
1HH4	VRAKWYPEVRHHC	2.70
1HH4	DRLRP	2.70
1HH4	ESLRKYKEALLG	2.70
1HV2	LKERCLQVVRSLVK	NOT APP
1HWM	FEELYKITG	2.80
1I7W	KKLADMY	2.00
1IWQ	AAELRHVMTNL	2.00
1J1D	REAEERRGEKGRALSTRA	2.61
1J2J	RPLWRHY	1.60
1JPW	ADVKSS	2.50
1KBH	IPELVNQG	NOT APP
1KI1	LRPLSYP	2.30
1L2W	QYANNLAG	2.00
1L8C	EELLRALDQVN	NOT APP
1LB1	LRPLSYP	2.81
1LB1	PDSLENIPEKWTPEVKHFC	2.81
1LOB	ALELLMAANFL	2.00
1LTX	ENVLLKELELVQNAFFTD	2.70
1LTX	RADVFNS	2.70
1MZN	KILHRLLOD	1.90
1N1J	LARIKKIMK	1.67
1NRL	KILHRLLOE	2.00
1NU7	ERELLESY	2.20
101.5	SWFEEKANL	2 50
.015		2.50

A. PDB CODE	B. INTERFACE CHAINS	C. CHAIN	D. TITLE
100K	AB	А	CRYSTAL STRUCTURE OF THE COMPLEX OF PLATELET RECEPTOR GPIB- ALPHA AND HUMAN ALF
10R7	AC	А	CRYSTAL STRUCTURE OF ESCHERICHIA COLI SIGMAE WITH THE CYTOPLASMIC DOMAIN OF ITS.
10R7	AC	А	CRYSTAL STRUCTURE OF ESCHERICHIA COLI SIGMAE WITH THE CYTOPLASMIC DOMAIN OF ITS.
10SV	B D	D	STRUCTURAL BASIS FOR BILE ACID BINDING AND ACTIVATION OF THE NUCLEAR RECEPTOR FXF
1QLS	A D	D	S100C (S100A11), OR CALGIZZARIN, IN COMPLEX WITH ANNEXIN I N-TERMINUS
1R4A	AE	Е	CRYSTAL STRUCTURE OF GTP-BOUND ADP-RIBOSYLATION FACTOR LIKE PROTEIN 1 (ARL1) AND
1R8Q	AE	А	FULL-LENGTH ARF1-GDP-MG IN COMPLEX WITH BREFELDIN A AND A SEC7 DOMAIN
1RP3	AB	В	COCRYSTAL STRUCTURE OF THE FLAGELLAR SIGMA/ANTI-SIGMA COMPLEX, SIGMA-28/FLGM
1T0F	ВD	D	CRYSTAL STRUCTURE OF THE TNSA/TNSC(504-555) COMPLEX
1TTW	AB	В	CRYSTAL STRUCTURE OF THE YERSINIA PESTIS TYPE III SECRETION CHAPERONE SYCH IN COMP
1TUE	AB	В	THE X-RAY STRUCTURE OF THE PAPILLOMAVIRUS HELICASE IN COMPLEX WITH ITS MOLECULA
1TUE	НJ	Н	THE X-RAY STRUCTURE OF THE PAPILLOMAVIRUS HELICASE IN COMPLEX WITH ITS MOLECULA
1U0S	YA	Y	CHEMOTAXIS KINASE CHEA P2 DOMAIN IN COMPLEX WITH RESPONSE REGULATOR CHEY FROM
1U7B	AB	В	CRYSTAL STRUCTURE OF HPCNA BOUND TO RESIDUES 331-350 OF THE FLAP ENDONUCLEASE-1 (1
1U8T	ВF	F	CRYSTAL STRUCTURE OF CHEY D13K Y106W ALONE AND IN COMPLEX WITH A FLIM PEPTIDE
1VCB	ВC	В	THE VHL-ELONGINC-ELONGINB STRUCTURE
1X86	GH	Н	CRYSTAL STRUCTURE OF THE DH/PH DOMAINS OF LEUKEMIA- ASSOCIATED RHOGEF IN COMPLE
1XCG	AB	В	CRYSTAL STRUCTURE OF HUMAN RHOA IN COMPLEX WITH DH/PH FRAGMENT OF PDZRHOGEF
1XL3	AC	А	COMPLEX STRUCTURE OF Y.PESTIS VIRULENCE FACTORS YOPN AND TYEA
1XLS	ΑE	А	CRYSTAL STRUCTURE OF THE MOUSE CAR/RXR LBD HETERODIMER BOUND TO TCPOBOP AND 90
1XV9	CG	G	CRYSTAL STRUCTURE OF CAR/RXR HETERODIMER BOUND WITH SRC1 PEPTIDE, FATTY ACID, AN
1Y3A	ΑE	Е	STRUCTURE OF G-ALPHA-11 BOUND TO A GDP-SELECTIVE PEPTIDE PROVIDES INSIGHT INTO GUA
1YCR	AB	В	MDM2 BOUND TO THE TRANSACTIVATION DOMAIN OF P53
1YOK	AB	В	CRYSTAL STRUCTURE OF HUMAN LRH-1 BOUND WITH TIF-2 PEPTIDE AND PHOSPHATIDYLGLYCE
1Z2C	AB	А	CRYSTAL STRUCTURE OF MDIA1 GBD-FH3 IN COMPLEX WITH RHOC- GMPPNP
1ZNV	CD	С	HOW A HIS-METAL FINGER ENDONUCLEASE COLE7 BINDS AND CLEAVES DNA WITH A TRANSITIC
1ZOO	AC	C	IRF3-CBP COMPLEX
1Z00	ВD	D	IRF3-CBP COMPLEX
1ZVV	ВP	Р	CRYSTAL STRUCTURE OF A CCPA-CRH-DNA COMPLEX
2A19	AB	В	PKR KINASE DOMAIN- EIF2ALPHA- AMP-PNP COMPLEX.
2A45	AB	А	CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN THROMBIN AND THE CENTRAL "E" REGION O
2A4J	AB	В	SOLUTION STRUCTURE OF THE C-TERMINAL DOMAIN (T94-Y172) OF THE HUMAN CENTRIN 2 IN C
2AGH	ВC	С	STRUCTURAL BASIS FOR COOPERATIVE TRANSCRIPTION FACTOR BINDING TO THE CBP COACTIV
2B5L	AC	С	CRYSTAL STRUCTURE OF DDB1 IN COMPLEX WITH SIMIAN VIRUS 5 V PROTEIN
2CCL	C D	D	THE \$45A, T46A MUTANT OF THE TYPE I COHESIN-DOCKERIN COMPLEX FROM THE CELLULOSOM
2DWZ	AB	В	STRUCTURE OF THE ONCOPROTEIN GANKYRIN IN COMPLEX WITH S6 ATPASE OF THE 26S PROTE.
2EKV	AB	А	THE CRYSTAL STRUCTURE OF RIGOR LIKE SQUID MYOSIN S1 IN THE ABSENCE OF NUCLEOTIDE
2EKV	AB	А	THE CRYSTAL STRUCTURE OF RIGOR LIKE SQUID MYOSIN S1 IN THE ABSENCE OF NUCLEOTIDE
2ERJ	FΗ	Н	CRYSTAL STRUCTURE OF THE HETEROTRIMERIC INTERLEUKIN-2 RECEPTOR IN COMPLEX WITH
2F93	AB	В	K INTERMEDIATE STRUCTURE OF SENSORY RHODOPSIN II/TRANSDUCER COMPLEX IN COMBINA
2FM8	ВC	С	CRYSTAL STRUCTURE OF THE SALMONELLA SECRETION CHAPERONE INVB IN COMPLEX WITH S
2FNJ	AC	А	CRYSTAL STRUCTURE OF A B30.2/SPRY DOMAIN-CONTAINING PROTEIN GUSTAVUS IN COMPLEX 1
2FO1	DE	D	CRYSTAL STRUCTURE OF THE CSL-NOTCH-MASTERMIND TERNARY COMPLEX BOUND TO DNA
2FOI	B D	D	SYNTHESIS, BIOLOGICAL ACTIVITY, AND X-RAY CRYSTAL STRUCTURAL ANALYSIS OF DIARYL ET
2G30	AP	Р	BETA APPENDAGE OF AP2 COMPLEXED WITH ARH PEPTIDE
2G4D	AB	А	CRYSTAL STRUCTURE OF HUMAN SENP1 MUTANT (C603S) IN COMPLEX WITH SUMO-1
2GPV	AG	G	ESTROGEN RELATED RECEPTOR-GAMMA LIGAND BINDING DOMAIN COMPLEXED WITH 4-HYDR(
2HRK	AB	В	STRUCTURAL BASIS OF YEAST AMINOACYL-TRNA SYNTHETASE COMPLEX FORMATION REVEAL
2HUE	AB	В	STRUCTURE OF THE H3-H4 CHAPERONE ASF1 BOUND TO HISTONES H3 AND H4
2HUE	ВC	С	STRUCTURE OF THE H3-H4 CHAPERONE ASF1 BOUND TO HISTONES H3 AND H4
2HWN	AE	Е	CRYSTAL STRUCTURE OF RII ALPHA DIMERIZATION/DOCKING DOMAIN OF PKA BOUND TO THE E
2I2R	ΑE	Е	CRYSTAL STRUCTURE OF THE KCHIP1/KV4.3 T1 COMPLEX
2I2R	ВF	В	CRYSTAL STRUCTURE OF THE KCHIP1/KV4.3 T1 COMPLEX
2IV8	A P	Р	BETA APPENDAGE IN COMPLEX WITH B-ARRESTIN PEPTIDE
2J59	AM	М	CRYSTAL STRUCTURE OF THE ARF1:ARHGAP21-ARFBD COMPLEX
2JTT	AC	С	SOLUTION STRUCTURE OF CALCIUM LOADED \$100A6 BOUND TO C- TERMINAL SIAH-1 INTERACI

A. PDB	Ε ΕΙΝΟΤΙΟΝ	F. $\Delta\Delta G_{AVG,HELIX}$	G. $\Delta\Delta G_{\text{SUM, HELIX}}$	H. $\Delta\Delta G_{\text{SUM, CHAIN}}$
1004	HVDPOLASE	2 1	62	15.2
100K		2.1	6.2	15.5
1007	TRANSCRIPTION	2.2	4.4	31.9
10K/	DNA BINDING PROTEIN	2.0	4.0	51.9 4.6
1015	METAL BINDING PROTEIN/INHIBITOR	2.3	4.0	4.0
1QL5 1R44	PROTEIN TRANSPORT	2.1	4.2	10.5
1880	PROTEIN TRANSFORT/EXCHANGE FACTOR	2.1	4.2	10.5
1893	TRANSCRIPTION	2.5	4.9	31.0
1T0F	DNA BINDING PROTEIN	2.2	4.4	18.9
1TTW	CHAPERONE	2.2	4.3	11.4
1TUF	REPLICATION	2.2	8.1	13.8
1TUE	REPLICATION	2.7	5.0	15.8
11101	SIGNALING PROTEIN	2.5	4 1	13.7
1U7B	REPLICATION	3.0	6.0	60
1U8T	SIGNALING PROTEIN	2.0	5.9	7.6
1VCB	TRANSCRIPTION	2.0	4.1	10.1
1X86	SIGNALING PROTEIN/MEMBRANE PROTEIN	3.1	61	14.8
1XCG	SIGNALING PROTEIN ACTIVATOR/SIGNALING PR	2.9	5.8	18.5
1XL3	CELL INVASION	4.0	12.0	16.6
1XLS	TRANSCRIPTION	3 3	6.6	9.5
1XV9	DNA BINDING PROTEIN	27	5.4	6.4
1734	SIGNALING PROTEIN	3.1	93	93
1YCR	COMPLEX (ONCOGENE PROTEIN/PEPTIDE)	3.7	11.1	12.9
1YOK	TRANSCRIPTION	2.8	83	83
1720	SIGNALING PROTEIN	2.6	5.1	15.1
1Z2C	HYDROL ASE/PROTEIN BINDING	2.0	4.9	9.5
1700	TRANSCRIPTION/TRANSFFRASF	2.5	4.2	7.6
1700	TRANSCRIPTION/TRANSFERASE	2.1	4.0	8.2
1ZVV	TRANSCRIPTION/DNA	2.0	4.0	4.4
2419	PROTEIN SYNTHESIS/TRANSFERASE	3.4	67	67
2A45	BLOOD CLOTTING	2.1	4.1	4 1
2441	STRUCTURAL PROTEIN	3.1	6.2	14 7
2AGH	TRANSCRIPTION	2.3	6.9	82
2B5L	PROTEIN BINDING/VIRAL PROTEIN	2.5	47	8.4
2CCL	CELL ADHESION	2.8	5.6	83
2DWZ	ONCOPROTEIN	2.0	7.2	12.5
2EKV	CONTRACTILE PROTEIN	2.9	8.6	16.3
2EKV	CONTRACTILE PROTEIN	3.0	5.9	16.3
2ERI	IMMUNE SYSTEM/CYTOKINE	2.0	3.9	97
2F93	MEMBRANE PROTEIN	2.2	4.3	7.2
2FM8	CHAPERONE/CELL INVASION	2.2	4.3	4.3
2FNJ	PROTEIN TRANSPORT/SIGNALING PROTEIN	3.1	6.1	6.1
2FO1	GENE REGULATION/SIGNALLING PROTEIN/DNA	2.2	4.3	5.3
2FOI	OXIDOREDUCTASE	2.9	5.7	8.9
2G30	ENDOCYTOSIS/EXOCYTOSIS	3.3	6.6	11.1
2G4D	HYDROLASE/PROTEIN BINDING	3.6	10.8	17.9
2GPV	TRANSCRIPTION	2.1	4.2	4.2
2HRK	LIGASE/RNA BINDING PROTEIN	2.7	5.3	8.9
2HUE	DNA BINDING PROTEIN	2.1	4.2	7.2
2HUE	DNA BINDING PROTEIN	2.3	4.5	22.5
2HWN	TRANSFERASE	2.1	4.1	4.1
2I2R	TRANSPORT PROTEIN	2.0	3.9	8.3
2I2R	TRANSPORT PROTEIN	3.4	6.7	19.2
2IV8	ENDOCYTOSIS/REGULATOR	2.7	5.4	9.1
2J59	HYDROLASE	2.1	4.2	4.2
2JTT	CALCIUM BINDING PROTEIN/ANTITUMOR PROTEI	2.5	5.0	5.0

A. PDB	I. HELIX	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	CONTRIBUTION	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$
100K	41%	3	E14, 1.9; E14, 2.3; L14, 2.0;
10R7	14%	2	R171, 1.3; F175, 3.1;
10R7	13%	2	F22, 1.3; L24, 2.7;
10SV	100%	2	L5, 3.3; R6, 1.3;
1QLS	100%	2	F6, 1.0; L7, 14.5;
1R4A	40%	2	E2174, 1.3; Y2177, 2.9;
1R8Q	34%	2	L77, 3.0; Y81, 1.9;
1RP3	14%	2	V60, 1.6; K64, 2.8;
1T0F	23%	2	L521, 1.5; R522, 2.9;
1TTW	38%	2	F45, 1.9; V49, 2.4;
1TUE	59%	3	I20, 1.7; Y23, 4.9; E24, 1.5;
1TUE	30%	2	F460, 2.8; I461, 2.2;
1U0S	30%	2	191, 2.2; 194, 1.9;
1U7B	100%	2	L340, 2.8; F343, 3.2;
1U8T	78%	3	I11, 2.0; D12, 1.5; Q8, 2.4;
1VCB	41%	2	L101, 1.5; L104, 2.6;
1X86	41%	2	D67, 3.5; L69, 2.6;
1XCG	31%	2	L69, 3.7; L72, 2.1;
1XL3	72%	3	F278, 4.7; W279, 4.4; F282, 2.9;
1XLS	69%	2	R426, 2.0; S427, 4.6;
1XV9	84%	2	I632, 4.3; L633, 1.1;
1Y3A	100%	3	W5, 4.2; F8, 3.3; L9, 1.8;
1YCR	86%	3	F19, 2.5; L22, 2.5; W23, 6.1;
1YOK	100%	3	L745, 2.9; L748, 2.7; L749, 2.7;
1Z2C	34%	2	R68, 4.0; L69, 1.1;
1ZNV	52%	2	D52, 1.3; Y55, 3.6;
1ZOQ	55%	2	Q2085, 2.2; I2089, 2.0;
1ZOQ	49%	2	L2096, 1.6; F2100, 2.4;
1ZVV	100%	2	I47, 2.4; M51, 2.0;
2A19	100%	2	F489, 5.3; E490, 1.4;
2A45	100%	2	E14, 1.6; L14, 2.5;
2A4J	42%	2	2, 4.2; 5, 2.0;
2AGH	84%	3	I849, 2.0; F852, 3.8; V853, 1.1;
2B5L	56%	2	V24, 2.1; F27, 2.6;
2CCL	67%	2	K18, 1.9; R19, 3.7;
2DWZ	58%	3	R338, 2.1; R339, 1.4; R342, 3.7;
2EKV	53%	3	W828, 6.2; W829, 1.1; L831, 1.3;
2EKV	36%	2	K819, 2.5; L821, 3.4;
2ERJ	40%	2	H16, 2.9; L19, 1.0;
2F93	60%	2	169, 2.1; 173, 2.2;
2FM8	100%	2	F54, 3.0; I58, 1.3;
2FNJ	100%	2	L241, 4.7; C245, 1.4;
2FO1	81%	2	L69, 3.1; H70, 1.2;
2FOI	64%	2	F368, 3.9; I369, 1.8;
2G30	59%	2	L11, 1.5; F8, 5.1;
2G4D	60%	3	D468, 3.2; E469, 1.2; N472, 6.4;
2GPV	100%	2	I1324, 2.0; L1328, 2.2;
2HRK	60%	2	R102, 2.2; Y106, 3.1;
2HUE	58%	2	L126, 2.5; I130, 1.7;
2HUE	20%	2	R36, 1.8; L37, 2.7;
2HWN	100%	2	V13, 2.8; M17, 1.3;
2I2R	47%	2	I77, 1.5; Y78, 2.4;
2I2R	35%	2	F11, 1.7; W8, 5.0;
2IV8	59%	2	D3, 1.5; F6, 3.9;
2J59	100%	2	11053, 2.0; 11057, 2.2;
2JTT	100%	2	I211, 1.8; W215, 3.2;

A. PDB CODE	L. HOTSPOT RESIDUE HELIX POSITIONS	M. HOTSPOT RESIDUE END TO END LENGTH	N. HELIX LENGTH	O. HELIX START RESIDUE #	P. HELIX END RESIDUE #
100K	i: 1: 1:	5	7	14	14
10R7	i: i+4:	5	20	167	186
10R7	i; i+2;	5	11	19	29
10SV	i; i+1;	5	8	3	10
1QLS	i; i+1;	2	9	2	10
1R4A	i; i+3;	2	15	2173	2187
1R8Q	i; i+4;	4	8	75	82
1RP3	i; i+4;	5	14	56	69
1T0F	i; i+1;	3	7	521	527
1TTW	i; i+4;	2	7	44	50
1TUE	i; i+3; i+4;	2	23	4	26
1TUE	i; i+1;	4	14	460	473
1U0S	i; i+3;	5	10	87	96
1U7B	i; i+3;	5	5	340	344
1U8T	i; i+3; i+4;	2	7	8	14
1VCB	i; i+3;	5	15	97	111
1X86	i; i+2;	5	5	67	71
1XCG	i; i+3;	2	7	69	75
1XL3	i; i+1; i+4;	4	6	278	283
IXLS	1; 1+1;	4	29	414	442
1XV9	1; 1+1;	4	1	631	637
TY3A	1; 1+3; 1+4;	4	6	5	10
1YCR	1; 1+3; 1+4;	5	6	19	24
1706	1; 1+3; 1+4;	4	9	/43	/51
1720	1; 1+1; ;, ; +2;	3	5	67	/1
1ZN V	1, 1+3;	4	0	2080	2002
1700	1, 1+4;	5	13	2080	2092
1700	1, 1 ⁺ 4, i: i+4:	3	12	2094	2103
1ZVV 2A10	1, 1 ⁺ 4, i· i+1·	2	0 12	47	34 499
2A19 2A45	1, 1+1, i. 1.	2	8	400	499
2445	i, i, i, i+3.	5	8	2	9
2A4J	i, i+3, i+4.	5	12	2 847	858
2R6H	i. i+3.	2	12	23	33
2D5L	i: i+1:	3	12	11	22
2DWZ	i; i+1; i+4:	4	12	338	351
2EKV	i: i+1: i+3:	5	5	828	832
2EKV	i: i+3:	5	11	815	825
2ERJ	i: i+3:	5	26	4	29
2F93	i; i+4;	2	27	53	79
2FM8	i; i+4;	2	17	54	70
2FNJ	i; i+4;	4	10	241	250
2FO1	i; i+1;	5	17	68	84
2FOI	i; i+1;	4	12	368	379
2G30	i; i+3;	4	11	5	15
2G4D	i; i+1; i+4;	2	17	468	484
2GPV	i; i+4;	5	10	1321	1330
2HRK	i; i+4;	4	14	98	111
2HUE	i; i+4;	4	11	121	131
2HUE	i; i+1;	3	11	31	41
2HWN	i; i+4;	4	17	4	20
2I2R	i; i+1;	5	12	71	82
2I2R	i; i+3;	5	8	8	15
2IV8	i; i+3;	5	12	2	13
2J59	i; i+4;	2	22	1042	1063
2JTT	i; i+4;	2	14	205	218

A. PDB		
CODE	Q. HELIX SEQUENCE	R. RESOLUTION
100K	ERELLES	2.30
10R7	VGTVRSRIFRAREAIDNKVQ	2.00
10R7	QKAFNLLVVRY	2.00
10SV	ALLRYLLD	2.50
1QLS	MVSAFLKQA	2.30
1R4A	TEFEYLRKVLFEYMM	2.30
1R8O	RPLWRHYF	1.86
1RP3	LEKKVKELKEKIEK	2.30
1T0F	LRYIYSO	1.85
1TTW	RFAYAVL	2.38
1TUF	PKETI SERI SALODKIIDHVEND	2.10
1TUE	FITELGALKSELKG	2.10
11101	OAMVIEAIKA	1.90
11170	IDDEE	1.90
1U/D		1.88
1081		1.50
IVCB	PEIALELLMAANFLD	2.70
1X86	DRLRP	3.22
1XCG	LRPLSYP	2.50
1XL3	FWQFFS	2.20
1XLS	RFAKLLLRLPALRSIGLKCLEHLFFFKLI	2.96
1XV9	KILHRLL	2.70
1Y3A	WYDFLM	2.50
1YCR	FSDLWK	2.60
1YOK	ALLRYLLDK	2.50
1Z2C	DRLRP	3.00
1ZNV	TDLIYY	2.00
1ZOQ	PQQQQVLNILKS	2.37
1ZOQ	PQLMAAFIKQRT	2.37
1ZVV	IMGLMSLA	2.98
2A19	AFETSKFFTDLR	2.50
2A45	ERELLESY	3.65
2A4J	WKLLAKGL	NOT APP
2AGH	SDIMDFVLKNTP	NOT APP
2B5L	TVEYFTSQQVT	2.85
2CCL	STDLTMLKRSVL	2.03
2DWZ	RROKRLIFSTITSK	2.40
2EKV	WWRLF	3.40
2EKV	RNVRKWLVLRN	3.40
2ERI	SSSTKKTOLOLEHLLLDLOMILNGIN	3.00
2E93	A A AVOFA AVSA II GLIILI GINI GI VA	2.00
2FM8	FPALIKOASI DALEKCG	2.00
21 MO	I MDI CRRTIR	1.80
2FO1		3 12
2FOI	EINVAIEVSEKV	2.50
2001		1.60
2030 204D	DEINEVMIMI MED SKE	2.80
204D		2.80
2GPV		2.85
2HRK	KHILKWIDYMQNLL	2.05
2HUE	PKDIQLAKKIK	1.70
2HUE	KPAIKKLARRG	1.70
2HWN	LAWKIAKMIVSDVMQQC	1.60
2I2R	EDTFKQIYAQFF	3.35
2I2R	WLPFARAA	3.35
2IV8	DDIVFEDFARQR	2.80
2J59	EEDTGVTNRDLISRRIKEYNNL	2.10
2JTT	DDMKRTINKAWVES	NOT APP

A. PDB	B. INTERFACE		
CODE	CHAINS	C. CHAIN	D. TITLE
2K8B	AB	В	SOLUTION STRUCTURE OF PLAA FAMILY UBIQUITIN BINDING DOMAIN (PFUC) CIS ISOMER IN CO
20CF	AD	D	HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH ESTRADIOL
20F5	CI	T	OLIGOMERIC DEATH DOMAIN COMPLEX
2079 207N	AB	B	THE COHESIN-DOCKERIN COMPLEX OF NAGLAND NAGH FROM CLOSTRIDIUM PERFRINGENS
2021 205T	EE	E	MOLECTILAD AND STDUCTURAL CHARACTERIZATION OF THE BEZAT CHDOMOSOMAL TOYNLAN
20110		E C	MODEL EOD V014 DINIDING TO DC4
2PHE	AC	C	MODEL FOR VETO BINDING TO FC4
2PMS	AC	C	CRYSIAL STRUCTURE OF THE COMPLEX OF HUMAN LACTOFERRIN N- LOBE AND LACTOFERRIN-
2POP	CD	С	THE CRYSTAL STRUCTURE OF TABLAND BIRT COMPLEX
2PQR	B D	D	CRYSTAL STRUCTURE OF YEAST FIS1 COMPLEXED WITH A FRAGMENT OF YEAST CAF4
2PV9	AB	А	CRYSTAL STRUCTURE OF MURINE THROMBIN IN COMPLEX WITH THE EXTRACELLULAR FRAGM
2QB0	A D	D	STRUCTURE OF THE 2TEL CRYSTALLIZATION MODULE FUSED TO T4 LYSOZYME WITH AN ALA-GI
2RHK	A C	С	CRYSTAL STRUCTURE OF INFLUENZA A NS1A PROTEIN IN COMPLEX WITH F2F3 FRAGMENT OF H
2UZ6	ΕO	0	ACHBP-TARGETED A-CONOTOXIN CORRELATES DISTINCT BINDING ORIENTATIONS WITH NACHR
2V1S	ΕL	L	CRYSTAL STRUCTURE OF RAT TOM20-ALDH PRESEQUENCE COMPLEX
2V52	ВM	М	STRUCTURE OF MAL-RPEL2 COMPLEXED TO G-ACTIN
2VGO	A D	D	CRYSTAL STRUCTURE OF AURORA B KINASE IN COMPLEX WITH REVERSINE INHIBITOR
2VZD	ВD	D	CRYSTAL STRUCTURE OF THE C-TERMINAL CALPONIN HOMOLOGY DOMAIN OF ALPHA PARVIN I
2W2X	BC	В	COMPLEX OF RAC2 AND PLCG2 SPPH DOMAIN
2W2X	BC	C	COMPLEX OF RAC2 AND PLCG2 SPPH DOMAIN
2 W 2A	AB	B	STRUCTURE OF PEY14 IN COMPEY WITH PEY5
2 W 07		D	STRUCTURE OF THE HUMAN DDVG C TERMINAL DOMAIN IN COMPLEX WITH AN EDC2 EDE REDT
2 WAA		ы	STRUCTURE OF THE HUMAN DDAU CTER WINAL DOMAIN IN COMPLEX WITH AN EDC5-FDF FETH
2225	ОП	п	CRYSTAL STRUCTURE OF RHODOBACTER SPHAEROIDES SIDE IN COMPLEX WITH THE ANTI-SIDW
2ZNV	AB	A	CRYSTAL STRUCTURE OF HUMAN AMSH-LP DUB DOMAIN IN COMPLEX WITH LYS63-LINKED UBI
2ZSH	AB	В	STRUCTURAL BASIS OF GIBBERELLIN(GA3)-INDUCED DELLA RECOGNITION BY THE GIBBERELLI
3A1G	AB	В	HIGH-RESOLUTION CRYSTAL STRUCTURE OF RNA POLYMERASE PB1-PB2 SUBUNITS FROM INFLU
3BLH	AB	В	CRYSTAL STRUCTURE OF HUMAN CDK9/CYCLINT1
3BS5	AB	Α	CRYSTAL STRUCTURE OF HCNK2-SAM/DHYP-SAM COMPLEX
3CJT	AB	А	RIBOSOMAL PROTEIN L11 METHYLTRANSFERASE (PRMA) IN COMPLEX WITH DIMETHYLATED RI
3CPH	GA	G	CRYSTAL STRUCTURE OF SEC4 IN COMPLEX WITH RAB-GDI
3CQX	ВC	С	CHAPERONE COMPLEX
3D24	AB	В	CRYSTAL STRUCTURE OF LIGAND-BINDING DOMAIN OF ESTROGEN- RELATED RECEPTOR ALPHA
3D48	P R	Р	CRYSTAL STRUCTURE OF A PROLACTIN RECEPTOR ANTAGONIST BOUND TO THE EXTRACELLUL
3DA7	A D	D	A CONFORMATIONALLY STRAINED, CIRCULAR PERMUTANT OF BARNASE
3DAB	ΕF	F	STRUCTURE OF THE HUMAN MDMX PROTEIN BOUND TO THE P53 TUMOR SUPPRESSOR TRANSAC
3EBA	AB	В	CABHUL6 FGLW MUTANT (HUMANIZED) IN COMPLEX WITH HUMAN LYSOZYME
3ECH	AC	C	THE MARR-FAMILY REPRESSOR MEXE IN COMPLEX WITH ITS ANTIREPRESSOR ARMR
3EG5	AB	Δ	CRYSTAL STRUCTURE OF MDIALTSH GRD-FH3 IN COMPLEX WITH CDC22-GMPPNP
3E75	AP	P	ACTIVATED TOXOPI ASMA GONDII CATHEPSIN I (TGCPI) IN COMPI EX WITH ITS PROPERTIDE
2E0V	P C	I D	TWO DOMAIN EDAGMENT OF HIV 2 INTEGRASE IN COMPLEX WITH I EDGE IDD
2EMD		D	COVSTAL STDUCTUDE OF THE NILCLEODODIN NUDDLA IN COMPLEX WITH THE DEAD DOV HELICA
3FMP	AD	Б	CRYSTAL STRUCTURE OF THE NUCLEOPORIN NUP214 IN COMPLEX WITH THE DEAD-BOX HELICA
SFUB		C	CRYSTAL STRUCTURE OF GDNF-GFRALPHAT COMPLEX
3GCG	AB	В	CRYSTAL STRUCTURE OF MAP AND CDC42 COMPLEX
3H2U	AB	A	HUMAN RAVERT RRM1, RRM2, AND RRM3 DOMAINS IN COMPLEX WITH HUMAN VINCULIN TAIL I
3H9R	AB	Α	CRYSTAL STRUCTURE OF THE KINASE DOMAIN OF TYPE I ACTIVIN RECEPTOR (ACVR1) IN COMPI
1A93	AB	В	NMR SOLUTION STRUCTURE OF THE C-MYC-MAX HETERODIMERIC LEUCINE ZIPPER, NMR, MINI
1AVO	C D	D	PROTEASOME ACTIVATOR REG(ALPHA)
1BCC	DH	Н	CYTOCHROME BC1 COMPLEX FROM CHICKEN
1BIQ	AB	А	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 1 BETA CHAIN MUTANT E238A
1BIQ	AB	В	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 1 BETA CHAIN MUTANT E238A
1BP3	AB	А	THE XRAY STRUCTURE OF A GROWTH HORMONE-PROLACTIN RECEPTOR COMPLEX
1CKK	AB	В	CALMODULIN/RAT CA2+/CALMODULIN DEPENDENT PROTEIN KINASE FRAGMENT
1CP9	AB	А	CRYSTAL STRUCTURE OF PENICILLIN G ACYLASE FROM THE BRO1 MUTANT STRAIN OF PROVIDE
1CUL	AB	А	COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE
1DE4	GI	G	HEMOCHROMATOSIS PROTEIN HEE COMPLEXED WITH TRANSFERRIN RECEPTOR
1DKF	AR	Δ	CRYSTAL STRUCTURE OF A HETERODIMERIC COMPLEX OF RAR AND RXR LIGAND-RINDING DOM
1DMI	ΔR	R	CRYSTAL STRUCTURE OF HERPES SIMPLEX OF AN AND TO THE C. TERMINUS OF HEV DO
		5	externil effective of field estimated end of the effective of fiby for

A. PDB CODE	E. FUNCTION	F. ΔΔG _{AVG,HELIX} (KCAL/MOL)	G. ΔΔG _{SUM, HELIX} (KCAL/MOL)	H. ΔΔG _{SUM, CHAIN} (KCAL/MOL)
2K8B	PROTEIN BINDING	2.1	6.4	6.4
20CF	HORMONE/GROWTH FACTOR	2.2	4 4	4 4
20F5	APOPTOSIS	3.5	7.0	7.0
2070	TOXIN	2.3	4 5	7.0
2P5T	TRANSCRIPTION REGULATOR	2.1	4.2	17.9
2191 2PHF	TRANSCRIPTION	2.1	7.6	76
2PMS	METAL TRANSPORT HYDROLASE	2.0	4.0	8.1
21 MIS	SIGNALING PROTEIN/APOPTOSIS	2.0	7.0	7.0
20 OF	ADODTOSIS	2.5	7.0	22.6
21 QK		2.9	5.7	22.0
21 V 9		2.2	4.4	0.5
2QB0 20HK		2.1	4.2	13.8
21176	VIKAL FROTEIN/NOCLEAR FROTEIN	2.0	4.0	10.6
2020	OVIDOREDUCTASE	4.2	5.5	5.5
2115	STRUCTURAL RECTEIN/CONTRACTILE RECTEIN	2.0	5.5	5.5
2032	TDANGEDAGE	2.0	2.0	13.0
2760	I KANSFERASE CELLADUESION	2.0	5.9	20.1
	UELLADHESIUN	2.0	5.1	/.0
2W2X	SIGNALING PROTEDU/HYDROLASE	2.1	4.1	4.1
2W2X	SIGNALING PKUTEIN/HYDKULASE	2.9	5.8	5.8
2W84	PROTEIN TRANSPORT	4.1	8.1	8.1
2WAX	HYDROLASE	2.0	3.9	18.7
2Z2S	TRANSCRIPTION	2.0	3.9	9.5
2ZNV	HYDROLASE/SIGNALING PROTEIN	2.2	4.4	9.0
2ZSH	HORMONE RECEPTOR	2.4	4.8	12.3
3A1G	TRANSFERASE	2.1	6.4	9.1
3BLH	TRANSCRIPTION	2.7	5.3	11.8
3BS5	SIGNALING PROTEIN/MEMBRANE PROTEIN	2.2	4.4	8.3
3CJT	TRANSFERASE/RIBOSOMAL PROTEIN	4.0	8.0	24.6
3CPH	PROTEIN TRANSPORT	2.4	4.8	8.8
3CQX	CHAPERONE	2.2	4.4	7.4
3D24	TRANSCRIPTION	2.1	6.4	7.5
3D48	HORMONE/HORMONE RECEPTOR	2.4	7.2	16.3
3DA7	PROTEIN BINDING	3.6	7.1	14.6
3DAB	CELL CYCLE	3.5	6.9	8.2
3EBA	IMMUNE SYSTEM/HYDROLASE	3.6	7.2	11.4
3ECH	TRANSCRIPTION, TRANSCRIPTION REGULATION	5.7	11.3	12.4
3EG5	SIGNALING PROTEIN	2.6	7.8	17.2
3F75	HYDROLASE	2.6	5.1	19.6
3F9K	VIRAL PROTEIN, RECOMBINATION	2.0	3.9	5.4
3FMP	ONCOPROTEIN/HYDROLASE	2.1	6.2	8.7
3FUB	HORMONE	2.1	4.2	5.3
3GCG	SIGNALING PROTEIN/TRANSCRIPTION	2.2	4.4	13.7
3H2U	CELL ADHESION	2.6	5.1	7.2
3H9R	ISOMERASE/PROTEIN KINASE	2.0	3.9	6.6
1A93	LEUCINE ZIPPER	2.0	7.9	7.9
1AVO	PROTEASOME ACTIVATOR	2.0	7.8	18.5
1BCC	OXIDOREDUCTASE	5.5	11.0	15.5
1BIO	OXIDOREDUCTASE	2.4	7.2	37.3
1BIO	OXIDOREDUCTASE	2.7	67	33.2
1803	HORMONE/GROWTH FACTOR	2.2	3.0	14 4
1CKK	CALMODUL IN-PEPTIDE COMPLEY	2.0	5.5	14.4
1000	HVDROLASE	2.0	11.5	68.0
1019	I VASE/I VASE/SIGNALING DDOTEIN	2.7	11.3	0.2
1DE4	METAL TDANSDODT INHIBITOD /DECEDTOD	2.3	4.5	7.5 14 5
1DE4	WE FAL TRAINSPORT INFIDITUR/RECEPTOR	2.1	10.0	14.3
1DKF	DNA DINDING DROTEIN/TRANSFERAGE	2.0	5.2	ð.l
IDML	DINA BIINDING PKUTEIN/TKANSFEKASE	5.1	9.2	12.1

A. PDB	I. HELIX	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	CONTRIBUTION	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$
2K8B	100%	3	M105, 1.4; F106, 2.3; Q109, 2.7;
20CF	100%	2	L78, 2.3; L82, 2.1;
20F5	100%	2	D864, 5.2; E867, 1.8;
20ZN	64%	2	I1588, 3.1; L1591, 1.4;
2P5T	23%	2	H123, 2,1; Y127, 2,1;
2PHE	100%	3	F475, 3.0: E476, 1.1: F479, 3.5:
2PMS	49%	2	F182 2 8: N183 1 2:
2POP	100%	3	F2212 2 4: D2213 1 4: F2216 3 2:
2POR	25%	2	F101 3 8: R102 1 9:
21 QK 2PV0	52%	2	$F14(F) = 2.5 \cdot F14(F) = 1.9 \cdot 1.0 $
20B0	40%	2	D79 2 4 V80 1 8
2QB0 2RHK	20%	2	V07 1 7: E08 2 3:
21176	2970	2	197, 1.7, 170, 2.3,
2020	1000/	2	Co, 7.0, N11, 1.4,
2115	100%	2	K17, 2.0, 121, 5.5,
2052	45%	3	L118, 2.7; K119, 1.0; 1122, 1.7;
2760	19%	2	L833, 1.4; L836, 2.5;
2VZD	6/%	2	L /, 3.1; L8, 2.0;
2W2X	100%	2	L67, 2.5; L70, 1.6;
2W2X	100%	2	F102, 3.5; V98, 2.3;
2W84	100%	2	W103, 4.9; F107, 3.2;
2WAX	21%	2	F206, 2.3; L210, 1.6;
2Z2S	41%	2	S65, 1.0; L66, 2.9;
2ZNV	49%	2	E329, 1.4; F332, 3.0;
2ZSH	39%	2	L50, 2.1; E51, 2.7;
3A1G	70%	3	R3, 2.8; I4, 2.2; L7, 1.4;
3BLH	45%	2	F89, 2.2; K93, 3.1;
3BS5	53%	2	R57, 2.4; R61, 2.0;
3CJT	33%	2	W59, 4.5; W63, 3.5;
3CPH	55%	2	R248, 3.5; I252, 1.3;
3CQX	59%	2	Q156, 1.6; I160, 2.8;
3D24	85%	3	L210, 2.6; Y213, 2.1; L214, 1.7;
3D48	44%	3	R177, 4.6; H180, 1.1; K181, 1.5;
3DA7	49%	2	D36, 1.3; D40, 5.8;
3DAB	84%	2	F19, 3.3; W23, 3.6;
3EBA	63%	2	D91, 2.0; C95, 5.2;
3ECH	91%	2	W45, 7.0; Y48, 4.3;
3EG5	45%	3	R66, 4.7; L67, 1.3; L70, 1.8;
3F75	26%	2	R170, 2.6; F173, 2.5;
3F9K	72%	2	M128, 1.3; W131, 2.6;
3FMP	71%	3	D255, 1.7; Q256, 1.2; R259, 3.3;
3FUB	79%	2	R171, 2.5; I175, 1.7;
3GCG	32%	2	I156, 1.3; F159, 3.1;
3H2U	71%	2	L928, 1.2; E932, 3.9;
3H9R	59%	2	W245, 2.1; F246, 1.8;
1A93	100%	4	N10, 2.3; H13, 1.9; I17, 1.7; L20, 2.0;
1AVO	42%	4	H202, 1.4: Y209, 2.7: V216, 1.3: R220, 2.4:
1BCC	71%	2	F59. 3.8: F74. 7.2:
1BIO	19%	3	D158, 3.2; Y166, 1.4; L169, 2.6:
1BIO	20%	3	L82, 1.3; I86, 1.0; R89, 4.4;
1BP3	27%	2	H18. 1.0: F25. 2.9:
1CKK	44%	2	W7 3 5 K14 1 6
1000	17%	2 4	L25 2.4 F26 2.3 Y29 5.0 D36 1.8
1CIII	48%	т 2	V413 1 9: D424 2 6:
1DF4	73%	2 A	H74 1 9 T77 2 8 V78 4 2 W81 1 7
1DKE	6/10/2	т 2	$F_{305} = 1.7 \cdot VA02 = 3.5 \cdot C_{10} = 0.000 \cdot VA02 =$
1DMI	76%	2 3	1270, 1.7, 1702, 3.0, 11227, 1.2; F1231, 5.3; I.1234, 2.7;
	/0/0	5	11221, 1.2 , 1.1231 , 3.3 , 1.1237 , 2.7 ,

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
2K8B	i; i+1; i+4;	4	17	104	120
20CF	i; i+4;	5	7	78	84
20F5	i; i+3;	5	12	863	874
20ZN	i; i+3;	5	10	1588	1597
2P5T	i; i+4;	5	19	110	128
2PHE	i; i+1; i+4;	2	6	475	480
2PMS	i; i+1;	5	19	174	192
2POP	i; i+1; i+4;	2	11	2212	2222
2PQR	i; i+1;	4	9	97	105
2PV9	i; i+1;	3	6	14E	14F
2QB0	i; i+1;	4	14	78	91
2RHK	i; i+1;	5	6	97	102
2UZ6	i; i+3;	5	7	6	12
2V1S	i; i+4;	5	9	15	23
2V52	i; i+1; i+4;	5	9	116	124
2VGO	i; i+3;	5	5	833	837
2VZD	i; i+1;	4	10	2	11
2W2X	i; i+3;	4	9	65	73
2W2X	i; i+4;	5	16	98	113
2W84	i; i+4;	5	17	94	110
2WAX	i; i+4;	2	7	206	212
2Z2S	i; i+1;	5	5	65	69
2ZNV	i; i+3;	2	10	329	338
2ZSH	i; i+1;	4	16	43	58
3A1G	i; i+1; i+4;	2	8	3	10
3BLH	i; i+4;	2	16	80	95
3BS5	i; i+4;	2	7	56	62
3CJT	i; i+4;	4	8	59	66
3CPH	i; i+4;	5	15	239	253
3CQX	i; i+4;	3	10	153	162
3D24	i; i+3; i+4;	5	8	208	215
3D48	i; i+3; i+4;	4	34	161	194
3DA7	i; i+4;	2	9	35	43
3DAB	i; i+4;	5	8	19	26
3EBA	i; i+4;	5	11	90	100
3ECH	i; i+3;	2	7	44	50
3EG5	i; i+1; i+4;	4	9	65	73
3F75	i; i+3;	2	8	170	177
3F9K	i; i+3;	5	11	124	134
3FMP	i; i+1; i+4;	5	11	253	263
3FUB	i; i+4;	5	15	165	179
3GCG	i; i+3;	5	24	155	178
3H2U	i; i+4;	5	21	918	938
3H9R	i; i+1;	5	14	242	255
1A93	i; i+3; i+7; i+10;	11	29	6	34
1AVO	i; i+7; i+14; i+18;	19	39	195	233
1BCC	i; i+15;	16	23	55	77
1BIQ	i; i+8; i+11;	16	19	153	171
1BIQ	i; i+4; i+7;	13	32	67	98
1BP3	i; i+7;	12	30	6	35
1CKK	i; i+7;	8	11	7	17
1CP9	i; i+1; i+4; i+11;	8	16	22	37
1CUL	i; i+11;	12	22	409	430
1DE4	i; i+3; i+4; i+7;	16	28	59	86
1DKF	i; i+7;	8	23	391	413
1DML	i; i+4; i+7;	12	16	1220	1235

A. PDB		
CODE	Q. HELIX SEQUENCE	R. RESOLUTION
2K8B	PMFLDQVAKFIIDNTKG	NOT APP
20CF	LRLMLAG	2.95
20F5	ODVAEEVRAVLE	3.20
20ZN	IGDLAMVSKN	1.60
2P5T	PWILMSDDLSDLIHTNIYL	3.20
2PHE	FEOMFT	NOT APP
2PMS	POAKIAFI ENOVHRI FOFI	2 91
2POP	EDELERI SOLG	3 10
20 OP	SATTERII A	1.88
21 QK	EKELD	3 50
2F V9		2.56
2000	VEVEVE	2.30
2KHK		1.95
2026	PPCILNN LODI LOVA C	2.40
2V18	LSRLLSYAG	2.05
2V52	DYLKRKIRS	1.45
2VGO	LEELF	1.70
2VZD	DDLDALLADL	2.10
2W2X	DRLRPLSYP	2.30
2W2X	VEELFEWFQSIREITW	2.30
2W84	VADLALSENWAQEFLAA	NOT APP
2WAX	FEGNLAL	2.30
2Z2S	SLASV	2.70
2ZNV	EELFNVQDQH	1.60
2ZSH	MADVAQKLEQLEVMMS	1.80
3A1G	RIKELRNL	1.70
3BLH	GNSVAPAALFLAAKVE	2.48
3BS5	GRALLRI	2.00
3CJT	WLEAWRRD	2.30
3CPH	LGELPQGFARLSAIY	2.90
3CQX	QKFQSIVIGC	2.30
3D24	SELLKYLT	2.11
3D48	EESRLSAYYNLLHCLRRDSHKIDNYLKLLKCRII	2.50
3DA7	LDALWDCLT	2.25
3DAB	FSDLWKLL	1.90
3EBA	ADAVACAKRVV	1.85
3ECH	AWDLYGE	1.80
3EG5	DRLRPLSYP	2 70
3F75	RDEFRRKY	1 99
3F9K	OFVKMVAWWIG	3 20
3FMP	HODOSIRIORM	3.19
3EUB	DTCKKVPSAVITPCT	2 35
3666	DITENTATION	2.55
211211		2.50
2110D		2.75
3H9K		2.55
1495	MKKKND I HQQDIDDLKKQNALLEQQVKAL	NOTAPP
1AVO	GDY KQLVHELDEAE Y KDIKLMV MEIKNAYAV LY DIILKN	2.80
IBCC	IEELFDFLHARDHUVAHKLFNSL	3.16
IBIQ	ISSY Y DELIEMTSY WHLLG	2.05
IBIQ	EHEKHIFISNLKYQTLLDSIQGRSPNVALLPL	2.05
1BP3	LSRLFDNAMLRAHRLHQLAFDTYQEFEEAY	2.90
1CKK	WTTVILVKSML	NOT APP
1CP9	TYSLFYGYGYAVAQDR	2.50
1CUL	AQELVMTLNELFARFDKLAAEN	2.40
1DE4	SQMWLQLSQSLKGWDHMFTVDFWTIMEN	2.80
1DKF	PAEVEALREKVYASLEAYCKHKY	2.50
1DML	AEETRRMLHRAFDTLA	2.70

A. PDB	B. INTERFACE	C CHADI	D TITLE
CODE	CHAINS	C. CHAIN	D. IIILE
1E7P	ΕF	E	QUINOL:FUMARATE REDUCTASE FROM WOLINELLA SUCCINOGENES
1EFU	C D	D	ELONGATION FACTOR COMPLEX EF-TU/EF-TS FROM ESCHERICHIA COLI
1F80	ΑE	А	HOLO-(ACYL CARRIER PROTEIN) SYNTHASE IN COMPLEX WITH HOLO- (ACYL CARRIER PROTEIN
1FM6	A D	А	THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN
1G73	A C	А	CRYSTAL STRUCTURE OF SMAC BOUND TO XIAP-BIR3 DOMAIN
1GX7	A D	А	BEST MODEL OF THE ELECTRON TRANSFER COMPLEX BETWEEN CYTOCHROME C3 AND [FE]-HY.
1H4L	ВE	Е	STRUCTURE AND REGULATION OF THE CDK5-P25(NCK5A) COMPLEX
1HX1	AB	В	CRYSTAL STRUCTURE OF A BAG DOMAIN IN COMPLEX WITH THE HSC70 ATPASE DOMAIN
1I1R	AB	В	CRYSTAL STRUCTURE OF A CYTOKINE/RECEPTOR COMPLEX
1I2M	C D	С	RAN-RCC1-SO4 COMPLEX
115K	A C	С	STRUCTURE AND BINDING DETERMINANTS OF THE RECOMBINANT KRINGLE-2 DOMAIN OF HUM
1IBR	AB	В	COMPLEX OF RAN WITH IMPORTIN BETA
1J7D	AB	А	CRYSTAL STRUCTURE OF HMMS2-HUBC13
1JEK	AB	В	VISNA TM CORE STRUCTURE
1JYO	AF	А	STRUCTURE OF THE SALMONELLA VIRULENCE EFFECTOR SPTP IN COMPLEX WITH ITS SECRETIC
1LDK	A D	А	STRUCTURE OF THE CUL1-RBX1-SKP1-F BOXSKP2 SCF UBIQUITIN LIGASE COMPLEX
1LQB	AB	В	CRYSTAL STRUCTURE OF A HYDROXYLATED HIF-1 ALPHA PEPTIDE BOUND TO THE PVHL/ELONG
1M1E	AB	А	BETA-CATENIN ARMADILLO REPEAT DOMAIN BOUND TO ICAT
1N1J	AB	А	CRYSTAL STRUCTURE OF THE NF-YB/NF-YC HISTONE PAIR
1N1J	AB	А	CRYSTAL STRUCTURE OF THE NF-YB/NF-YC HISTONE PAIR
1NGM	ΕF	F	CRYSTAL STRUCTURE OF A YEAST BRF1-TBP-DNA TERNARY COMPLEX
1NH2	BD	В	CRYSTAL STRUCTURE OF A YEAST TFIIA/TBP/DNA COMPLEX
1NH2	BD	B	CRYSTAL STRUCTURE OF A YEAST THIA/TBP/DNA COMPLEX
1NH2	BD	D	CRYSTAL STRUCTURE OF A YEAST THIA/TBP/DNA COMPLEX
1NU7	BD	D	STAPHYL OCOAGUL ASE-THROMBIN COMPLEX
1NU9		F	STAPHYLOCOAGULASE-PRETHROMBIN-2 COMPLEX
1NVM	GH	G	CPVSTAL STDUCTUDE OF A RIFLINCTIONAL ALDOL ASE DEHVDROGENASE · SEQUESTERING A RE
1020		4	CRYSTAL STRUCTURES OF GUITARVU 7 AMINOCERHALOSDORANIC ACID ACVLASE- INSIGHT INT
1000	AC	C A	CRYSTAL STRUCTURES OF GEOTARTE /-AMINOCEI HALOSI ORANIC ACID ACTEASE. INSIGHT INT
10K/		D	COMDUEV DETWEEN VDD1 AND SUNI DESDONSE DECHI ATOD DOMAIN IN SDACE CROUD D2(2)
10AK 1D4M		D A	ADDDD1 LID A2 NEDDQ AN E1 LIDIOLIUTIN LIVE DDOTEIN COMDIEV
1712	AD	A D	AFF DE 1-UDAS-NEDDO, AN E1-UDIQUITIN-LIKE ENOTEIN COMPLEX
1112 1TOV		D	CKI SIAL SIKUCIUKE OF FI KUUALLUL-FILUKUULUCINUL IKANSII I DKUA I LASE FKUM PELUD
1101	AB	D	THE ACTINORHODIN RETOSTINTHASE/CHAIN LENGTH FACTOR
1114	AU	C	CRYSTAL STRUCTURE OF A CED-9/EGL-1 COMPLEX
IUKV	GY	G	STRUCTURE OF RABGDP-DISSOCIATION INHIBITOR IN COMPLEX WITH PRENTLATED YPTT GTPA:
	AC	C	2.1 ANGSTROM CRYSTAL STRUCTURE OF THE PALS-1-L2/N AND PAIJ L2/ HETERODIMER COMPLE
1769	GH	G	THE CRYSTAL STRUCTURES OF THE REP-T PROTEIN IN COMPLEX WITH C-TERMINALLY TRUNCAL
I WA8	AB	A	SOLUTION STRUCTURE OF THE CFP-10.ESAT-6 COMPLEX. MAJOR VIRULENCE DETERMINANTS OF
IWPX	AB	A	CRYSTAL STRUCTURE OF CARBOXYPEPTIDASE Y INHIBITOR COMPLEXED WITH THE COGNATE P
IWPX	AB	В	CRYSTAL STRUCTURE OF CARBOX YPEPTIDASE Y INHIBITOR COMPLEXED WITH THE COGNATE P
TXB2	AB	A	CRYSTAL STRUCTURE OF BOS TAURUS MITOCHONDRIAL ELONGATION FACTOR TU/IS COMPLEX
1XKP	ВС	С	CRYSTAL STRUCTURE OF THE VIRULENCE FACTOR YOPN IN COMPLEX WITH ITS HETERODIMERI
1Y76	CB	С	SOLUTION STRUCTURE OF PATJ/PALS1 L27 DOMAIN COMPLEX
1YDI	AB	В	HUMAN VINCULIN HEAD DOMAIN (VH1, 1-258) IN COMPLEX WITH HUMAN ALPHA-ACTININ'S VIN
1YKE	C D	D	STRUCTURE OF THE MEDIATOR MED7/MED21 SUBCOMPLEX
1ZL8	AB	А	NMR STRUCTURE OF L27 HETERODIMER FROM C. ELEGANS LIN-7 AND H. SAPIENS LIN-2 SCAFFO
2A6Q	ΑE	А	CRYSTAL STRUCTURE OF YEFM-YOEB COMPLEX
2AFF	AB	В	THE SOLUTION STRUCTURE OF THE KI67FHA/HNIFK(226-269)3P COMPLEX
2AVU	ВE	Е	STRUCTURE OF THE ESCHERICHIA COLI FLHDC COMPLEX, A PROKARYOTIC HETEROMERIC REGI
2BGN	ВE	Е	HIV-1 TAT PROTEIN DERIVED N-TERMINAL NONAPEPTIDE TRP2-TAT (1-9) BOUND TO THE ACTIVE
2BNQ	ΑE	А	STRUCTURAL AND KINETIC BASIS FOR HEIGHTENED IMMUNOGENICITY OF T CELL VACCINES
2BYK	D C	D	HISTONE FOLD HETERODIMER OF THE CHROMATIN ACCESSIBILITY COMPLEX
2BYK	D C	D	HISTONE FOLD HETERODIMER OF THE CHROMATIN ACCESSIBILITY COMPLEX
2C5I	ТР	Р	N-TERMINAL DOMAIN OF TLG1 COMPLEXED WITH N-TERMINUS OF VPS51 IN DISTORTED CONFO
2C9W	ВC	С	CRYSTAL STRUCTURE OF SOCS-2 IN COMPLEX WITH ELONGIN-B AND ELONGIN-C AT 1.9A RESOLU
2CJS	A C	А	STRUCTURAL BASIS FOR A MUNC13-1 DIMERIC - MUNC13-1 - RIM HETERODIMER SWITCH: C2-DOI

A. PDB		F. $\Delta\Delta G_{AVG,HELIX}$	G. $\Delta\Delta G_{SUM, HELIX}$	H. $\Delta\Delta G_{SUM, CHAIN}$
CODE	E. FUNCTION	(KCAL/MOL)	(KCAL/MOL)	(KCAL/MOL)
1E7P	OXIDOREDUCTASE	2.5	5.0	14.7
1EFU	COMPLEX (TWO ELONGATION FACTORS)	2.9	8.8	19.5
1F80	TRANSFERASE	2.3	9.2	12.3
1FM6	TRANSCRIPTION	2.0	6.1	7.6
1G73	APOPTOSIS/APOPTOSIS INHIBITOR	3.3	13.2	13.2
1GX7	OXIDOREDUCTASE	2.8	8.5	40.2
1H4L	KINASE/KINASE ACTIVATOR	2.3	6.9	9.1
1HX1	CHAPERONE/CHAPERONE INHIBITOR	2.5	4.9	11.1
1I1R	CYTOKINE	2.3	7.0	8.2
1I2M	CELL CYCLE	2.1	8.2	13.3
115K	BLOOD CLOTTING	2.7	8.0	8.0
1IBR	CELL CYCLE, TRANSLATION	2.1	4.1	20.4
1J7D	UNKNOWN FUNCTION	2.2	6.6	6.6
1JEK	VIRAL PROTEIN	2.2	8.6	12.5
1JYO	CHAPERONE	2.5	5.0	6.5
1LDK	LIGASE	2.3	6.9	6.9
1LOB	GENE REGULATION	2.3	9.0	12.1
1MIE	STRUCTURAL PROTEIN	2.4	4.8	15.4
1N1J	DNA BINDING PROTEIN	4.3	17.3	23.2
1NIJ	DNA BINDING PROTEIN	2.0	4.0	23.2
1NGM	TRANSCRIPTION/DNA	2.6	5.2	15.8
1NH2	TRANSCRIPTION/DNA	2.2	87	20.3
1NH2	TRANSCRIPTION/DNA	2.5	10.0	20.3
1NH2	TRANSCRIPTION/DNA	2.3	6.8	93
11112	HYDROLASE/PROTEIN BINDING	2.5	6.1	15.2
1 NIL 19	HYDROLASE/PROTEIN BINDING	3.2	6.3	7.4
11107		2.1	6.3	17.2
1020		2.1	10.8	58.0
1007		2.2	5.0	22.2
10K/	SIGNALING DOTEIN	2.0	5.9 8 2	11 7
10AK	CELL CVCLE	2.7	6.2	24.4
1 K4M		2.1	6.3	24.4
1112 1TOV		2.1	0.3	52.5 20.6
1101	IRANSFERASE	2.2	8.8	50.0
11 Y 4	APOPTOSIS	2.1	8.4	13.8
IUKV	PROTEIN TRANSPORT	2.3	9.0	18.5
IVF6	PROTEIN BINDING/PROTEIN TRANSPORT	2.0	3.9	21.9
TVG9	PROTEIN BINDING/PROTEIN TRANSPORT	2.2	6.6	10.1
1 WA8	TUBERCULOSIS	4.2	12.6	29.6
1WPX	HYDROLASE	2.4	4.7	16.8
1WPX	HYDROLASE	2.6	5.2	20.3
1XB2	TRANSLATION	2.2	6.7	10.7
1XKP	MEMBRANE PROTEIN/CHAPERON	2.1	8.5	12.2
1Y76	TRANSPORT PROTEIN	5.9	17.7	24.0
1YDI	CELL ADHESION, STRUCTURAL PROTEIN	2.4	16.6	16.6
1YKE	GENE REGULATION	2.9	8.7	11.9
1ZL8	PROTEIN BINDING	2.2	4.3	25.2
2A6Q	TOXIN INHIBITOR/TOXIN	2.1	8.5	15.0
2AFF	CELL CYCLE	3.0	11.9	11.9
2AVU	TRANSCRIPTION ACTIVATOR	2.8	5.5	8.4
2BGN	HYDROLASE	2.3	6.8	15.1
2BNQ	IMMUNE SYSTEM/RECEPTOR	2.2	6.6	6.6
2BYK	DNA-BINDING PROTEIN	2.5	10.1	26.1
2BYK	DNA-BINDING PROTEIN	2.7	5.4	26.1
2C5I	PROTEIN TRANSPORT	2.1	6.4	9.4
2C9W	TRANSCRIPTION REGULATION	2.4	4.7	12.0
2CJS	EXOCYTOSIS	2.1	6.2	11.6

A. PDB	I. HELIX	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	CONTRIBUTION	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$
1E7P	34%	2	Q225, 3.6; V236, 1.4;
1EFU	45%	3	F271, 4.4; V275, 3.4; M278, 1.0;
1F80	75%	4	R21, 1.7; R24, 2.4; F25, 1.2; R28, 3.9;
1FM6	80%	3	E394, 1.8; Y397, 3.1; E401, 1.2;
1G73	100%	4	H92, 5.3; Y95, 2.8; L96, 1.3; E99, 3.8;
1GX7	21%	3	F147, 2.5; W154, 4.1; E155, 1.9;
1H4L	76%	3	W258, 3.6: L262, 1.8: 1265, 1.5:
1HX1	44%	2	R237. 2.8: D252. 2.1:
111R	85%	3	L11 11: R15 24: W18 35:
112M	62%	4	N103 1 0 R106 3 2 D107 2 0 R110 2 0
115K	100%	3	L 310 2 5 L 313 1 5 R 317 4 0
1IBR	20%	2	F281 2 7: D288 1 4:
117D	100%	3	F13 4 6: F17 1 0: F20 1 0:
1 IFK	69%	4	W631 1 7: I635 1 3: H638 3 1: I 642 2 5:
1JER 1JVO	77%	2	F111 2 2. F118 2 8.
	100%	2	M43 1 3: V46 1 0: V50 4 6:
1LOR	74%	3	H68 = 2.0; M75 = 1.1; V70 = 1.4; P82 = 2.5;
1M1E	7470	4	T652 1 1: E660 2 7:
INILE	5170 750/	2	1033, 1.1, 1000, 5.7, 1033, 1.1, 1000, 5.7,
11N1J 1N11J	1 70/	4	1 126, 2.4, L152, 1.5, 1 155, 1.4, L150, 12.0,
INIJ	1/70	2	V 64, 1.1, 192, 2.9,
INGM	33%	2	S480, 1.5; W487, 3.7;
INH2	45%	4	L38, 2.1; W42, 5.7; K45, 1.0; L40, 1.3;
INH2	49%	4	V9, 1.0; Y10, 5.0; I13, 2.4; V17, 1.6;
INH2	/3%	3	115, 3.3; L19, 2.0; L26, 1.5;
INU7	40%	3	L67, 3.0; Q71, 2.1; L74, 1.0;
INU9	85%	2	K59, 4.9; L67, 1.4;
1NVM	37%	3	M328, 1.6; D331, 3.6; D335, 1.1;
1OR0	19%	5	F39, 1.7; Y40, 2.8; Y42, 2.5; Q46, 2.5;
10R7	18%	3	155, 1.9; V59, 1.9; 163, 2.1;
10XK	70%	3	V1098, 1.7; R1105, 2.9; M1106, 3.6;
1R4M	26%	3	T492, 1.3; F496, 1.5; Q503, 3.5;
1TI2	12%	3	N18, 1.4; D25, 1.5; E26, 3.4;
1TQY	29%	4	F109, 1.0; F116, 3.8; L119, 1.7; W120, 2.3;
1TY4	61%	4	I50, 1.5; I54, 3.3; K57, 1.1; L58, 2.5;
1UKV	49%	4	E241, 1.9; Q244, 2.2; R248, 3.9; I252, 1.0;
1VF6	18%	2	F159, 1.4; H166, 2.5;
1VG9	65%	3	Q382, 1.0; R386, 3.0; V390, 2.6;
1WA8	43%	3	F17, 1.9; D23, 1.0; L24, 9.7;
1WPX	28%	2	W231, 3.5; Y239, 1.2;
1WPX	26%	2	F507, 4.0; S514, 1.2;
1XB2	63%	3	E193, 2.6; L194, 1.7; E198, 2.4;
1XKP	70%	4	R66, 1.6; M69, 2.9; Q70, 1.3; L73, 2.7;
1Y76	74%	3	L35, 3.7; F38, 11.8; L42, 2.2;
1YDI	100%	7	W743, 5.8; L746, 1.5; L747, 2.6; I750, 1.8; I754, 1.7; E758, 1.2; I761, 2.0;
1YKE	73%	3	M15, 2.6; F19, 4.4; L23, 1.7;
1ZL8	17%	2	L5, 1.6; L15, 2.7;
2A6Q	57%	4	E53, 1.0; E59, 2.9; Y62, 2.6; L63, 2.0;
2AFF	100%	4	F241, 1.8; L242, 3.9; R245, 2.8; V249, 3.4;
2AVU	65%	2	V71, 2.1; F82, 3.4;
2BGN	45%	3	L132, 2.1; Q135, 2.4; E139, 2.3;
2BNQ	100%	3	R65, 1.7; Q72, 3.3; T73, 1.6;
2BYK	39%	4	F81, 3.6; L85, 2.1; L89, 1.1; Y92, 3.3;
2BYK	21%	2	I37, 1.9; F44, 3.5;
2C5I	68%	3	R20, 2.3; L23, 2.5; F27, 1.6;
0.00111			
2C9W	39%	2	H68, 3.6; R82, 1.1;

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
1E7P	i; i+11;	12	14	224	237
1EFU	i; i+4; i+7;	8	9	271	279
1F80	i; i+3; i+4; i+7;	8	10	21	30
1FM6	i; i+3; i+7;	8	23	386	408
1G73	i; i+3; i+4; i+7;	8	48	72	119
1GX7	i; i+7; i+8;	19	20	146	165
1H4L	i; i+4; i+7;	8	15	254	268
1HX1	i; i+15;	6	27	231	257
1I1R	i; i+4; i+7;	7	27	9	35
1I2M	i; i+3; i+4; i+7;	14	13	101	113
115K	i; i+3; i+7;	12	22	306	327
1IBR	i; i+7;	6	26	273	298
1J7D	i; i+4; i+7;	8	15	11	25
1JEK	i; i+4; i+7; i+11;	11	33	629	661
1JYO	i; i+7;	6	22	103	124
1LDK	i: i+3: i+7:	8	14	40	53
1LOB	i: i+7: i+11: i+14:	8	17	67	83
1M1E	i: i+7:	6	15	649	663
1N11	i: i+4: i+7: i+8:	7	15	126	140
1N11	i. i+8.	7	29	78	106
1NGM	i, i+7.	8	15	177	491
1NH2	i, i + 7, i + 7, i + 8	9	17	32	491
11112	1, 1, 4, 1, 7, 1, 8,	12	19	32	70
11112	$1, 1^{+}1, 1^{+}4, 1^{+}0, \\ \vdots, \vdots, 4, \vdots, 11.$	12	16	4	21
11NHZ	$1, 1 \pm 4, 1 \pm 11,$		10	14	29
	1, 1+4, 1+7,	6	40	56	95
INU9	1; 1+8;	6	40	56	95
INVM	1; 1+3; 1+7;	8	15	326	340
1OR0	1; 1+1; 1+3; 1+7;	6	16	35	50
10R7	1; 1+4; 1+8;	17	11	55	65
10XK	i; i+7; i+8;	16	14	1097	1110
1R4M	i; i+4; i+11;	8	21	491	511
1TI2	i; i+7; i+8;	8	12	18	29
1TQY	i; i+7; i+10; i+11;	8	15	109	123
1TY4	i; i+4; i+7; i+8;	8	11	50	60
1UKV	i; i+3; i+7; i+11;	8	15	239	253
1VF6	i; i+7;	18	13	157	169
1VG9	i; i+4; i+8;	6	15	377	391
1WA8	i; i+6; i+7;	8	34	7	40
1WPX	i; i+8;	12	22	230	251
1WPX	i; i+7;	11	12	507	518
1XB2	i; i+1; i+5;	7	14	193	206
1XKP	i; i+3; i+4; i+7;	16	14	62	75
1Y76	i; i+3; i+7;	8	15	30	44
1YDI	i; i+3; i+4; i+7; i+11; i+15; i+18;	8	22	743	764
1YKE	i; i+4; i+8;	8	22	4	25
1ZL8	i; i+10;	15	17	4	20
2A6Q	i; i+6; i+9; i+10;	9	16	51	66
2AFF	i; i+1; i+4; i+8;	8	14	239	252
2AVU	i: i+11:	12	20	67	86
2BGN	i. i+3. i+7.	9	19	126	144
2BNO	i: i+7: i+8:	19	29	57	85
2BVK	i: i+4: i+8: i+11:	9	19	79	97
2BTK 2BVK	i. i+7.	9	20	31	50
201K 2C51	i. i+3. i+7.	10	29 14	16	29
2001 2001	1, 1 · J, 1 · /, i· i⊥14·	12	17	67	27 82
209W	1, 1 + 14, ;. ;_1, ;_0.	12	1/ 20	125	03 154
2015	1, 1 -4, 1-0,	11	20	155	134

A. PDB CODE	O. HELIX SEOUENCE	R. RESOLUTION
1E7P	LOSKIAYL RRKMVS	3 10
1EFU	FAAFVAAMS	2.50
1F80	ROKRFAERIL	2.30
1FM6	PAEVEALREKVYASLEAYCKHKY	2.10
1G73	EEEDEVWOVIIGARAEMTSKHOEYLKLETTWMTAVGLSEMAAEAAYOT	2.00
1GX7	EFTADVTIWEEGSEFVERLT	NOT APP
1H4L	KEAFWDRCLSVINLM	2.65
1HX1	KDSRLKRKGLVKKVQAFLAECDTVEQN	1.90
1I1R	KDLLIQRLNWMLWVIDECFRDLCYRTG	2.40
1I2M	VPNWHRDLVRVCE	1.76
115K	ADAELQRLKNERHEEAELERLK	2.70
1IBR	DEVALQGIEFWSNVCDEEMDLAIEAS	2.30
1J7D	RNFRLLEELEEGQKG	1.85
1JEK	QQWEEEIEQHEGNLSLLLREAALQVHIAQRDAR	1.50
1JYO	TYHIISQLESFVNQQEALKNIL	1.90
1LDK	SRYMELYTHVYNYC	3.10
1LQB	SHVLSKVCMYFTYKVRY	2.00
1M1E	EGVATYAAAVLFRMS	2.10
1N1J	DSYVEPLKLYLQKFR	1.67
1N1J	KDAKECVQECVSEFISFITSEASERCHQE	1.67
1NGM	EEASKLKERIWIGLN	2.95
1NH2	EQTLQDLKNIWQKKLTE	1.90
1NH2	AEASRVYEIIVESVVNEV	1.90
1NH2	TIGNSLVDALDTLISD	1.90
1NU7	KDAKDKLMTRILGEDQYLLERKKVQYEEYKKLYKKYKEEN	2.20
1NU9	KDAKDKLMTRILGEDQYLLERKKVQYEEYKKLYKKYKEEN	2.20
1NVM	EDMIVDVALDLLAAH	1.70
1OR0	APSAFYGYGWAQARSH	2.00
10R7	ISSRVMAAIEE	2.00
10XK	HVNQEVIKRMLNLE	2.10
1R4M	HTIAAFLGGAAAQEVIKIITK	3.00
1TI2	NCFMGCMDEHEL	2.35
1TQY	FDFTHREFRKLWSEG	2.00
1TY4	IGYEIGSKLAA	2.20
1UKV	LGELPQGFARLSAIY	1.50
1VF6	RDFQNAFKIHNAV	2.10
1VG9	QGELPQCFCRMCAVF	2.50
1WA8	AATLAQEAGNFERISGDLKTQIDQVESTAGSLQG	NOT APP
1WPX	VWSCVPATIYCNNAQLAPYQRT	2.70
1WPX	FAQASIDSYKKH	2.70
1XB2	ELVELEIRELLTEF	2.20
1XKP	VTLLRSLMQQALAW	1.70
1Y76	TQNEKLSAFYETLKS	NOT APP
1YDI	WEQLLTTIARTINEVENQILTR	1.80
IYKE	RETQLQICLDQMTEQFCATENY	3.30
1ZL8	NLERDVQRILELMEHVQ	NOT APP
2A6Q	LEEYNSLEETAYLLRS	2.05
2AFF	PIFLERRKSQVAEL	NOTAPP
2AVU 2DCV	WEUNVHASMFUNAWUFLLKI	3.00
2BGN	PDEVVSLVNQGLQEGERDF	3.15
2BNQ	PEYWDGEIKKVKAHSQIHKVDLGILKGYY	1.70
2BYK	ESF V PSLI QULEV Y KKVVK	2.40
2BYK	KEAKAAIAKAASVFAIFVISSSIALAHKQ	2.40
2051	LINKUKKLULKEF YN Suna giwygn wettywydy	2.30
2C9W	SHVLSK VUMYFTYK VRY	1.90
2CJS	EEEAKY WAKKLEQLNAKLNS	1.78

A. PDB CODE	B. INTERFACE CHAINS	C. CHAIN	D. TITLE
2D10	ΔF	F	CRYSTAL STRUCTURE OF THE RADIXIN FERM DOMAIN COMPLEXED WITH THE NHERE 1 C-TERM
2010	XC	C	THE X-RAY CRYSTALLOGRAPHIC STRUCTURE OF THE ANGIOGENESIS INHIBITOR ANGIOSTATIN
2DOI 2DSR	BL	I	STRUCTURAL BASIS FOR THE INHIBITION OF INSULIN-LIKE GROWTH FACTORS BY IGE BINDING
2E9X	AC	A	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMPLEX
2E9X 2E9X		Δ	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMPLEX
2E)X 2E9X	AD	D	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMPLEX
2E)X 2E0X		D	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMPLEX
2E9A 2E0Y	RC RC	B	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMILEX
2E9A 2E0V	BC	Б	THE CRISTAL STRUCTURE OF HUMAN CINS CORE COMPLEX
2E9A 2EEC			AD A7 CDD/ATVD20A
2EFC 2EUD	AD	A	AKA/-ODF/ALVES7A THE STRUCTURE OF THE C TERMINAL DOMAIN OF THE BROTEIN KINASE ATSOS2 DOUND TO THE
	A D B D	A D	THE STRUCTURE OF THE C-TERMINAL DOMAIN OF THE PROTEIN KINASE ATSOS2 BOUND TO THE CONSTAL STRUCTURE OF HUMAN CINE COMPLEX
2EHO	БР	D	CRYSTAL STRUCTURE OF HUMAN GINS COMPLEX
2500	E F	E D	CRESTAL STRUCTURE OF THE DAD CTDASE SECAD THE SECOD CEE DOMAIN AND DUOSDUATE CO.
2EQB	AB	В	CRYSTAL STRUCTURE OF THE RAB GIPASE SEC4P, THE SEC2P GEF DOMAIN, AND PHOSPHATE CO.
2E54	AD	D	CRYSTAL STRUCTURE OF THE BURKHOLDERIA GLUMAE LIPASE- SPECIFIC FOLDASE IN COMPLE.
2FK0	QK	ĸ	CRYSTAL STRUCTURE OF A H5N1 INFLUENZA VIRUS HEMAGGLUTININ.
2F01	A D	D	CRYSTAL STRUCTURE OF THE CSL-NOTCH-MASTERMIND TERNARY COMPLEX BOUND TO DNA
2G38	AB	В	A PE/PPE PROTEIN COMPLEX FROM MYCOBACTERIUM TUBERCULOSIS
2GMI	AB	В	MMS2/UBCI3~UBIQUITIN
2GOX	CD	D	CRYSTAL STRUCTURE OF EFB-C/C3D COMPLEX
2HQW	AB	В	CRYSTAL STRUCTURE OF CA2+/CALMODULIN BOUND TO NMDA RECEPTOR NRTCT PEPTIDE
2HUE	BC	В	STRUCTURE OF THE H3-H4 CHAPERONE ASFI BOUND TO HISTONES H3 AND H4
2HV8	AD	D	CRYSTAL STRUCTURE OF GTP-BOUND RABI1 IN COMPLEX WITH FIP3
212R	BF	F	CRYSTAL STRUCTURE OF THE KCHIP1/KV4.3 T1 COMPLEX
2IZV	BC	С	CRYSTAL STRUCTURE OF SOCS-4 IN COMPLEX WITH ELONGIN-B AND ELONGIN-C AT 2.55A RESOL
2JFA	A P	Р	ESTROGEN RECEPTOR ALPHA LBD IN COMPLEX WITH AN AFFINITY- SELECTED COREPRESSOR PF
2JRI	AC	А	SOLUTION STRUCTURE OF THE JOSEPHIN DOMAIN OF ATAXIN-3 IN COMPLEX WITH UBIQUITIN M
2K2I	AB	В	NMR SOLUTION STRUCTURE OF THE C-TERMINAL DOMAIN (T94-Y172) OF THE HUMAN CENTRIN
2NNU	AB	В	CRYSTAL STRUCTURE OF THE PAPILLOMAVIRUS DNA TETHERING COMPLEX E2:BRD4
2NOJ	AB	В	CRYSTAL STRUCTURE OF EHP / C3D COMPLEX
208A	ВJ	J	RAT PP1CGAMMA COMPLEXED WITH MOUSE INHIBITOR-2
2OF5	ΕK	E	OLIGOMERIC DEATH DOMAIN COMPLEX
2OT3	AB	А	CRYSTAL STRUCTURE OF RABEX-5 VPS9 DOMAIN IN COMPLEX WITH NUCLEOTIDE FREE RAB21
2PBI	AB	А	THE MULTIFUNCTIONAL NATURE OF GBETA5/RGS9 REVEALED FROM ITS CRYSTAL STRUCTURE
2PJW	ΗV	Н	THE VPS27/HSE1 COMPLEX IS A GAT DOMAIN-BASED SCAFFOLD FOR UBIQUITIN-DEPENDENT SOI
2PQN	AB	В	CRYSTAL STRUCTURE OF YEAST FIS1 COMPLEXED WITH A FRAGMENT OF YEAST MDV1
2PQR	AC	С	CRYSTAL STRUCTURE OF YEAST FIS1 COMPLEXED WITH A FRAGMENT OF YEAST CAF4
2QIY	AC	С	YEAST DEUBIQUITINASE UBP3 AND BRE5 COFACTOR COMPLEX
2QLV	AB	А	CRYSTAL STRUCTURE OF THE HETEROTRIMER CORE OF THE S. CEREVISIAE AMPK HOMOLOG SN
2R17	AC	С	FUNCTIONAL ARCHITECTURE OF THE RETROMER CARGO-RECOGNITION COMPLEX
2SIV	C D	С	SIV GP41 CORE STRUCTURE
2V1D	AB	А	STRUCTURAL BASIS OF LSD1-COREST SELECTIVITY IN HISTONE H3 RECOGNITION
2VE7	AC	А	CRYSTAL STRUCTURE OF A BONSAI VERSION OF THE HUMAN NDC80 COMPLEX
2VE7	AC	А	CRYSTAL STRUCTURE OF A BONSAI VERSION OF THE HUMAN NDC80 COMPLEX
2VE7	AC	С	CRYSTAL STRUCTURE OF A BONSAI VERSION OF THE HUMAN NDC80 COMPLEX
2VGO	A D	D	CRYSTAL STRUCTURE OF AURORA B KINASE IN COMPLEX WITH REVERSINE INHIBITOR
2WAX	AB	В	STRUCTURE OF THE HUMAN DDX6 C-TERMINAL DOMAIN IN COMPLEX WITH AN EDC3-FDF PEPTI
2WIN	ΗN	Ν	C3 CONVERTASE (C3BBB) STABILIZED BY SCIN
2WME	D C	D	CRYSTALLOGRAPHIC STRUCTURE OF BETAINE ALDEHYDE DEHYDROGENASE FROM PSEUDOMO
2Z2T	A D	А	CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN GP41 FRAGMENT N36 AND FUSION INHIBITOF
2Z3R	C D	С	CRYSTAL STRUCTURE OF THE IL-15/IL-15RA COMPLEX
2ZL1	AB	В	MP1-P14 SCAFFOLDING COMPLEX
3BEG	AB	А	CRYSTAL STRUCTURE OF SR PROTEIN KINASE 1 COMPLEXED TO ITS SUBSTRATE ASF/SF2
3BOW	B C	В	STRUCTURE OF M-CALPAIN IN COMPLEX WITH CALPASTATIN
3BRT	AB	В	NEMO/IKK ASSOCIATION DOMAIN STRUCTURE
3BRV	AB	В	NEMO/IKKB ASSOCIATION DOMAIN STRUCTURE

A. PDB		F. $\Delta\Delta G_{AVG,HELIX}$	G. $\Delta\Delta G_{SUM, HELIX}$	H. $\Delta\Delta G_{SUM, CHAIN}$
CODE	E. FUNCTION	(KCAL/MOL)	(KCAL/MOL)	(KCAL/MOL)
2D10	CELL ADHESION	2.9	8.6	9.9
2DOI	HYDROLASE	2.0	6.1	6.1
2DSR	PROTEIN BINDING/HORMONE/GROWTH FACTOR	2.4	4.7	8.0
2E9X	REPLICATION	2.0	8.0	13.1
2E9X	REPLICATION	2.2	4.3	15.1
2E9X	REPLICATION	2.6	10.4	21.8
2E9X	REPLICATION	2.5	7.4	21.8
2E9X	REPLICATION	2.1	4.1	27.3
2E9X	REPLICATION	2.4	14.2	32.0
2EFC	TRANSPORT PROTEIN	2.7	8.0	15.5
2EHB	SIGNALLING PROTEIN/TRANSFERASE	2.0	5.9	17.9
2EHO	REPLICATION	3.6	10.7	14.4
2EHO	REPLICATION	2.4	4.7	15.7
2EQB	ENDOCYTOSIS/EXOCYTOSIS	2.3	6.9	6.9
2ES4	HYDROLASE	2.0	4.0	9.5
2FK0	VIRAL PROTEIN	2.0	3.9	10.6
2FO1	GENE REGULATION/SIGNALLING PROTEIN/DNA	2.2	4.4	5.4
2G38	STRUCTURAL GENOMICS, UNKNOWN FUNCTION	2.4	7.2	22.9
2GMI	LIGASE, HUMAN PROTEIN	2.6	7.9	9.5
2GOX	CELL ADHESION/TOXIN	2.3	6.8	8.0
2HQW	METAL BINDING PROTEIN	3.2	12.6	14.5
2HUE	DNA BINDING PROTEIN	3.1	9.3	24.8
2HV8	PROTEIN TRANSPORT	2.4	7.2	7.2
2I2R	TRANSPORT PROTEIN	3.7	7.3	46.4
2IZV	TRANSCRIPTION	2.0	6.1	10.3
2JFA	TRANSCRIPTION	2.3	6.8	6.8
2JRI	HYDROLASE/SIGNALING PROTEIN	2.0	6.0	17.9
2K2I	CELL CYCLE	4.6	9.2	9.2
2NNU	TRANSCRIPTION	2.6	10.2	14.3
2NOJ	IMMUNE SYSTEM	2.0	6.1	6.1
208A	HYDROLASE/INHIBITOR	2.1	6.4	25.3
20F5	APOPTOSIS	2.8	5.5	9.3
2OT3	PROTEIN TRANSPORT	2.7	5.4	11.2
2PBI	SIGNALING PROTEIN	2.4	7.1	45.7
2PJW	ENDOCYTOSIS/EXOCYTOSIS	2.2	6.6	28.3
2PQN	APOPTOSIS	2.4	12.2	14.1
2PQR	APOPTOSIS	3.2	12.6	12.6
2QIY	SIGNALING PROTEIN/HYDROLASE	2.4	7.1	14.8
2QLV	TRANSFERASE/PROTEIN BINDING	2.6	5.1	11.9
2R17	PROTEIN TRANSPORT	2.3	4.5	9.5
2SIV	ENVELOPE GLYCOPROTEIN	2.1	8.2	9.6
2V1D	OXIDOREDUCTASE/REPRESSOR	2.0	5.9	23.3
2VE7	CELL CYCLE	2.4	7.2	30.1
2VE7	CELL CYCLE	2.0	4.0	30.1
2VE7	CELL CYCLE	2.6	5.1	28.9
2VGO	TRANSFERASE	2.5	4.9	20.1
2WAX	HYDROLASE	2.3	6.8	18.7
2WIN	IMMUNE SYSTEM	2.0	6.1	10.8
2WME	OXIDOREDUCTASE	2.3	4.5	18.4
2Z2T	VIRAL PROTEIN/INHIBITOR	2.4	9.4	9.4
2Z3R	CYTOKINE/CYTOKINE RECEPTOR	2.8	8.3	10.4
2ZL1	PROTEIN BINDING	2.0	6.1	14.4
3BEG	TRANSFERASE/SPLICING	3.5	7.0	12.4
3BOW	HYDROLASE/HYDROLASE INHIBITOR	2.0	5.9	13.7
3BRT	TRANSFERASE/TRANSCRIPTION	2.5	4.9	7.8
3BRV	TRANSFERASE/TRANSCRIPTION	2.0	8.0	12.7

A. PDB	I. HELIX	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	CONTRIBUTION	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$
2D10	87%	3	W348, 2.8; K351, 1.7; F355, 4.1;
2DOI	100%	3	L310, 3.1; K314, 1.9; H318, 1.1;
2DSR	59%	2	E9, 1.4; F16, 3.3;
2E9X	61%	4	R71, 3.3; R74, 1.9; Y81, 1.3; R86, 1.5;
2E9X	28%	2	W113, 2.2; Y124, 2.1;
2E9X	48%	4	F129, 3.3; F133, 2.8; Y140, 3.1; L141, 1.2;
2E9X	34%	3	Y87, 3.4; R94, 2.5; L97, 1.5;
2E9X	15%	2	W121, 1.9: R129, 2.2:
2E9X	44%	6	M1171, 1.3; L1175, 3.6; K1181, 1.2; D1185, 1.3; F1186, 2.8; W1189, 4.0;
2EFC	52%	3	Y225, 4.7; T228, 1.0; F236, 2.3;
2EHB	33%	3	L132. 1.6: L139. 2.0: E142. 2.3:
2EHO	74%	3	R74. 1.0: D82. 1.1:
2EHO	30%	2	Y87, 3.3; R94, 1.4;
2EOB	100%	3	E102, 2.4; D103, 1.3; F109, 3.2;
2ES4	42%	2	R268. 1.0: D276. 3.0:
2FK0	37%	2	V100, 1.9; H111, 2.0;
2FO1	81%	2	R71, 2.3; Y81, 2.1;
2G38	31%	3	W31 3 5 E37 2.0 E45 1.7
2GMI	83%	3	L11. 1.0: E18. 1.4: F8. 5.5:
2GOX	85%	3	H130, 2.1; R131, 1.9; N138, 2.8;
2HOW	87%	4	T879 1 5: F880 5 0: L887 4 6: S890 1 5:
2HUE	38%	3	F67, 4.9: I74, 1.4: F78, 3.0:
2HV8	100%	3	$0735 \ 1 \ 0 \ D739 \ 4 \ 0 \ M746 \ 2 \ 2$
2I2R	16%	2	F111. 6.2: L118. 1.1:
21ZV	59%	3	S67 1 3: H68 3 6: R82 1 2:
2.JFA	100%	3	L13, 2,1; L5, 1,2; I9, 3,5;
2.IRI	34%	3	V31 1 4: S34 1 5: H38 3 1:
2K2I	100%	2	L651 2.2: W658 7.0:
2NNU	71%	4	11345, 2 2: F1349, 3 3: D1352, 2 3: L1353, 2 4:
2NOJ	100%	3	H74, 1, 7; R75, 1, 3; N82, 3, 1;
208A	25%	3	K137, 2 1: F141, 2.4: H148, 1.9:
20F5	59%	2	R118 31: 0125 24:
2OT3	48%	2	Y354, 3.6: F365, 1.8:
2PBI	16%	3	E69 2.8 L73 1.0 F76 3.3
2PJW	23%	3	L359 2.6; E363 1.6; Y366 2.4:
2PON	87%	5	L148 1.6: F149 4.0: F152 3.9: Y155 1.5: L156 1.2:
2POR	100%	4	L126, 2 3: F127, 4 6: F130, 4 0: I137, 1, 7:
20IY	48%	3	E216, 1.8: F217, 2.4: R224, 2.9:
201.V	43%	2	L516, 2.5: Y523, 2.6:
2R17	47%	2	F534. 3.4: F541. 1.1:
2SIV	85%	4	V558, 1.0: L565, 1.8: W571, 2.3: L576, 3.1:
2V1D	25%	3	F478, 2.8: R485, 1.9: D486, 1.2:
2VE7	24%	3	L1128 1.0: Y1138 3.8: L1142 2.4:
2VE7	13%	2	W187. 2.1: I194. 1.9:
2VE7	18%	2	F82. 3.5: I98. 1.6:
2VGO	24%	2	L807. 1.2: Y815. 3.7:
2WAX	36%	3	K215, 1.9; F219, 3.4; I222, 1.5;
2WIN	56%	3	F60, 2.7; K61, 1.5; Y68, 1.9;
2WME	24%	2	R269, 2.8; M276, 1.7;
2Z2T	100%	4	Q1551, 1.0; L1565, 4.2; L1568, 2.2; W1571, 2.0;
2Z3R	80%	3	E46, 3.6; V49, 1.0; E53, 3.7;
2ZL1	42%	3	148. 1.5: 152. 1.8: Y56. 2.8:
3BEG	56%	2	D564. 3.6: E571. 3.4:
3BOW	43%	3	F103, 1.4; L106, 2.7; L110, 1.8:
3BRT	63%	2	R75, 2.0; L93, 2.9;
3BRV	63%	4	R75, 2.4; F82, 2.1; E89, 1.3; F92, 2.2;

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
2D10	i; i+3; i+7;	8	10	348	357
2DOI	i; i+4; i+8;	12	20	307	326
2DSR	i; i+7;	8	12	8	19
2E9X	i; i+3; i+10; i+15;	9	37	58	94
2E9X	i; i+11;	8	22	108	129
2E9X	i; i+4; i+11; i+12;	7	24	124	147
2E9X	i; i+7; i+10;	17	32	72	103
2E9X	i; i+8;	8	29	110	138
2E9X	i; i+4; 11; 15; 16; 19;	7	22	1170	1191
2EFC	i; i+3; i+11;	8	18	222	239
2EHB	i; i+7; i+10;	8	15	129	143
2EHO	i; i+8;	6	35	58	92
2EHO	i; i+7;	9	14	84	97
2EQB	i; i+1; i+7;	11	54	84	137
2ES4	i; i+8;	9	35	263	297
2FK0	i; i+11;	17	24	94	117
2FO1	i; i+10;	7	17	68	84
2G38	i; i+6; i+14;	19	29	22	50
2GMI	i; i+3; i+10;	6	14	6	19
2GOX	i; i+1; i+8;	11	14	127	140
2HOW	i; i+1; i+8; i+11;	12	16	877	892
2HUE	i; i+7; i+11;	7	16	64	79
2HV8	i: i+4: i+11:	8	31	717	747
2I2R	i: i+7:	6	14	108	121
2IZV	i: i+1: i+15:	9	17	67	83
2JFA	i: i+4: i+8:	13	13	2	14
2.JRI	i: i+3: i+7:	17	22	30	51
2K2I	i: i+7:	11	10	651	660
2NNU	i: i+4: i+7: i+8:	9	11	1345	1355
2NOJ	i: i+1: i+8:	6	14	71	84
208A	i: i+4: i+11:	11	18	132	149
20F5	i: i+7:	17	11	117	127
20T3	i: i+11:	21	18	351	368
2PBI	i: i+4: i+7:	9	14	67	80
2PIW	i: i+4: i+7:	7	16	354	369
2PON	i: i+1: i+4: i+7: i+8:	12	16	148	163
2POR	i: i+1: i+4: i+11:	6	15	126	140
20IY	i: i+1: i+8:	6	16	214	229
2017	i: i+7:	6	14	516	529
2QL1 2R17	i: i+7:	9	22	524	545
2SIV	i: i+7: i+13: i+18:	6	35	547	581
2V1D	i: i+7: i+8:	12	34	474	507
2VE7	i: 11: 15:	12	20	1124	1143
2VE7	i. i+7.	8	20	177	198
2VE7	i; i+16:	9	21	79	99
2VG0	i: i+8:	12	13	805	817
2000 2WAX	i; i+4; i+7;	8	12	215	226
2 WIN	i; i+1; i+8;	12	24	60	83
2WMF	i: i+7:	9	11	267	2.77
272T	i: i+14: i+17: i+20:	8	35	1547	1581
273R	i. i+3. i+7.	6	20	36	55
225K	i: i+4: i+8:	R R	20	42	61
3RFG	i. i+7.	۶ ۶	13	561	573
3BOW	i. i+3. i+7.	6	14	99	112
3BRT	i. i+18.	15	60	50	109
3RPV	i. i+7. i+14. i+17.	1.J R	60	50	109
20114	·, · · /, 1 · 1 · , 1 · 1 / ,	0	00	50	107

2D10WSKKNELFSN2.502D01DAELQRLKNERHEEAELERL3.10	
2DOI DAELQRLKNERHEEAELERL 3.10	
·	
2DSR AELVDALQFVCG 2.10	
2E9X LIPTIKFRHCSLLRNRRCTVAYLYDRLLRIRALRWEY 2.30	
2E9X AEEMEWFNNYKRSLATYMRSLG 2.30	
2E9X PEELAFAREFMANTESYLKNVALK 2.30	
2E9X DLKVSIHQMEMERIRYVLSSYLRCRLMKIEKF 2.30	
2E9X ADEIRTLVKDMWDTRIAKLRVSADSFVRQ 2.30	
2E9X EMERGLFQTGQKGLNDFQCWEK 2.30	
2EFC EAAYFFTNILSAESFISN 2.09	
2EHB REELKEMVVALLHES 2.10	
2EHO LIPTIKFRHCSLLRNRRCTVAYLYDRLLRIRALRW 3.00	
2EHO RIRYVLSSYLRCRL 3.00	
2EQB NELRTKAEEEADKLNKEVEDLTASLFDEANNMVADARKEKYAIEILNKRLTEQL 2.70	
2ES4 PEAAARAAQMQQDDEAWQTRYQAYAAERDRIAAQG 1.85	
2FK0 YNAELLVLMENERTLDFHDSNVKN 2.95	
2FO1 ELHRQRSELARANYEKA 3.12	
2G38 DSMLAAARAWRSLDVEMTAVQRSFNRTLL 2.20	
2GMI RNFRLLEELEKGEK 2.50	
2GOX VSAHRKAQKAVNLV 2.20	
2HQW KATFRAITSTLASSFK 1.90	
2HUE KLPFQRLVREIAQDFK 1.70	
2HV8 RDELMEAIQKQEEINFRLQDYIDRIIVAIME 1.86	
212R FEDFVTALSILLRG 3.35	
2IZV SHVLSKVCMYFTYKVRY 2.55	
2JFA AFQLRQLILRGLQ 2.55	
2JRI PVELSSIAHQLDEEERMRMAEG NOT APP	
2K2I LHRALQAWVT NOT APP	
2NNU IDMNFQSDLLS 1.59	
2NOJ VATHRKAQRAVNLI 2.70	
208A PEEREKKRQFEMKRKLHY 2.61	
2OF5 DRQINQLAQRL 3.20	
20T3 EDGYYFTNLCCAVAFIEK 2.10	
2PBI NLEAQNLGNFIVKY 1.95	
2PJW SLRQVLANAERSYNQL 3.01	
2PQN LFQGFKSYLPIAELAI 2.15	
2PQR LFEGFKATVSIIQQR 1.88	
2QIY EAEFAAASVQRYELNM 1.69	
2QLV LDVMGEIYIALKNL 2.60	
2R17 RIRFTLPPLVFAAYQLAFRYKE 2.80	
2SIV GIVQQQQQLLDVVKRQQELLRLIVWGTKNLQTRVT 2.20	
2VID TIAEFLVKSKHKDLIALCKEYDELAETQGKLEEK 3.10	
2VE/ NAERLKKLQKSADLYKDKLG 2.88	
2VE/ IWPHIVAALVWLIDCIKIHIAM 2.88	
2VE/ MEGFLPFSNLVTHLDSFLPIC 2.88	
2VGU NLLIQAIKQQYYK 1.70 2WAX KAAVEEEIDTVE 220	
2WAA KAAVFEEIDTTE 2.30 2WUN EVENNEEDEALKS 2.00	
2 WIN FKKMSEAK Y QLQKI Y NEIDEALKS 5.90 2 WME LDD A A DIAVMA	
2 WINE LDKAADIAVINA 2.10 272T DIVOOONNI LDAIEAOOHLLOLTUWCIVOLOADH 2.10	
2L21 DIVQQQININLIKAIEAQQIILIQLI V WOIKQLQAKIL 2.10 2720 VVTAMVCELLELOVISI ESC. 2.00	
22.5K K ¥ TAIVINUT LEELŲ ¥ ISLESU 2.00 271.1 ADVTA ALA SNIIWA AVDDNICN 2.00	
22LL1 AKY IAAIASHIWAA I DKNUN 2.00 2REC DEDHIALIIELI 2.00	
JDEU KDEDHIALHELL 2.90 2ROW EEDOEDKI EVOLAC 2.40	
JDOW EERQERKEF VQLAO 2.40 3RDT TI ODCI FENOEL DIA IDOCNOIL DEDCEEL LHEOA CODEEVEEL MOVEOE A DVLVEDLOI 2.25	
3BRV TLORCLEENOELRDAIROSNOILRERCEELLHFOASOREEKEFLMCKFOFARKLVERLOL 2.23	

A. PDB	B. INTERFACE		
CODE	CHAINS	C. CHAIN	D. TITLE
3C59	AB	А	CRYSTAL STRUCTURE OF THE LIGAND-BOUND GLUCAGON-LIKE PEPTIDE- 1 RECEPTOR EXTRACI
3DCG	AB	В	CRYSTAL STRUCTURE OF THE HIV VIF BC-BOX IN COMPLEX WITH HUMAN ELONGINB AND ELON
3EAB	ΒH	В	CRYSTAL STRUCTURE OF SPASTIN MIT IN COMPLEX WITH ESCRT III
3EX7	AB	А	THE CRYSTAL STRUCTURE OF EJC IN ITS TRANSITION STATE
3EZQ	K L	Κ	CRYSTAL STRUCTURE OF THE FAS/FADD DEATH DOMAIN COMPLEX
3G9V	C D	D	CRYSTAL STRUCTURE OF A SOLUBLE DECOY RECEPTOR IL-22BP BOUND TO INTERLEUKIN-22
3GJX	BA	А	CRYSTAL STRUCTURE OF THE NUCLEAR EXPORT COMPLEX CRM1- SNURPORTIN1-RANGTP
3GJX	BA	В	CRYSTAL STRUCTURE OF THE NUCLEAR EXPORT COMPLEX CRM1- SNURPORTIN1-RANGTP
3H6P	AC	С	CRYSTAL STRUCTURE OF RV3019C-RV3020C FROM MYCOBACTERIUM TUBERCULOSIS

A. PDB CODE	E. FUNCTION	F. ΔΔG _{AVG,HELIX} (KCAL/MOL)	G. ΔΔG _{SUM, HELIX} (KCAL/MOL)	H. ΔΔG _{SUM, CHAIN} (KCAL/MOL)
3C59	SIGNALING PROTEIN/SIGNALING PROTEIN	2.2	4.3	8.6
3DCG	LIGASE/VIRAL PROTEIN	2.0	3.9	7.9
3EAB	CELL CYCLE	2.8	8.3	9.6
3EX7	HYDROLASE/RNA BINDING PROTEIN/RNA	2.4	12.1	14.7
3EZQ	APOPTOSIS	2.6	7.7	9.2
3G9V	CYTOKINE/CYTOKINE RECEPTOR	2.2	4.3	8.6
3GJX	PROTEIN TRANSPORT	2.7	5.3	13.1
3GJX	PROTEIN TRANSPORT	2.1	8.3	14.9
3H6P	STRUCTURAL GENOMICS, UNKNOWN FUNCTION	2.1	6.4	7.5

A. PDB	I. HELIX	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	CONTRIBUTION	RESIDUES	$\Delta\Delta G_{(\text{KCALMOL})}$
3C59	50%	2	L32, 1.7; W39, 2.6;
3DCG	49%	2	H68, 2.6; M75, 1.3;
3EAB	86%	3	R117, 1.5; H120, 2.1; F124, 4.7;
3EX7	82%	5	Y124, 2.1; D128, 1.7; S135, 2.4; L139, 1.9; H140, 4.0;
3EZQ	84%	3	Y291, 2.2; I295, 4.5; T305, 1.0;
3G9V	50%	2	P50, 1.4; F57, 2.9;
3GJX	40%	2	F561, 2.4; K568, 2.9;
3GJX	56%	4	M1, 1.5; E2, 1.1; L4, 2.9; L8, 2.8;
3H6P	85%	3	Y21, 3.0; L25, 1.2; I32, 2.2;

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
3C59	i; i+7;	19	22	32	53
3DCG	i; i+7;	6	17	67	83
3EAB	i; i+3; i+7;	9	28	110	137
3EX7	i; i+4; i+11; i+15; i+16;	7	27	116	142
3EZQ	i; i+4; i+14;	9	32	287	318
3G9V	i; i+7;	6	17	50	66
3GJX	i; i+7;	11	14	559	572
3GJX	i; i+1; i+3; i+7;	14	11	0	10
3H6P	i; i+4; i+11;	14	19	21	39

A. PDB		
CODE	Q. HELIX SEQUENCE	R. RESOLUTION
3C59	LWETVQKWREYRRQCQRSLTED	2.30
3DCG	SHVLSKVCMYFTYKVRY	2.40
3EAB	SMEAERVRVFHKQAFEYISIALRIDEDE	2.50
3EX7	PEGLRVFYYLVQDLKCLVFSLIGLHFK	2.30
3EZQ	KKEAYDTLIKDLKKANLCTLAEKIQTIILKDI	2.73
3G9V	PYITNRTFMLAKEASLA	2.76
3GJX	WKFLKTVVNKLFEF	2.50
3GJX	SMEELSQALAS	2.50
3H6P	YAGTLQSLGADIASEQAVL	1.91

Table S2. Dataset of HIPP interactions with hotspots on two helical faces

Description of Entries:

- A. PDB code of predicted target.
- B. Chains in the complex featuring a helix at the interface.
- C. Candidate helix to be mimicked is part of the indicated chain.
- D. Title of PDB entry.
- E. Function of protein complex.
- F. $\Delta\Delta G_{avg}$ /helix is derived from Rosetta computational alanine mutagenesis studies and indicates the average free energy penalty for mutating two or more key residues in the helix at the interface to alanine.
- G. $\Delta\Delta G_{sum}$ /helix is derived from Rosetta computational alanine mutagenesis studies and indicates the average free energy penalty for mutating two or more key residues at the interface to alanine.
- H. $\Delta\Delta G_{sum}$ /chain is derived from Rosetta computational alanine mutagenesis studies and indicates the sum free energy penalty for mutating two or more key residues in the helix at the interface to alanine.
- I. Helix contribution refers to the proportion of key contact residues positioned on the candidate helix as compared to the chain (see text for a detailed explanation).
- J. Number of hot spot residues in helix.
- K. Relative positioning of the hot spot residues on a helix.
- L. Hot spot residues derived from Rosetta computational alanine scanning mutagenesis.
- M. Number of residues separating end hot spot residues (see Methods for more details).
- N. Length of candidate helix to be mimicked.
- O. First residue of the candidate helix segment.
- P. Last residue of the candidate helix segment.
- Q. Sequence of candidate helix to be mimicked.
- R. Resolution of PDB structure (NOT APP indicates NMR structure).

A. PDB	B. INTERFACE		
CODE	CHAINS	C. CHAIN	D. TITLE
1DOA	AB	А	STRUCTURE OF THE RHO FAMILY GTP-BINDING PROTEIN CDC42 IN COMPLEX WITH THE MULTIFU
1FOV	ΕF	Е	INSIGHTS INTO SCF UBIOUITIN LIGASES FROM THE STRUCTURE OF THE SKP1-SKP2 COMPLEX
1LOB	ВC	С	CRYSTAL STRUCTURE OF A HYDROXYLATED HIF-1 ALPHA PEPTIDE BOUND TO THE PVHL/ELONG
1MDU	AB	А	CRYSTAL STRUCTURE OF THE CHICKEN ACTIN TRIMER COMPLEXED WITH HUMAN GELSOLIN SE
1MF8	AB	A	CRYSTAL STRUCTURE OF HUMAN CALCINEURIN COMPLEXED WITH CYCLOSPORIN A AND HUMA
1TV4	AC	C C	CRYSTAL STRUCTURE OF A CED-0/EGL-1 COMPLEX
11105	X A	<u>د</u>	CHEMOTA VIS VINASE CHEA D2 DOMAIN IN COMDLEY WITH DESDONSE DECHLATOD CHEV EDOM
1005	IA	A	CHEMOTAAIS KINASE CHEATZ DOMAIN IN COMPLEA WITH RESPONSE REGULATOR CHETTROM
1756	AE	E	CRYSTAL STRUCTURE OF THE AGONIST-BOUND LIGAND-BINDING DOMAIN OF BIOMPHALAKIA C
1256	AC	A	CO-CRYSTAL STRUCTURE OF LIFTP-LIG4P
2C9W	AC	C	CRYSTAL STRUCTURE OF SOCS-2 IN COMPLEX WITH ELONGIN-B AND ELONGIN-C AT 1.9A RESOLU
2EHB	A D	D	THE STRUCTURE OF THE C-TERMINAL DOMAIN OF THE PROTEIN KINASE ATSOS2 BOUND TO THE
2138	CD	D	BUB3 COMPLEX WITH BUB1 GLEBS MOTIF
2I3T	C D	D	BUB3 COMPLEX WITH MAD3 (BUBR1) GLEBS MOTIF
2KA6	AB	В	NMR STRUCTURE OF THE CBP-TAZ2/STAT1-TAD COMPLEX
2V1Y	AB	В	STRUCTURE OF A PHOSPHOINOSITIDE 3-KINASE ALPHA ADAPTOR- BINDING DOMAIN (ABD) IN A
3DAW	AB	В	STRUCTURE OF THE ACTIN-DEPOLYMERIZING FACTOR HOMOLOGY DOMAIN IN COMPLEX WITH
3EJB	GH	G	CRYSTAL STRUCTURE OF P450BIOI IN COMPLEX WITH TETRADECANOIC ACID LIGATED ACYL CA
3G9V	AB	А	CRYSTAL STRUCTURE OF A SOLUBLE DECOY RECEPTOR IL-22BP BOUND TO INTERLEUKIN-22
1AVO	ΕF	Е	PROTEASOME ACTIVATOR REG(ALPHA)
1BH8	AB	В	HTAFII18/HTAFII28 HETERODIMER CRYSTAL STRUCTURE
1BPL	AB	В	GLYCOSYLTRANSFERASE
1D8D	AB	А	CO-CRYSTAL STRUCTURE OF RAT PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A K-RAS
1DP5	AB	В	THE STRUCTURE OF PROTEINASE A COMPLEXED WITH A IA3 MUTANT INHIBITOR
1DX5	AM	А	CRYSTAL STRUCTURE OF THE THROMBIN-THROMBOMODULIN COMPLEX
1E0F	AD	A	CRYSTAL STRUCTURE OF THE HUMAN ALPHA-THROMBIN-HAEMADIN COMPLEX: AN EXOSITE II-
1EER	AC	A	CRYSTAL STRUCTURE OF HUMAN ERVTHROPOIETIN COMPLEXED TO ITS RECEPTOR AT 19 ANGS
1F51	DH	D	A TRANSIENT INTERACTION BETWEEN TWO PHOSPHORELAY PROTEINS TRAPPED IN A CRYSTAL
1F6F	AB	4	CRYSTAL STRUCTURE OF THE TERNARY COMPLEX BETWEEN OVINE PLACENTAL LACTOGEN AN
1FM6		V	THE 2.1 ANGSTROM DESCLUTION OPVSTAL STRUCTURE OF THE HETERODIMED OF THE HIMAN
1FOI		v A	CPVSTAL STDUCTUDE OF THE HETEPOTDIMEDIC COMDUES OF THE DOS DOMAIN OF DOSO THE C
1651		P	COMPLEX OF DOL VI WITH DEDTIDE EDOM DAD
1637		D D	REST MODEL OF THE ELECTRON TRANSFER COMPLEY RETWEEN CVTOCHROME C3 AND [FE] HV
1671	AC	1	CPVSTAL STRUCTURE OF CIALINIKMID/ION17: A CROSS LINKED INHIBITOR OF HIV 1 ENTRY BOLD
1428	AB	A A	MOLECULAP BASIS OF TRANSMENRRANE SIGNALLING BY SENSORY RHODORSIN II TRANSDUCE
1112.5		D	COVSTAL STDUCTUDE OF THE HUMANI TAEA TAE12 (TAEH125 TAEH20) COMDUEV
11110		D	VALLIVDEIN COMDLEVED WITH HIDLISTASIN
1111A	AD	D	A NOVEL MODE OF DDD DDOTEIN DECOCNITION IN THE VIA MACO COMPLEY
110	AD	Б	A NOVEL MODE OF RED-PROTEIN RECOUNTION IN THE T14-MAGO COMPLEX
1105			UNTECDATION HOST FACTOR/DNA COMPLEX
	AB	A	INTEGRATION HUST FACTOR/DNA COMPLEX
IJFI 1D (7	AB	В	CRYSTAL STRUCTURE OF THE NC2-IBP-DNA TEKNARY COMPLEX
IJM/	AB	A	SOLUTION STRUCTURE OF THE BRCAT/BARDT RING-DOMAIN HETERODIMER
IJYO	CF	F	STRUCTURE OF THE SALMONELLA VIRULENCE EFFECTOR SPTP IN COMPLEX WITH ITS SECRETIC
1LUJ	AB	Α	CRYSTAL STRUCTURE OF THE BETA-CATENIN/ICAT COMPLEX
1M63	AB	Α	CRYSTAL STRUCTURE OF CALCINEURIN-CYCLOPHILIN-CYCLOSPORIN SHOWS COMMON BUT DIS
1MF8	AB	Α	CRYSTAL STRUCTURE OF HUMAN CALCINEURIN COMPLEXED WITH CYCLOSPORIN A AND HUMA
1N4Q	ΕF	F	PROTEIN GERANYLGERANYLTRANSFERASE TYPE-I COMPLEXED WITH A GGPP ANALOG AND A K
1NX0	A C	С	STRUCTURE OF CALPAIN DOMAIN 6 IN COMPLEX WITH CALPASTATIN DIC
1000	AB	А	CRYSTAL STRUCTURE OF THE DROSOPHILA MAGO NASHI-Y14 COMPLEX
10QP	AB	В	STRUCTURE OF THE CA2+/C-TERMINAL DOMAIN OF CALTRACTIN IN COMPLEX WITH THE CDC31
10QS	AB	А	CRYSTAL STRUCTURE OF RV4/RV7 COMPLEX
1OR0	AB	А	CRYSTAL STRUCTURES OF GLUTARYL 7-AMINOCEPHALOSPORANIC ACID ACYLASE: INSIGHT INT
1OR0	C D	С	CRYSTAL STRUCTURES OF GLUTARYL 7-AMINOCEPHALOSPORANIC ACID ACYLASE: INSIGHT INT
1P27	AB	А	CRYSTAL STRUCTURE OF THE HUMAN Y14/MAGOH COMPLEX
1PGR	ΕF	Е	2:2 COMPLEX OF G-CSF WITH ITS RECEPTOR
1PZL	AB	В	CRYSTAL STRUCTURE OF HNF4A LBD IN COMPLEX WITH THE LIGAND AND THE COACTIVATOR S
1QZ7	AB	В	BETA-CATENIN BINDING DOMAIN OF AXIN IN COMPLEX WITH BETA- CATENIN

A. PDB CODE	E. FUNCTION	F. $\Delta\Delta G_{AVG,HELIX}$ (KCAL/MOL)	G. $\Delta\Delta G_{SUM, HELIX}$ (KCAL/MOL)	H. $\Delta\Delta G_{SUM, CHAIN}$ (KCAL/MOL)	I. HELIX CONTRIBUTION
1DOA	CELL CYCLE	2.0	6.0	8.4	71%
1FQV	LIGASE	3.3	6.6	12.5	53%
1LQB	GENE REGULATION	2.5	7.6	10.6	72%
1MDU	STRUCTURAL PROTEIN	2.2	6.5	11.0	59%
1MF8	HYDROLASE, LIGASE	2.9	8.6	33.6	26%
1TY4	APOPTOSIS	2.0	6.0	13.8	43%
1U0S	SIGNALING PROTEIN	2.5	7.4	7.4	100%
1XIU	TRANSCRIPTION/TRANSFERASE	2.2	8.8	8.8	100%
1Z56	LIGASE	4.3	12.9	12.9	100%
2C9W	TRANSCRIPTION REGULATION	2.1	6.3	9.1	69%
2EHB	SIGNALLING PROTEIN/TRANSFERASE	3.0	8.9	17.9	50%
2I3S	CELL CYCLE	2.8	8.4	15.4	55%
2I3T	CELL CYCLE	2.8	5 5	17.7	31%
2KA6	TRANSCRIPTION REGULATOR	2.6	10.5	19.6	54%
2V1Y	TRANSFERASE	2.7	53	7.8	68%
3DAW	STRUCTURAL PROTEIN/STRUCTURAL PROTEIN RE	2.4	73	83	88%
3EIB	OXIDOREDI/CTASE/LIPID TRANSPORT	23	93	13.5	69%
3G9V	CYTOKINE/CYTOKINE RECEPTOR	2.5	5.4	12.8	42%
1AVO	PROTEASOME ACTIVATOR	2.8	19.9	19.9	100%
1848	TRANSCRIPTION REGULATION COMPLEX	2.0	9.8	16.0	61%
1BPI	GI VCOSVI TRANSFERASE	2.0	17.1	18.5	35%
1011		2.9	10.7	40.1	22%
1000		2.1	16.0	49.1	73%
1D15		2.0	8.7	10.7	7.570 810/
1073	COACULATION/CDVSTAL STDUCTUDE/HEDADIN D	2.2	0.7	6.1	640/
1EUF	COAGULATION/CKISIALSIKUCIUKE/HEPAKIN-B	2.0	3.9	0.1	0470
1EEK	COMPLEX (CYTOKINE/RECEPTOR)	2.1	4.1	4.1	100%
1651	I KANSFEKASE	2.2	8.9	8.9	100%
1F0F	HORMONE/GROWTH FACTOR/HORMONE RECEPTOR	2.3	9.0	10.7	84%
1FM6	IRANSCRIPTION	2.1	6.4	6.4	100%
IFQJ	SIGNALING PROTEIN	2.0	5.9	5.9	100%
IGSJ	APOPTOSIS	2.3	4.6	4.6	100%
IGX/	OXIDOREDUCIASE	2.2	13.3	51.0	26%
IGZL	GLYCOPROTEIN	2.6	5.1	5.1	100%
TH2S	MEMBRANE PROTEIN	2.0	4.0	9.0	44%
1H3O	TRANSCRIPTION/TBP-ASSOCIATED FACTORS	2.0	5.9	14.3	41%
1HIA	COMPLEX (PROTEASE/INHIBITOR)	2.9	5.8	27.9	21%
1HL6	SIGNAL PROTEIN	3.0	11.9	26.6	45%
11D5	HYDROLASE	2.7	13.5	13.5	100%
1IHF	TRANSCRIPTION/DNA	2.0	18.3	38.1	48%
1JFI	TRANSCRIPTION/DNA	2.3	9.0	16.5	55%
1JM7	ANTITUMOR	3.0	12.0	15.8	76%
1JYO	CHAPERONE	2.3	9.3	26.1	36%
1LUJ	STRUCTURAL PROTEIN	2.0	7.9	10.0	79%
1M63	HYDROLASE/ISOMERASE	2.0	9.9	22.4	44%
1MF8	HYDROLASE, LIGASE	2.1	10.4	33.6	31%
1N4Q	TRANSFERASE	2.0	7.9	46.8	17%
1NX0	HYDROLASE	2.2	6.7	9.8	68%
1000	SIGNALING PROTEIN	2.2	13.0	20.8	63%
10QP	PROTEIN BINDING	2.5	12.7	12.7	100%
10QS	HYDROLASE	3.0	5.9	17.4	34%
10R0	HYDROLASE	4.0	7.9	58.0	14%
10R0	HYDROLASE	3.2	9.7	63.2	15%
1P27	RNA BINDING PROTEIN	2.3	7.0	15.0	47%
1PGR	CYTOKINE	2.2	6.5	7.9	82%
1PZL	TRANSCRIPTION	2.2	8.7	8.7	100%
1QZ7	CELL ADHESION	2.0	10.1	10.1	100%

A. PDB	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	RESIDUES	$\Delta\Delta G_{(\text{KCALMOL})}$
1DOA	3	R66, 2.8; L67, 2.2; R68, 1.0;
1FQV	2	K131, 2.8; S133, 3.8;
1LQB	3	L158, 3.5; K159, 1.2; R161, 2.9;
1MDU	3	I79, 2.3; F80, 3.2; V82, 1.0;
1MF8	3	F350. 4.8: W352. 1.4: L354. 2.4:
1TY4	3	D63, 2.5; F65, 2.5; D66, 1.0;
11108	3	R195 2.5: Y197 2.9: L198 2.0:
1111	4	L 690 1 8 H 691 2 2 L 693 1 9 L 694 2 9
1756	3	R209 1 4: M211 1 3: M212 10 2:
2C0W	3	101 22 102 102 101 21
2C9W	2	$E_{101}, 2.2, E_{100}, 1.0, E_{104}, 5.1,$
2128	2	E227 2 5 E228 1 0 L 240 2 0
2155	3	E_{22}^{-1} , E_{22}^{-1} , E_{22}^{-1} , E_{24}^{-1} , E_{2
2151	2	E305, 2.5, L305, 5.2,
2KA0	4	E/30, 1.8; F/31, 4.5; E/35, 5.0; V/34, 1.2;
2019	2	F494, 4.3; E496, 1.0;
3DAW	3	R267, 1.2; R269, 4.7; M270, 1.4;
3EJB	4	L57, 3.4; D58, 1.9; V60, 1.3; E61, 2.7;
3G9V	2	W123, 1.3; E125, 4.1;
1AVO	7	L29, 1.3; Y32, 4.0; F33, 2.7; K36, 6.9; I37, 1.6; L40, 1.2; L44, 2.2;
1BH8	5	M154, 1.1; K159, 1.0; F161, 4.5; V162, 1.7; V166, 1.5;
1BPL	6	E211, 1.0; I212, 1.3; W215, 3.5; W218, 5.1; Y219, 4.4; E222, 1.8;
1D8D	5	N234, 3.2; S235, 2.9; W237, 1.9; N238, 1.6; H241, 1.1;
1DP5	8	V8, 2.9; 111, 1.5; F12, 2.8; L19, 1.6; D22, 2.0; V25, 1.0; V26, 1.9; F30, 2.3;
1DX5	4	E14, 2.0; E14, 2.1; L14, 1.0; Y14, 3.6;
1E0F	2	E14, 1.0; Y14, 2.9;
1EER	2	R103, 2.9; L108, 1.2;
1F51	4	H630, 3.4; N634, 2.6; L638, 1.4; K640, 1.5;
1F6F	4	H177, 1.7; R178, 4.6; S181, 1.5; K182, 1.2;
1FM6	3	I632, 3.2; L636, 1.2; L637, 2.0;
1FQJ	3	E203, 1.1; K206, 3.5; H209, 1.3;
1G5J	2	R313, 1.0; F319, 3.6;
1GX7	6	K40, 1.3; Y42, 2.7; M43, 1.4; R46, 1.9; I47, 1.0; Y51, 5.0;
1GZL	2	L29, 1.0; W35, 4.1;
1H2S	2	T191, 1.2; L196, 2.8;
1H3O	3	F91, 2.3; I92, 1.8; V96, 1.8;
1HIA	2	W237, 2.8; I242, 3.0;
1HL6	4	Y125, 2.7; S136, 1.7; L140, 2.6; H141, 4.9;
1ID5	5	E14, 2.4; E14, 2.6; F14, 1.7; L14, 3.0; Y14, 3.8;
1IHF	9	D22, 1.4; E25, 1.4; L26, 1.4; F30, 2.9; F31, 4.0; E33, 1.0; R35, 2.7; L38, 1.8; E39, 1.7;
1JFI	4	L138, 2.0; F146, 3.4; I147, 2.6; H148, 1.0;
1JM7	4	Q81, 1.1; E85, 2.2; L86, 7.7; D96, 1.0;
1JYO	4	F83, 4.5; H85, 1.1; E89, 1.3; K90, 2.4;
1LUJ	4	T653, 1.3; Y654, 1.8; F660, 2.7; R661, 2.1;
1M63	5	F350, 4.8; W352, 1.5; L354, 1.1; K360, 1.1; V361, 1.4;
1MF8	5	V361, 1.6; M364, 3.7; L365, 1.8; V368, 1.8; L369, 1.5;
1N4Q	4	K243, 1.7; R250, 2.1; W251, 2.2; I253, 1.9;
1NX0	3	I603, 2.4; L606, 2.9; D609, 1.4;
1000	6	Y125, 1.9; D129, 1.8; L133, 1.2; S136, 1.7; L140, 2.5; H141, 3.9;
10QP	5	E245, 1.4; K247, 1.0; W248, 5.7; L251, 2.4; L252, 2.2;
10QS	2	F3, 4.4; I9, 1.5;
1OR0	2	F100, 3.8; F107, 4.1;
1OR0	3	E74, 1.8; V78, 1.0; W79, 6.9;
1P27	3	Y124, 2.6; S135, 2.2; H140, 2.2;
1PGR	3	K17, 1.3; E20, 3.4; R23, 1.8;
1PZL	4	L10, 2.3; H11, 1.1; L14, 3.5; Q15, 1.8;
1QZ7	5	E470, 1.0; L473, 2.9; D474, 2.3; H476, 2.9; V480, 1.0;

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
1DOA	i; i+1; i+2;	5	5	65	69
1FOV	i: i+2:	5	9	126	134
1LOB	i · i+1 · i+3 ·	5	11	158	168
1MDU	i: i+1: i+3:	5	18	71	88
1ME8	1, 1, 1, 1, 5, 1, 1+1, 1+5, 1, 1+2, 1+4.	5	10	240	358
111110	$1, 1^+2, 1^+4,$	5	10	349	558
1114	1, 1+2, 1+3,	4	0	03	68
1008	1; 1+2; 1+3;	5	15	192	206
1XIU	1; 1+1; 1+3; 1+4;	5	10	688	697
1Z56	i; i+2; i+3;	4	6	209	214
2C9W	i; i+2; i+3;	5	11	100	110
2EHB	i; i+2; i+3;	5	6	312	317
2I3S	i; i+1; i+3;	5	9	336	344
2I3T	i; i+2;	4	9	381	389
2KA6	i; i+1; i+3; i+4;	4	12	728	739
2V1Y	i; i+2;	5	25	481	505
3DAW	i: i+2: i+3:	5	10	266	275
3FIB	i: i+1: i+3: i+4:	3	14	57	70
3G0V	i, i+1, i+3, i+4,	4	5	122	126
1410	$1, 1 \cdot 2,$ $1, 1 \cdot 2, 1 \cdot 4, 1 \cdot 7, 1 \cdot 9, 1 \cdot 11, 1 \cdot 15,$	4	20	0	120
1010	I, IT5, IT4, IT7, IT6, IT11, IT13,	10	30	0	43
1BH8	1; 1+5; 1+7; 1+8; 1+12;	11	29	148	1/6
IBPL	1; 1+1; 1+4; 1+7; 1+8; 1+11;	12	18	206	223
1D8D	i; i+1; i+3; i+4; i+7;	6	13	234	246
1DP5	i; i+3; i+4; i+11; i+14; i+17; i+18; i+22;	23	29	3	31
1DX5	i; i+2 ; i+3 ; i+7;	7	9	14	14
1E0F	i; i+5;	12	11	14A	14J
1EER	i; i+5;	7	25	89	113
1F51	i; i+4; i+8; i+10;	6	23	620	642
1F6F	i; i+1; i+4; i+5;	14	34	162	195
1FM6	i: i+4: i+5:	11	9	631	639
1FOI	i: i+3: i+6:	8	10	201	210
1651	i; i+6:	9	15	306	320
1G33	i, i+0, i, i+2, i+2, i+6, i+7, i+11,	12	19	300	56
107	i, i+2, i+3, i+0, i+7, i+11,	12	10	39	30
IGZL	1, 1+0;	8	43	2	44
TH2S	1; 1+5;	13	34	190	223
1H3O	1; 1+1; 1+5;	7	22	85	106
1HIA	i; i+5;	8	11	235	245
1HL6	i; i+11; i+15; i+16;	15	27	117	143
1ID5	i; i+2 ; i+3 ; i+4 ; i+7;	9	9	14	14
1IHF	i; i+3; i+4; i+8; i+9; i+11; i+13; i+16; i+17;	8	21	20	40
1JFI	i; i+8; i+9; i+10;	9	29	133	161
1JM7	i; i+4; i+5; i+15;	8	19	80	98
1JYO	i; i+2; i+6; i+7;	8	15	77	91
1LUJ	i: i+1: i+7: i+8:	9	14	649	662
1M63	i i+2: i+4: i+10: i+11:	9	15	349	363
1MF8	i; i+3; i+4; i+7; i+8;	14	12	359	370
1N/10	i, i+7, i+8, i+10.	Q	12	242	254
11140	$1, 1, 7, 1, 0, 1, 10, \dots$	12	0	242	2J4 610
1000	$1, 1 \pm 3, 1 \pm 0, \dots$	12	9	002	610
1000	1, 1 ⁺ 4, 1 ⁺ 8; 1 ⁺ 11; 1 ⁺ 13; 1 ⁺ 10;	14	20	11/	142
TOQP	1; 1+2; 1+3; 1+6; 1+7;	16	14	240	253
IOQS	1; 1+6;	12	13	2	14
10R0	i; i+7;	13	21	98	118
10R0	i; i+4; i+5;	11	10	74	83
1P27	i; i+11; i+16;	9	26	116	141
1PGR	i; i+3; i+6;	19	29	12	40
1PZL	i; i+1; i+4; i+5;	15	11	8	18
1QZ7	i; i+3; i+4; i+6; i+10;	12	12	470	481

A. PDB		
CODE	Q. HELIX SEQUENCE	R. RESOLUTION
1DOA	DRLRP	2.60
1FQV	LPELLKVSG	2.80
1LQB	LKERCLQVVRS	2.00
1MDU	QDESGAAAIFTVQLDDYL	2.20
1MF8	VFTWSLPFVG	3.10
1TY4	DDFDAQ	2.20
1U0S	KSARIYLVFHKLEEL	1.90
1XIU	KILHRLLQEG	2.50
1Z56	RAMMVT	3.92
2C9W	ALELLMAANFL	1.90
2EHB	AFEMIT	2.10
2I3S	TEEILAMIK	1.90
2I3T	LEEVLAISR	2.80
2KA6	PEEFDEVSRIVG	NOT APP
2V1Y	RTAIEAFNETIKIFEEQCQTQERYS	2.40
3DAW	IRERMLYSSC	2.55
3EJB	LDTVELVMALEEEF	2.00
3G9V	PWWET	2.76
1AVO	PEAQAKVDVFREDLCTKTENLLGSYFPKKISELDAFLK	2.80
1BH8	QNVVIAMSGISKVFVGEVVEEALDVCEKW	3.00
1BPL	PDVAAEIKRWGTWYANEL	2.20
1D8D	NSVWNQRHFVISN	2.00
1DP5	TDQQKVSEIFQSSKEKLQGDAKVVSDAFM	2.20
1DX5	ERELLESYI	2.30
1E0F	KTERELLESYI	3.10
1EER	EPLQLHVDKAVSGLRSLTTLLRALG	1.90
1F51	ELIHLLGHSRHDWMNKLQLIKGN	3.00
1F6F	ENVRRVAFYRLFHCLHRDSSKIYTYLRILKCRLT	2.30
1FM6	KILHRLLQE	2.10
1FQJ	RSERKKWIHC	2.02
1G5J	ORYGRELRRMSDEFV	NOT APP
1GX7	IKDYMLDRINGVYGADAK	NOT APP
1GZL	MKQIEDKIEEIESKOKKIENEIARIKKLLOLTVWGIKOLOARI	1.80
1H2S	PTVDVALIVYLDLVTKVGFGFIALDAAATLRAEH	1.93
1H3O	LQIADDFIESVVTAACQLARHR	2.30
1HIA	LDWIDDTITEN	2.40
1HL6	PEGLRCFYYLVQDLKCLVFSLIGLHFK	2.50
1ID5	EKELFESYI	2.50
1IHF	KRDAKELVELFFEEIRRALEN	2.20
1JFI	NDARELVVNCCTEFIHLISSEANEICNKS	2.62
1JM7	SQLVEELLKIICAFQLDTG	NOT APP
1JYO	OKILOTFLHALTEKY	1.90
1LUJ	EGVATYAAAVLFRM	2.50
1M63	VFTWSLPFVGEKVTE	2.80
1MF8	EKVTEMLVNVLN	3.10
1N4Q	EKELNRIKRWCIM	2.40
1NX0	AIDALSSDF	2.30
1000	PEGLRCFYYLVQDLKCLVFSLIGLHF	1.85
100P	KRELIESKWHRLLF	NOT APP
100S	LFQFGEMILQKTG	1.90
10R0	PDFRANLDAFAAGINAYAQON	2.00
10R0	EOTTVWLLTN	2.00
1P27	PEGLRVFYYLVODLKCLVFSLIGLHF	2.00
1PGR	OSFLLKCLEOVRKIOGDGAALOEKLCATY	3 50
1PZL	KILHRLLOEGS	2.10
1077	ESILDEHVORVM	2.20

A. PDB	B. INTERFACE	C CHADI	
CODE	CHAINS	C. CHAIN	D. IIILE
1R8U	AB	А	NMR STRUCTURE OF CBP TAZ1/CITED2 COMPLEX
1RF8	AB	В	SOLUTION STRUCTURE OF THE YEAST TRANSLATION INITIATION FACTOR EIF4E IN COMPLEX WI
1RIW	BC	С	THROMBIN IN COMPLEX WITH NATURAL PRODUCT INHIBITOR OSCILLARIN
1RK8	AB	В	STRUCTURE OF THE CYTOSOLIC PROTEIN PYM BOUND TO THE MAGO- Y14 CORE OF THE EXON J
1RM1	BC	В	STRUCTURE OF A YEAST TFIIA/TBP/TATA-BOX DNA COMPLEX
1RM1	ВC	В	STRUCTURE OF A YEAST TFIIA/TBP/TATA-BOX DNA COMPLEX
1RP3	AB	В	COCRYSTAL STRUCTURE OF THE FLAGELLAR SIGMA/ANTI-SIGMA COMPLEX, SIGMA-28/FLGM
1SA0	C D	С	TUBULIN-COLCHICINE: STATHMIN-LIKE DOMAIN COMPLEX
1SB0	AB	В	SOLUTION STRUCTURE OF THE KIX DOMAIN OF CBP BOUND TO THE TRANSACTIVATION DOMAIN
1SYQ	AB	В	HUMAN VINCULIN HEAD DOMAIN VH1, RESIDUES 1-258, IN COMPLEX WITH HUMANTALIN'S VINC
1TCO	AB	Α	TERNARY COMPLEX OF A CALCINEURIN A FRAGMENT, CALCINEURIN B, FKBP12 AND THE IMMUN
1TN6	AB	А	PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A RAP2A PEPTIDE SUBSTRATE AND A FPP #
1TQY	C D	С	THE ACTINORHODIN KETOSYNTHASE/CHAIN LENGTH FACTOR
1TQY	ΕF	Е	THE ACTINORHODIN KETOSYNTHASE/CHAIN LENGTH FACTOR
1TUE	НJ	J	THE X-RAY STRUCTURE OF THE PAPILLOMAVIRUS HELICASE IN COMPLEX WITH ITS MOLECULA
1UKL	AC	С	CRYSTAL STRUCTURE OF IMPORTIN-BETA AND SREBP-2 COMPLEX
1VCB	ΚL	L	THE VHL-ELONGINC-ELONGINB STRUCTURE
1VYT	ΑE	Е	BETA3 SUBUNIT COMPLEXED WITH AID
1WA8	AB	В	SOLUTION STRUCTURE OF THE CFP-10.ESAT-6 COMPLEX. MAJOR VIRULENCE DETERMINANTS OF
1XB2	AB	В	CRYSTAL STRUCTURE OF BOS TAURUS MITOCHONDRIAL ELONGATION FACTOR TU/TS COMPLEX
1XLS	ΕM	М	CRYSTAL STRUCTURE OF THE MOUSE CAR/RXR LBD HETERODIMER BOUND TO TCPOBOP AND 9(
1Y74	A D	А	SOLUTION STRUCTURE OF MLIN-2/MLIN-7 L27 DOMAIN COMPLEX
1YFN	DH	Н	VERSATILE MODES OF PEPTIDE RECOGNITION BY THE AAA+ ADAPTOR PROTEIN SSPB- THE CRYS
1YOV	AB	А	INSIGHTS INTO THE UBIQUITIN TRANSFER CASCADE FROM THE REFINED STRUCTURE OF THE A(
1Z8U	C D	С	CRYSTAL STRUCTURE OF OXIDIZED ALPHA HEMOGLOBIN BOUND TO AHSP
1ZDT	A P	Р	THE CRYSTAL STRUCTURE OF HUMAN STEROIDOGENIC FACTOR-1
1ZUN	AB	А	CRYSTAL STRUCTURE OF A GTP-REGULATED ATP SULFURYLASE HETERODIMER FROM PSEUDOM
1ZW3	AB	В	VINCULIN HEAD (0-258) IN COMPLEX WITH THE TALIN ROD RESIDUES 1630-1652
2A6Q	ΑE	А	CRYSTAL STRUCTURE OF YEFM-YOEB COMPLEX
2A6Q	C F	F	CRYSTAL STRUCTURE OF YEFM-YOEB COMPLEX
2AST	ВC	С	CRYSTAL STRUCTURE OF SKP1-SKP2-CKS1 IN COMPLEX WITH A P27 PEPTIDE
2B87	AB	А	STRUCTURAL BASIS FOR MOLECULAR RECOGNITION IN AN AFFIBODY: AFFIBODY COMPLEX
2B9S	AB	В	CRYSTAL STRUCTURE OF HETERODIMERIC L. DONOVANI TOPOISOMERASE I-VANADATE-DNA CO
2BZW	AB	В	THE CRYSTAL STRUCTURE OF BCL-XL IN COMPLEX WITH FULL-LENGTH BAD
2C2V	ВC	С	CRYSTAL STRUCTURE OF THE CHIP-UBC13-UEV1A COMPLEX
2D1P	GI	Ι	CRYSTAL STRUCTURE OF HETEROHEXAMERIC TUSBCD PROTEINS, WHICH ARE CRUCIAL FOR TH
2DOQ	A D	D	CRYSTAL STRUCTURE OF SFI1P/CDC31P COMPLEX
2DOQ	B D	D	CRYSTAL STRUCTURE OF SFI1P/CDC31P COMPLEX
2DYM	ΕF	F	THE CRYSTAL STRUCTURE OF SACCHAROMYCES CEREVISIAE ATG5- ATG16(1-46) COMPLEX
2E30	AB	В	SOLUTION STRUCTURE OF THE CYTOPLASMIC REGION OF NA+/H+ EXCHANGER 1 COMPLEXED V
2E9X	F G	G	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMPLEX
2E9X	F G	G	THE CRYSTAL STRUCTURE OF HUMAN GINS CORE COMPLEX
2EHO	JL	L	CRYSTAL STRUCTURE OF HUMAN GINS COMPLEX
2EY4	AE	Е	CRYSTAL STRUCTURE OF A CBF5-NOP10-GAR1 COMPLEX
2F66	AB	А	STRUCTURE OF THE ESCRT-I ENDOSOMAL TRAFFICKING COMPLEX
2FUG	AC	С	CRYSTAL STRUCTURE OF THE HYDROPHILIC DOMAIN OF RESPIRATORY COMPLEX I FROM THER!
2G38	AB	В	A PE/PPE PROTEIN COMPLEX FROM MYCOBACTERIUM TUBERCULOSIS
2GGM	AC	С	HUMAN CENTRIN 2 XERODERMA PIGMENTOSUM GROUP C PROTEIN COMPLEX
2GL7	DE	Е	CRYSTAL STRUCTURE OF A BETA-CATENIN/BCL9/TCF4 COMPLEX
2HUE	ВC	В	STRUCTURE OF THE H3-H4 CHAPERONE ASF1 BOUND TO HISTONES H3 AND H4
2HUE	ВC	С	STRUCTURE OF THE H3-H4 CHAPERONE ASF1 BOUND TO HISTONES H3 AND H4
2IBF	AB	В	HUMAN VINCULIN'S HEAD DOMAIN (VH1, RESIDUES 1-258) IN COMPLEX WITH TWO VINCULIN BI
2105	ВC	В	CRYSTAL STRUCTURE OF THE CIA- HISTONE H3-H4 COMPLEX
2J9U	C D	С	2 ANGSTROM X-RAY STRUCTURE OF THE YEAST ESCRT-I VPS28 C- TERMINUS IN COMPLEX WITH
2NLA	AB	В	CRYSTAL STRUCTURE OF THE MCL-1:MNOXAB BH3 COMPLEX
2NUP	ВC	С	CRYSTAL STRUCTURE OF THE HUMAN SEC23A/24A HETERODIMER, COMPLEXED WITH THE SNAR

A. PDB CODE	E. FUNCTION	F. $\Delta\Delta G_{AVG,HELIX}$ (KCAL/MOL)	G. $\Delta\Delta G_{SUM, HELIX}$ (KCAL/MOL)	H. $\Delta\Delta G_{SUM, CHAIN}$ (KCAL/MOL)	I. HELIX CONTRIBUTION
1R8U	TRANSCRIPTION/TRANSCRIPTION ACTIVATOR	2.1	6.2	13.8	45%
1RF8	BIOSYNTHETIC PROTEIN, TRANSLATION	2.1	6.4	15.1	42%
1RIW	HYDROLASE/BLOOD CLOTTING	2.8	11.2	64.3	17%
1RK8	TRANSLATION	2.5	10.0	15.4	65%
1RM1	TRANSCRIPTION/DNA	2.1	8.5	29.3	29%
1RM1	TRANSCRIPTION/DNA	2.0	9.8	29.3	33%
1RP3	TRANSCRIPTION	2.2	17.7	31.0	57%
1SA0	CELLCYCLE	2.6	7.8	22.0	35%
1SB0	TRANSCRIPTION	2.2	6.5	6.5	100%
18Y0	CELLADHESION	2.0	14.1	14.1	100%
1TCO	COMPLEX (HYDROLASE/ISOMERASE)	23	16.1	22.5	72%
1TN6	TRANSFERASE	2.0	6.0	55.1	11%
1TOY	TRANSFERASE	2.0	3.9	38.9	10%
1TOY	TRANSFERASE	2.0	5.9	28.4	21%
1TUF	REPLICATION	3 3	10.0	10.0	100%
11161	PROTEIN TRANSPORT/DNA BINDING PROTEIN	2.0	3.9	6.8	57%
1VCB	TRANSCRIPTION	2.0	7.8	7.8	100%
1VVT		2.0	14.5	14.5	100%
1 1 1 1	TUBERCULOSIS	2.9	87	13.6	64%
1 WA0	TD ANGLATION	4.4	6.7 5.0	13.0	0470
1XLS	TRANSLATION	2.5	5.0	23.0	22/0
11115	TRANSCRIPTION TRANSCORT DROTEIN	2.1	0.2	9.1	0870
1 I /4		4.7	14.2	18.8	/0%
1 Y F N	PROTEIN BINDING	2.4	4.7	11.7	40%
1701	SIGNALING PROTEIN	2.0	0.1	32.9	19%
1280	ELECTRON TRANSPORT	2.0	8.0	8.0	100%
IZDI	TRANSCRIPTION	2.0	8.1	8.1	100%
IZUN	I KANSFEKASE	2.0	6.0	14.8	41%
IZW3	PROTEIN BINDING	2.2	8.6	10.0	86%
2A6Q	TOXIN INHIBITOR/TOXIN	2.4	9.5	15.0	63%
2A6Q	TOXIN INHIBITOR/TOXIN	2.2	6.7	22.9	29%
2AST	CELL CYCLE/LIGASE/PROTEIN TURNOVER	2.6	12.9	18.6	69%
2B87	PROTEIN BINDING	2.3	7.0	11.1	63%
2B9S	ISOMERASE/DNA	2.0	8.1	28.1	29%
2BZW	TRANSCRIPTION	2.4	12.2	18.3	67%
2C2V	CHAPERONE	5.5	16.4	16.4	100%
2D1P	TRANSLATION	2.6	15.5	15.5	100%
2DOQ	CELL CYCLE	2.5	7.6	7.6	100%
2DOQ	CELL CYCLE	3.4	13.7	13.7	100%
2DYM	PROTEIN TURNOVER/PROTEIN TURNOVER	2.2	13.0	25.8	50%
2E30	METAL BINDING PROTEIN/TRANSPORT PROTEIN	2.6	7.7	9.2	84%
2E9X	REPLICATION	3.2	9.6	16.9	57%
2E9X	REPLICATION	2.0	8.0	16.9	47%
2EHO	REPLICATION	2.1	6.2	13.7	45%
2EY4	ISOMERASE/BIOSYNTHETIC PROTEIN	2.0	7.8	18.6	42%
2F66	TRANSPORT PROTEIN	2.2	13.1	15.5	85%
2FUG	OXIDOREDUCTASE	3.4	6.8	7.9	86%
2G38	STRUCTURAL GENOMICS, UNKNOWN FUNCTION	2.5	4.9	22.9	21%
2GGM	CELL CYCLE	3.1	12.2	12.2	100%
2GL7	TRANSCRIPTION	2.1	6.3	13.6	46%
2HUE	DNA BINDING PROTEIN	2.1	10.3	24.8	42%
2HUE	DNA BINDING PROTEIN	2.5	17.2	22.5	76%
2IBF	CELL ADHESION, STRUCTURAL PROTEIN	3.3	19.8	27.9	71%
2105	CHAPERONE/STRUCTURAL PROTEIN	2.0	7.8	13.3	59%
2J9U	PROTEIN TRANSPORT	2.0	3.9	3.9	100%
2NLA	APOPTOSIS	2.2	8.6	8.6	100%
2NUP	PROTEIN TRANSPORT	2.5	10.1	14.1	72%

A. PDB CODE	J. # HOTSPOT RESIDUES	K. HOTSPOT RESIDUES, RESIDUE #
1R8U	3	E225 1 7: L228 2 1: L231 2 4:
1RF8	3	F282, 6.6; K287, 2.5; K289, 2.4;
1RIW	4	W279, 6.0; 1280, 1.6; V283, 1.7; 1284, 1.9;
1RK8	4	L133, 1.0; S136, 2.0; L140, 2.7; H141, 4.3;
1RM1	4	T14, 1.2; I15, 4.0; L23, 1.2; L26, 2.1;
1RM1	5	L36, 3.0; R39, 1.6; V40, 1.3; V47, 1.9; L52, 2.0;
1RP3	8	D76, 1.8; K78, 1.5; V79, 1.4; V80, 1.7; L83, 2.3; I84, 1.7; F86, 2.5; F87, 4.8;
1SA0	3	H406, 2.1; W407, 4.5; E411, 1.2;
1SB0	3	E105, 1.1; L95, 2.0; L99, 3.4;
1SYQ	7	L608, 2.2; L609, 1.1; K613, 1.1; L615, 3.0; L622, 3.0; L623, 2.5; R624, 1.2;
1TCO	7	V349, 1.3; F350, 5.1; L354, 1.8; F356, 3.0; K360, 1.0; M364, 1.6; L369, 2.3;
1TN6	3	Y355, 1.8; Y358, 2.6; R361, 1.6;
1TQY	2	P149, 1.1; W154, 2.8;
1TQY	3	L114, 1.1; Y118, 3.8; L119, 1.0;
1TUE	3	I19, 2.4; Y23, 5.5; E24, 2.1;
1UKL	2	R371, 1.7; Y376, 2.2;
1VCB	4	L158, 3.4; R161, 2.4; V166, 1.0; L169, 1.0;
1VYT	5	L430, 1.0; L434, 1.1; Y437, 4.8; W440, 5.9; I441, 1.7;
1WA8	2	I625, 7.5; L636, 1.2;
1XB2	2	K60, 1.4; R67, 3.6;
IXLS	3	L744, 1.4; L745, 2.9; L749, 1.9;
1 Y /4	3	L19, 1.8; D22, 5.2; L33, 7.2;
IYFN 1VOV	2	P6, I.1; KII, 3.6;
1701	3	Y4/8, 1.2; E481, 1.3; E484, 3.6;
1Z8U 1ZDT	4	D43, 1.7, F47, 2.8, F48, 1.0, F51, 2.5,
	4	L/14, 1.7, L/4J, 2.0, L/40, 1.2, L/47, 2.2, L 11, 2 0, D 20, 1, 6, L7, 1, 5,
1ZUN 1ZW3	3	L 1633 1 6: V1640 1 6: L 1647 3 2: L1648 2 2:
2460	4	$N69 = 14 \cdot R72 = 2 \cdot 9 \cdot 1 \cdot 73 = 1 \cdot 80 = 3 \cdot 4 \cdot 1 \cdot 80 = 3 \cdot 4 \cdot 1 \cdot 1$
2A60	3	W10 2 5: Y13 2 2: F8 2 0:
2AST	5	E3040 2.1: S3041 1.4: E3042 6.5: R3044 1.7: N3045 1.2:
2B87	3	W11, 1, 2: W14, 3, 5: F17, 2, 3:
2B9S	4	R226. 2.1: 1227. 1.6: 1228. 1.0: W231. 3.4:
2BZW	5	Y105. 2.8: L109. 2.5: D114. 2.0: F116. 3.7: E117. 1.2:
2C2V	3	F42, 1.8; L45, 13.1; L48, 1.5;
2D1P	6	Y79, 3.5; T80, 1.4; F82, 3.7; V83, 3.3; R84, 1.3; V87, 2.3;
2DOQ	3	F237, 2.3; W240, 3.8; L245, 1.5;
2DOQ	4	F258, 3.2; L264, 2.6; F268, 2.2; W271, 5.7;
2DYM	6	L28, 1.8; I29, 1.5; R31, 1.8; L32, 2.6; R35, 3.9; E39, 1.4;
2E30	3	I522, 5.5; H523, 1.0; E535, 1.2;
2E9X	3	L175, 2.3; F186, 3.3; W189, 4.0;
2E9X	4	L139, 1.1; F142, 1.4; F146, 3.4; M150, 2.1;
2EHO	3	W71, 1.5; L72, 3.2; L76, 1.5;
2EY4	4	R45, 2.8; K49, 2.2; R50, 1.4; L53, 1.4;
2F66	6	L356, 2.7; F359, 1.0; R368, 1.1; F371, 3.0; W375, 2.3; H376, 3.0;
2FUG	2	M107, 5.1; L113, 1.7;
2G38	2	Y153, 3.0; L161, 1.9;
2GGM	4	W848, 5.4; L851, 2.1; L855, 2.9; L856, 1.8;
2GL7	3	V44, 1.1; L48, 3.6; V49, 1.6;
2HUE	5	L100, 2.0; V101, 1.5; F104, 1.9; L92, 2.8; Y99, 2.1;
2HUE	7	150, 2.7; L58, 1.3; K59, 1.0; F61, 2.8; E63, 4.9; 166, 3.3; V70, 1.2;
2IBF	6	1566, 2.4; Y567, 10.2; K571, 1.2; L577, 3.2; S578, 1.1; L581, 1.7;
2105	4	L100, 1.9; F104, 3.0; L92, 1.5; Y99, 1.4; L178, 1.7, P100, 2.2;
2J9U	2	П1/0, 1./, К19U, 2.2; L 79, 2.9, 101, 1.6, D92, 2.9, 1/95, 1.4,
2NLA 2NLID	4	L/6, 2.6, 101, 1.0, D35, 2.6, V35, 1.4; D116, 6, 6, 0120, 1, 2, V121, 1, 2, V124, 1, 1,
ZINUP	4	D110, 0.0, Q120, 1.2, N 121, 1.2, N 124, 1.1,

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
1R8U	i; i+3; i+6;	12	12	225	236
1RF8	i; i+5; i+7;	11	12	280	291
1RIW	i; i+1; i+4; i+5;	9	10	277	286
1RK8	i; i+3; i+7; i+8;	8	26	117	142
1RM1	i; i+1; i+9; i+12;	6	16	14	29
1RM1	i; i+3; i+4; i+11; i+16;	8	22	34	55
1RP3	i; i+2; i+3; i+4; i+7; i+8; i+10; i+11;	9	13	76	88
1SA0	i; i+1; i+5;	9	8	405	412
1SB0	i; i+4; i+10;	21	21	89	109
1SYO	i; i+1; i+5; i+7; i+14; i+15; i+16;	17	20	608	627
1TCO	i: i+1: i+5: i+7: i+11: i+15: i+20:	14	22	349	370
1TN6	i: i+3: i+6:	12	15	353	367
1TQY	i; i+5;	11	12	145	156
1TOY	i: i+4: i+5:	18	12	111	122
1TUE	i: i+4: i+5:	7	22	5	26
1UKL	i: i+5:	15	21	371	391
1VCB	i: i+3: i+8: i+11:	9	13	158	170
1VYT	i: i+4: i+7: i+10: i+11:	9	22	424	445
1WA8	i: i+11:	6	34	610	643
1XB2	i: i+7:	11	15	57	71
1XLS	i: i+1: i+5:	9	9	743	751
1Y74	i: i+3: i+14:	12	19	19	37
1YFN	i: i+5:	12	6	6	11
1YOV	i: i+3: i+6:	13	11	476	486
1781	i: i+4: i+5: i+8:	21	21	34	54
1ZDT	i: i+1: i+4: i+5:	12	9	743	751
1ZUN	i: i+4: i+13:	8	20	7	26
1ZW3	i: i+7: 15: 16:	16	19	1631	1649
2460	i, i+7, i-5, i-6, $i \cdot i+3 \cdot i+4 \cdot i+11 \cdot$	13	16	67	82
2460	i: i+2: i+5:	16	12	7	18
24ST	i, i+2, i+3, i+4 $i+5$	13	8	3040	3047
2887	i, i+1, i+2, i+4, i+3,	8	15	1	18
2805	i, i+3, i+0, i+5	9	10	+ 225	234
2B75 2B7W	i, i+1, i+2, i+3, i, i+4, i+9, i+11, i+12	8	20	100	110
202W	i, i+3, i+6	8	14	40	53
202 V 2D1P	i, i+3, i+0, i+4, i+5, i+8	Q Q	14	40 79	80
2011	$i, i+1, i+3, i+4, i+3, i+6, i+6, i+2 \cdot i+8 \cdot$	9	26	224	249
2000	i, i+5, i+6, i+10, i+13	9	20 41	224	242
2D0Q 2DVM	i, i+0, i+10, i+	9	18	232	41
2D1M	i, i+1, i+13.	14	21	518	538
2E50 2E9X	i, i+1, i+13, i: i+11: i+14:	17	21	170	192
2E)X 2E9X	i, i+11, i+14, i, i+3, i+7, i+11	6	23	131	154
2E9A 2EHO	i; i+1; i+5;	9	8	70	77
2EHO 2EV4	i, i+1, i+5, i+8	7	13	12	54
2E14 2E66	i, i+3, i+3, i+3, i+3, i+10, i+20	8	26	356	381
2100 2EUG	i: i+6:	11	17	98	114
2638	i, i+0;	12	36	129	164
2050 266M	i, i+3, i+7, i+8.	7	16	848	863
200M 2GL 7	$i, i \cdot 3, i \cdot 7, i \cdot 6,$ $i \cdot i + 4 \cdot i + 5 \cdot$	12	0	12	50
20L7 2HUE	i, i+7, i+8, i+9, i+12,	12	20	72	114
2110E 21110E	1, 1, 7, 1, 0, 1, 7, 1, 12, $i \cdot i + 8 \cdot i + 0 \cdot i + 11 \cdot i + 12 \cdot i + 16 \cdot i + 20 \cdot$	/ 10	23 27	50	76
2110E 210E	1, 1 + 0, 1 + 7, 1 + 11, 1 + 13, 1 + 10, 1 + 20, i: i+1: i+5: i+11: i+12: i+15:	17	19	565	582
21DF 2105	i, i+1, i+3, i+11, i+12, i+13, i: i+7: i+8: i+12:	20	10	202	502 114
2103	i, i+12.	0 7	29 10	00 174	114
239U 2NII A	1, 1 + 1 2, i · i + 2 · i + 5 · i + 7 ·	/ 0	17	1/4	01
2INLA 2NILID	1, 1+3, 1+3, 1+7, 1+7, 1, 1+3, 1+5, 1+7,	0 0	10	116	71
LINUF	1, 1 , 7, 1 , 3, 1 , 0,	0	10	110	123

A. PDB		
CODE	Q. HELIX SEQUENCE	R. RESOLUTION
1R8U	EEVLMSLVIEMG	NOT APP
1RF8	PTFLLQFKDKLN	NOT APP
1RIW	KKWIQKVIDQ	2.04
1RK8	PEGLRCFYYLVQDLKCLVFSLIGLHF	1.90
1RM1	TIGNSLVDALDTLISD	2.50
1RM1	ASLAMRVLETFDKVVAETLKDN	2.50
1RP3	DEKVVKGLIEFFT	2.30
1SA0	VHWYVGEG	3.58
1SB0	EKRIKELELLLMSTENELKGQ	NOT APP
1SYQ	LLQAAKGLAGAVSELLRSAQ	2.42
1TCO	VFTWSLPFVGEKVTEMLVNVLN	2.50
1TN6	KEYWRYIGRSLQSKH	1.80
1TQY	PSVMPAEVAWAV	2.00
1TQY	ATSLEREYLLLS	2.00
1TUE	KETLSERLSALQDKIIDHYEND	2.10
1UKL	RKAIDYIKYLQQVNHKLRQEN	3.00
1VCB	LKERCLQVVRSLV	2.70
1VYT	LREKQQLEEDLKGYLDWITQAE	2.60
1WA8	GIEAAASAIQGNVTSIHSLLDEGKQSLTKLAAAW	NOT APP
1XB2	ASSKELLMKLRRKTG	2.20
1XLS	ALLRYLLDK	2.96
1Y74	LERDVSRAVELLERLQRSG	NOT APP
1YFN	PHQWQK	1.80
1YOV	DDYVHEFCRYG	2.60
1Z8U	EEDMVTVVEDWMNFYINYYRQ	2.40
1ZDT	ALLRYLLDK	2.10
1ZUN	HLKQLEAESIHIIREVAAEF	2.70
1ZW3	SVLAGHSRTVSDSIKKLIT	3.30
2A6Q	PANARRLMDSIDSLKS	2.05
2A6Q	EESWDDYLYWQE	2.05
2AST	ESEWRNLG	2.30
2B87	KFNKELGWATWEIFN	NOT APP
2B9S	PRIICSWAKA	2.27
2BZW	WAAQRYGRELRRMSDEFEGS	2.30
2C2V	RNFRLLEELEEGQK	2.90
2D1P	YTDFVRLTVKH	2.15
2DOQ	FANQAKLRVQEAVFYIWSDKTLKYSQ	3.00
2DOQ	NDEAESFRNTWLLFRSFQQWITLTQTFKEQSRLADQAFLNK	3.00
2DYM	MDDLLIRRLTDRNDKEAH	2.20
2E30	INEEIHTQFLDHLLTGIEDIC	NOT APP
2E9X	EMERGLFQTGQKGLNDFQCWEKG	2.30
2E9X	NADISQSLLQTFIGRFRRIMDSSQ	2.30
2EHO	LWLAKGLF	3.00
2EY4	GEYRRRWKREVLG	2.11
2F66	LDTFVKQGRELARQQFLVRWHIQRIT	2.80
2FUG	DVVREAQAGMVEFTLLN	3.30
2G38	TAQIADLDQEYDDFWDEDGEVMRDYRLRVSDALSKL	2.20
2GGM	WKLLAKGLLIRERLKR	2.35
2GL7	ADVKSSLVN	2.60
2HUE	SSAVMALQEASEAYLVALFEDTNLCAIHA	1.70
2HUE	IYEETRGVLKVFLENVIRDAVTYTEHA	1.70
2IBF	AIYEKAKEVSSALSKVLS	3.20
2105	SSAVMALQEASEAYLVGLFEDTNLCAIHA	2.70
2 J 9U	KDQLHPLLAELLISINRVT	2.00
2NLA	QLRRIGDKVNLRQKL	2.80
2NUP	DTFIQKTKKL	2.80

A. PDB	B. INTERFACE	C CHADI	
CODE	CHAINS	C. CHAIN	D. IIILE
208F	AB	В	HUMAN MUTSALPHA (MSH2/MSH6) BOUND TO DNA WITH A SINGLE BASE T INSERT
20BH	AC	С	CENTRIN-XPC PEPTIDE
20DE	AB	A	CRYSTAL STRUCTURE OF THE HETERODIMERIC COMPLEX OF HUMAN RGS8 AND ACTIVATED GI /
20NL	BD	В	CRYSTAL STRUCTURE OF THE P38A-MAPKAP KINASE 2 HETERODIMER
20ZA	AB	В	STRUCTURE OF P38ALPHA COMPLEX
2PIL	AB	В	STRUCTURE OF THE BCL-XL:BECLIN I COMPLEX
2P1N	DE	D	MECHANISM OF AUXIN PERCEPTION BY THE TIRI UBIQUTIN LIGASE
2P22	AC	A	STRUCTURE OF THE YEAST ESCRI-I HETEROTETRAMER CORE
2P22	AC	С	STRUCTURE OF THE YEAST ESCRI-I HETEROTETRAMER CORE
2PBI	AB	A	THE MULTIFUNCTIONAL NATURE OF GBETAS/RGS9 REVEALED FROM ITS CRYSTAL STRUCTURE
2PBI	AB	A	THE MULTIFUNCTIONAL NATURE OF GBETA5/RGS9 REVEALED FROM ITS CRYSTAL STRUCTURE
2PKG	AC	C D	LIGAND-BINDING DOMAIN OF THE HUMAN PERUXISOME PROLIFERATOR ACTIVATED RECEPTOR
2PSM	BC	В	CRYSTAL STRUCTURE OF INTERLEUKIN IS IN COMPLEX WITH INTERLEUKIN IS RECEPTOR ALPH.
2PV2	DF	F	CRYSTAL STRUCTURE OF AN ANTLACTIVATION COMPLEY IN DACTEDIAL OUODUM SENSING
2000	AC		CRYSTAL STRUCTURE OF AN ANTI-ACTIVATION COMPLEX IN BACTERIAL QUORUM SENSING
2QB0	A D	A	STRUCTURE OF THE 2TEL CRYSTALLIZATION MODULE FUSED TO 14 LYSOLYME WITH AN ALA-GI CRYSTAL STRUCTURE OF THE DASIC HELIX LOOP HELIX DOMAINS OF THE HETEDODIMED F470.
2QL2		D	STRUCTURAL DASIS OF EZU2 RECOCNITION BY EED
2QAV 2DCN		D	STRUCTURAL DASIS OF EZER2 RECOUNTION DT EED
2RGN 2POC		E D	SOLUTION STRUCTURE OF POSKHOUEF COMPLEX WITH DI MA
2800	AB	B	SOLUTION STRUCTURE OF MCL-1 COMPLEXED WITH NOVA A
2K0D 2SIV		D	SUCCEDENT STRUCTURE OF MCL-1 COMPLEXED WITH NOXAA
251V 211VN			STRUCTURAL RASIS OF HISTONE DEMETHVLATION RVLSD1 REVEALED RV SUICIDE INACTIVATI
20AN 2V6X	AB	Δ	STRUCTURAL DASIS OF HISTONE DEMETHT LATION BT ESDT REVEALED BT SOICHDE INACTIVATI
2 V 0 A 2 V E 7	AC	C A	CRYSTAL STRUCTURE OF A BONSALVERSION OF THE HUMAN NDC20 COMPLEX
2VDF		D	STRUCTURE OF MOUSE & 1 BOUND TO THE PUMA BH3-DOMAIN
2101	AB	B	STRUCTURE OF MOUSE AT BOUND TO THE RID BH3-DOMAIN
2W85	AB	B	STRUCTURE OF PEX14 IN COMPEX WITH PEX19
2728	AB	A	CRYSTAL STRUCTURE OF RHODOBACTER SPHAEROIDES SIGE IN COMPLEX WITH THE ANTI-SIGN
2Z2T	BE	В	CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN GP41 FRAGMENT N36 AND FUSION INHIBITOF
2Z2T	CF	С	CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN GP41 FRAGMENT N36 AND FUSION INHIBITOF
3B9F	LH	L	1.6 A STRUCTURE OF THE PCI-THROMBIN-HEPARIN COMPLEX
3BC1	AB	В	CRYSTAL STRUCTURE OF THE COMPLEX RAB27A-SLP2A
3BL2	AC	С	CRYSTAL STRUCTURE OF M11, THE BCL-2 HOMOLOG OF MURINE GAMMA- HERPESVIRUS 68, CON
3BOW	ВC	С	STRUCTURE OF M-CALPAIN IN COMPLEX WITH CALPASTATIN
3BPL	AB	А	CRYSTAL STRUCTURE OF THE IL4-IL4R-COMMON GAMMA TERNARY COMPLEX
3BPQ	AB	А	CRYSTAL STRUCTURE OF RELB-RELE ANTITOXIN-TOXIN COMPLEX FROM METHANOCOCCUS JA?
3BXK	AB	В	CRYSTAL STRUCTURE OF THE P/Q-TYPE CALCIUM CHANNEL (CAV2.1) IQ DOMAIN AND CA2+CALI
3C4M	AC	С	STRUCTURE OF HUMAN PARATHYROID HORMONE IN COMPLEX WITH THE EXTRACELLULAR DO
3DI2	AB	А	CRYSTAL STRUCTURE OF THE COMPLEX OF HUMAN INTERLEUKIN-7 WITH UNGLYCOSYLATED H
3DVU	B D	D	CRYSTAL STRUCTURE OF THE COMPLEX OF MURINE GAMMA- HERPESVIRUS 68 BCL-2 HOMOLOC
3E95	ВC	С	CRYSTAL STRUCTURE OF THE PLASMODIUM FALCIPARUM UBIQUITIN CONJUGATING ENZYME C
3EX7	AC	С	THE CRYSTAL STRUCTURE OF EJC IN ITS TRANSITION STATE
3FAL	C D	D	HUMANRXR ALPHA & MOUSE LXR ALPHA COMPLEXED WITH RETENOIC ACID AND GSK2186
3GJX	E D	D	CRYSTAL STRUCTURE OF THE NUCLEAR EXPORT COMPLEX CRM1- SNURPORTIN1-RANGTP
3HHR	AC	А	HUMAN GROWTH HORMONE AND EXTRACELLULAR DOMAIN OF ITS RECEPTOR: CRYSTAL STRU
3HJW	AB	В	STRUCTURE OF A FUNCTIONAL RIBONUCLEOPROTEIN PSEUDOURIDINE SYNTHASE BOUND TO A

A. PDB CODE	E. FUNCTION	F. ΔΔG _{avg,helix} (KCAL/MOL)	G. ΔΔG _{SUM, HELIX} (KCAL/MOL)	H. ΔΔG _{SUM, CHAIN} (KCAL/MOL)	I. HELIX CONTRIBUTION
208F	DNA BINDING PROTEIN/DNA	2.1	4.2	25.5	16%
20BH	CELL CYCLE	3.6	14.4	14.4	100%
20DE	SIGNALING PROTEIN	2.1	6.3	8.6	73%
20NL	TRANSFERASE	2.6	10.5	14.1	74%
20ZA	SIGNALING PROTEIN/TRANSFERASE	2.2	6.6	27.8	24%
2P1L	APOPTOSIS	2.0	10.2	10.2	100%
2P1N	SIGNALING PROTEIN	2.1	4.1	12.4	33%
2P22	TRANSPORT PROTEIN	3.2	12.8	27.7	46%
2P22	TRANSPORT PROTEIN	2.0	8.0	19.9	40%
2PBI	SIGNALING PROTEIN	2.1	8.2	45.7	18%
2PBI	SIGNALING PROTEIN	2.7	10.7	45.7	23%
2PRG	COMPLEX (THIAZOLIDINEDIONE/RECEPTOR)	2.0	8.1	8.1	100%
2PSM	CYTOKINE	2.7	13.5	19.5	69%
2PV2	ISOMERASE	2.1	10.4	11.5	90%
2000	TRANSCRIPTION	2.4	9.4	14.2	66%
2OB0	HYDROLASE REGULATOR	3.0	9.0	11.5	78%
20L2	TRANSCRIPTION/DNA	2.0	12.0	13.8	87%
20XV	GENE REGULATION	2.4	14.2	14.2	100%
2RGN	SIGNALING PROTEIN COMPLEX	2.1	6.3	13.8	46%
2ROC	APOPTOSIS	2.4	12.1	12.1	100%
2ROD	APOPTOSIS	2.5	12.4	12.4	100%
2SIV	ENVELOPE GLYCOPROTEIN	2.0	3.9	9.6	41%
2UXN	OXIDOREDUCTASE/TRANSCRIPTION REGULATOR	2.4	9.7	26.6	36%
2V6X	PROTEIN TRANSPORT	2.3	6.8	11.5	59%
2VE7	CELL CYCLE	2.7	13.4	28.9	46%
2VOF	APOPTOSIS	2.5	17.3	19.4	89%
2VOI	APOPTOSIS	2.1	8.2	8.2	100%
2W85	PROTEIN TRANSPORT	2.0	4.0	4.0	100%
2Z2S	TRANSCRIPTION	2.4	7.1	27.8	26%
2Z2T	VIRAL PROTEIN/INHIBITOR	2.0	7.8	7.8	100%
2Z2T	VIRAL PROTEIN/INHIBITOR	2.2	6.6	9.0	73%
3B9F	HYDROLASE/HYDROLASE INHIBITOR	2.3	9.0	17.6	51%
3BC1	SIGNALING PROTEIN/TRANSPORT PROTEIN	2.1	10.6	15.3	69%
3BL2	VIRAL PROTEIN/APOPTOSIS	2.4	12.1	12.1	100%
3BOW	HYDROLASE/HYDROLASE INHIBITOR	2.2	6.5	8.8	74%
3BPL	CYTOKINE/CYTOKINE RECEPTOR	2.0	8.1	12.6	64%
3BPQ	TOXIN	2.2	11.1	13.1	85%
3BXK	MEMBRANE PROTEIN, SIGNALING PROTEIN	2.1	12.3	12.3	100%
3C4M	MEMBRANE PROTEIN	2.8	11.3	12.4	91%
3DI2	CYTOKINE/CYTOKINE RECEPTOR	2.4	9.7	13.5	72%
3DVU	VIRAL PROTEIN/APOPTOSIS	2.0	7.9	9.1	87%
3E95	LIGASE	2.2	11.2	11.2	100%
3EX7	HYDROLASE/RNA BINDING PROTEIN/RNA	2.7	10.6	10.6	100%
3FAL	SIGNALING PROTEIN	2.0	3.9	6.2	63%
3GJX	PROTEIN TRANSPORT	2.0	3.9	9.7	40%
3HHR	HORMONE/RECEPTOR	2.1	8.3	8.3	100%
3HJW	ISOMERASE/RNA	2.1	8.3	18.7	44%

A. PDB	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #
CODE	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$
208F	2	F1222, 2.8; I1227, 1.4;
20BH	4	W848, 7.7; L851, 1.7; L855, 3.1; L856, 1.9;
20DE	3	E207, 2.7; K210, 2.4; H213, 1.2;
20NL	4	H126, 2.6; F129, 4.4; L130, 2.5; R136, 1.0;
20ZA	3	H126, 2.6; F129, 1.9; Y132, 2.1;
2P1L	5	L112, 1.6; L116, 2.2; K117, 1.3; D121, 2.0; F123, 3.1;
2P1N	2	V151, 3.0; W157, 1.1;
2P22	4	Y329, 9.2; D340, 1.4; L345, 1.0; R347, 1.2;
2P22	4	L150, 2.6; K153, 2.4; L154, 1.0; E169, 2.0;
2PBI	4	L244, 2.5; I247, 1.4; V248, 1.6; Y250, 2.7;
2PBI	4	I226, 1.8; Y228, 3.2; Y229, 2.7; L233, 3.0;
2PRG	4	K632, 1.1; L633, 2.3; L636, 1.5; L637, 3.2;
2PSM	5	E46, 4.6; Q48, 1.1; V49, 2.4; H52, 2.0; E53, 3.4;
2PV2	5	F10, 1.1; T3, 1.2; L4, 1.6; W7, 5.2; D8, 1.3;
2Q0O	4	R40, 1.8; Y50, 2.6; W53, 3.8; L54, 1.2;
2QB0	3	E68, 1.3; Y72, 3.4; R73, 4.3;
2QL2	6	K139, 1.1; L143, 3.0; K147, 2.1; Y149, 1.9; I150, 1.9; L153, 2.0;
2QXV	6	F42, 4.3; R46, 1.5; I49, 2.2; R52, 2.4; L56, 1.7; W60, 2.1;
2RGN	3	E215, 1.4; W216, 1.3; Y220, 3.6;
2ROC	5	L141, 3.9; I144, 2.1; D146, 1.1; L148, 1.8; Y152, 3.2;
2ROD	5	F23, 3.6; L27, 2.4; I30, 2.7; D32, 1.1; W38, 2.6;
2SIV	2	W631, 2.6; I642, 1.3;
2UXN	4	I474, 2.4; F478, 3.7; D486, 1.5; Y494, 2.1;
2V6X	3	F60, 2.1; L64, 1.5; R66, 3.2;
2VE7	5	F127, 1.1; F130, 4.2; R131, 1.2; Y138, 5.7; F141, 1.2;
2VOF	7	W133, 3.2; 1137, 2.2; L141, 2.1; R142, 2.7; 1144, 1.1; D146, 3.9; L148, 2.1;
2VOI	4	I82, 1.5; I86, 2.3; L90, 2.0; D95, 2.4;
2W85	2	F105, 1.3; F110, 2.7;
2Z2S	3	F30, 3.6; H32, 1.1; K38, 2.4;
2Z2T	4	H2564, 1.0; L2565, 2.1; L2568, 2.2; W2571, 2.5;
2Z2T	3	Q3551, 1.6; L3568, 2.3; W3571, 2.7;
3B9F	4	E14, 1.4; E14, 2.9; L14, 2.1; Y14, 2.6;
3BC1	5	115, 1.3; V18, 1.7; R21, 2.6; L25, 2.0; R32, 3.0;
3BL2	5	L110, 2.9; L114, 2.5; K115, 1.3; D119, 1.3; F121, 4.1;
3BOW	3	1653, 2.7; L656, 2.7; D659, 1.1;
3BPL	4	R81, 2.1; R85, 1.0; R88, 3.4; W91, 1.6;
3BPQ	5	E21, 3.0; I23, I.0; L24, 2.4; L28, 2.6; M32, 2.1;
3BXK	6	11961, 1.9; Y1962, 1.6; M1965, 1.0; 11967, 3.1; Y1971, 2.7; K1972, 2.0;
3C4M	4	K20, 5.9; W23, 1.8; L24, 2.6; L28, 1.0;
3D12	4	K10, 3.2; V15, 1.8; L16, 3.3; V18, 1.4;
3DVU	4	L112, 1.9; L116, 1.6; D121, 1.2; F123, 3.2;
3E95	5	F28, 5.1; L31, 1.3; D32, 1.6; L34, 2.2; Q38, 1.0;
3EA /	4	K387, 2.0; K390, 4.5; D391, 2.2; Q394, 1.9;
3FAL	2	L400, 1.4, K415, 2.5; V518, 1.2, 1.525, 2.7;
20JA 2111D	2	$v_{J10}, 1.2, L_{J2J}, 2.7,$
2111W	4	D11, 2.1, IN12, 2.0; K10, 1.9; K8, 2.3; D45, 2.9: D46, 2.2: V40, 1.7: D50, 1.5:
3HJW	4	к4э, 2.0, к40, 2.5, к49, 1.7, кэ0, 1.5,

A. PDB	L. HOTSPOT RESIDUE	M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START	P. HELIX END
CODE	HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #	RESIDUE #
208F	i; i+5;	19	20	1221	1240
20BH	i; i+3; i+7; i+8;	9	15	848	862
20DE	i; i+3; i+6;	12	10	205	214
20NL	i; i+3; i+4; i+10;	6	21	124	144
20ZA	i; i+3; i+6;	8	21	124	144
2P1L	i; i+4; i+5; i+9; i+11;	8	21	106	126
2P1N	i; i+6;	15	14	146	159
2P22	i; i+11; i+16; i+18;	8	30	323	352
2P22	i; i+3; i+4; i+19;	6	25	147	171
2PBI	i; i+3; i+4; i+6;	9	15	240	254
2PBI	i; i+2; i+3; i+7;	15	17	219	235
2PRG	i; i+1; i+4; i+5;	8	8	631	638
2PSM	i; i+2; i+3; i+6; i+7;	19	19	36	54
2PV2	i; i+1; i+4; i+5; i+7;	8	9	3	11
2Q0O	i; i+10; i+13; i+14;	6	33	25	57
2QB0	i; i+4; i+5;	12	8	67	74
2QL2	i; i+4; i+8; i+10; i+11; i+14;	16	19	139	157
2QXV	i; i+4; i+7; i+10; i+14; i+18;	19	23	41	63
2RGN	i; i+1; i+5;	12	21	210	230
2ROC	i; i+3; i+5; i+7; i+11;	21	25	131	155
2ROD	i; i+4; i+7; i+9; i+15;	9	19	22	40
2SIV	i; i+11;	13	32	629	660
2UXN	i; i+4; i+12; i+20;	7	40	474	513
2V6X	i; i+4; i+6;	15	31	50	80
2VE7	i; i+3; i+4; i+11; i+14;	8	29	114	142
2VOF	i; i+4; i+8; i+9; i+11; i+13; i+15;	17	20	133	152
2VOI	i; i+4; i+8; i+13;	15	21	79	99
2W85	i; i+5;	9	11	102	112
2Z2S	i; i+2; i+8;	16	19	23	41
2Z2T	i; i+1; i+4; i+7;	14	34	2547	2580
2Z2T	i; 18; 21;	6	35	3547	3581
3B9F	i; i+2; i+3; i+7;	8	9	14	14
3BC1	i; i+3; i+6; i+10; i+17;	9	29	7	35
3BL2	i; i+4; i+5; i+9; i+11;	8	17	107	123
3BOW	i; i+3; i+6;	9	9	652	660
3BPL	i; i+4; i+7; i+10;	21	26	70	95
3BPQ	i; i+2; i+3; i+7; i+11;	8	22	14	35
3BXK	i; i+1; i+4; i+6; 11; 12;	21	16	1961	1976
3C4M	i; i+3; i+4; i+8;	8	19	16	34
3DI2	i; i+5; i+6; i+8;	9	18	9	26
3DVU	i; i+4; i+9; i+11;	8	18	108	125
3E95	i; i+3; i+4; i+6; i+10;	18	15	26	40
3EX7	i; i+3; i+4; i+7;	8	12	385	396
3FAL	i; i+13;	12	30	399	428
3GJX	i; i+7;	8	22	510	531
3HHR	i; i+3; i+4; i+8;	7	28	6	33
3HJW	i; i+1; i+4; i+5;	11	12	42	53

A. PDB CODE	O. HELIX SEQUENCE	R. RESOLUTION
208F	TEDGTAIANAVVKELAETIK	3 25
2001 20BH	WKLLAKGLURERLK	1.80
20DE	RSERKKWIHC	1.90
20DL	DDHVOFLIYOILRGLKYIHSA	4.00
20ZA	DDHVOFLIYOILRGLKYIHSA	2.70
2P1L	SGTMENLSRRLKVTGDLFDIM	2.50
2P1N	EEEEEVRRENOWAF	2.50
2P22	DGLNOLYNLVAODYALTDTIECLSRMLHRG	2.70
2P22	DIALKKKLEONTKKLDEESSOLETT	2.70
2PBI	SSVSLGGIVKYSEOF	1.95
2PBI	VTAVRKEIMYYOOALMR	1.95
2PRG	HKLVOLLT	2.30
2PSM	KVTAMNCFLLELOVILHEY	2.19
2PV2	TLKFWDIFR	1.30
2000	KSELEALAVSAIREHRRLLWADOAVYEEWLRAS	2.00
20B0	KEDFRYRS	2.56
20L2	KIETLRLAKNYIWALSEIL	2.50
20XV	MFSSNROKILERTETLNOEWKOR	1.82
2RGN	IOQIYEWHRDYFLQELORCLK	3.50
2ROC	EEWAREIGAQLRRIADDLNAQYERR	NOT APP
2ROD	EFAAQLRKIGDKVYCTWSA	NOT APP
2SIV	QEWERKVDFLEENITALLEEAQIQOEKNMYEL	2.20
2UXN	ITAEFLVKSKHRDLTALCKEYDELAETOGKLEEKLQELEA	2.72
2V6X	PKSKDLIRAKFTEYLNRAEQLKKHLESEEAN	1.98
2VE7	AKRTSRFLSGIINFIHFREACRETYMEFL	2.88
2VOF	WAREIGAQLRRIADDLNAQY	1.80
2VOI	QEEIIHNIARHLAQIGDEMDH	2.10
2W85	QEKFFQELFDS	NOT APP
2Z2S	EAAFAELFQHFAPKVKGFL	2.70
2Z2T	DIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARI	2.10
2Z2T	DIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARIL	2.10
3B9F	ERELLESYI	1.60
3BC1	PEFEEQEAIMKVLQRDAALKRAEEERVRH	1.80
3BL2	MENLSRRLKVTGDLFDI	2.30
3BOW	PIDALSEDL	2.40
3BPL	AQQFHRHKQLIRFLKRLDRNLWGLAG	2.93
3BPQ	RKEYEKIEEILDIGLAKAMEET	2.20
3BXK	IYAAMMIMEYYRQSKA	2.55
3C4M	NSMERVEWLRKKLQDVHNF	1.95
3DI2	GKQYESVLMVSIDQLLDS	2.70
3DVU	TMENLSRRLKVTGDLFDI	2.50
3E95	RSFRLLDELERGQKG	2.50
3EX7	DIRILRDIEQYY	2.30
3FAL	PLMFPRMLMKLVSLRTLSSVHSEQVFALRL	2.36
3GJX	EEDEKRFLVTVIKDLLGLCEQK	2.50
3HHR	LSRLFDNAMLRAHRLHQLAFDTYQEFEE	2.80
3HJW	GEYRRRWKREVL	2,35

Table S3. Dataset of HIPP interactions with hotspots on three helical faces

Description of Entries:

- A. PDB code of predicted target.
- B. Chains in the complex featuring a helix at the interface.
- C. Candidate helix to be mimicked is part of the indicated chain.
- D. Title of PDB entry.
- E. Function of protein complex.
- F. $\Delta\Delta G_{avg}$ /helix is derived from Rosetta computational alanine mutagenesis studies and indicates the average free energy penalty for mutating two or more key residues in the helix at the interface to alanine.
- G. $\Delta\Delta G_{sum}$ /helix is derived from Rosetta computational alanine mutagenesis studies and indicates the average free energy penalty for mutating two or more key residues at the interface to alanine.
- H. $\Delta\Delta G_{sum}$ /chain is derived from Rosetta computational alanine mutagenesis studies and indicates the sum free energy penalty for mutating two or more key residues in the helix at the interface to alanine.
- I. Helix contribution refers to the proportion of key contact residues positioned on the candidate helix as compared to the chain (see text for a detailed explanation).
- J. Number of hot spot residues in helix.
- K. Relative positioning of the hot spot residues on a helix.
- L. Hot spot residues derived from Rosetta computational alanine scanning mutagenesis.
- M. Number of residues separating end hot spot residues (see Methods for more details).
- N. Length of candidate helix to be mimicked.
- O. First residue of the candidate helix segment.
- P. Last residue of the candidate helix segment.
- Q. Sequence of candidate helix to be mimicked.
- R. Resolution of PDB structure (NOT APP indicates NMR structure).

A. PDB	B. INTERFACE		
CODE	CHAINS	C. CHAIN	D. TITLE
1FQV	AB	А	INSIGHTS INTO SCF UBIQUITIN LIGASES FROM THE STRUCTURE OF THE SKP1-SKP2 COMPLEX
2ZFD	AB	В	THE CRYSTAL STRUCTURE OF PLANT SPECIFIC CALCIUM BINDING PROTEIN ATCBL2 IN COMPLEX
1CDL	AE	Е	TARGET ENZYME RECOGNITION BY CALMODULIN: 2.4 ANGSTROMS STRUCTURE OF A CALMODU
1E3A	AB	А	A SLOW PROCESSING PRECURSOR PENICILLIN ACYLASE FROM ESCHERICHIA COLI
1E3A	AB	А	A SLOW PROCESSING PRECURSOR PENICILLIN ACYLASE FROM ESCHERICHIA COLI
1IHF	AB	В	INTEGRATION HOST FACTOR/DNA COMPLEX
1JFI	B C	В	CRYSTAL STRUCTURE OF THE NC2-TBP-DNA TERNARY COMPLEX
1MXE	AE	Е	STRUCTURE OF THE COMPLEX OF CALMODULIN WITH THE TARGET SEQUENCE OF CAMKI
1N1J	AB	В	CRYSTAL STRUCTURE OF THE NF-YB/NF-YC HISTONE PAIR
1N2D	AC	С	TERNARY COMPLEX OF MLC1P BOUND TO IQ2 AND IQ3 OF MYO2P, A CLASS V MYOSIN
10R7	A C	С	CRYSTAL STRUCTURE OF ESCHERICHIA COLI SIGMAE WITH THE CYTOPLASMIC DOMAIN OF ITS.
1PQ1	AB	В	CRYSTAL STRUCTURE OF BCL-XL/BIM
1RP3	ΕF	Е	COCRYSTAL STRUCTURE OF THE FLAGELLAR SIGMA/ANTI-SIGMA COMPLEX, SIGMA-28/FLGM
1ZUZ	AB	В	CALMODULIN IN COMPLEX WITH A MUTANT PEPTIDE FROM HUMAN DRP- 1 KINASE
2BCX	AB	В	CRYSTAL STRUCTURE OF CALMODULIN IN COMPLEX WITH A RYANODINE RECEPTOR PEPTIDE
2BE6	ВE	Е	2.0 A CRYSTAL STRUCTURE OF THE CAV1.2 IQ DOMAIN-CA/CAM COMPLEX
2F66	A C	А	STRUCTURE OF THE ESCRT-I ENDOSOMAL TRAFFICKING COMPLEX
2F66	A C	С	STRUCTURE OF THE ESCRT-I ENDOSOMAL TRAFFICKING COMPLEX
2FOT	A C	С	CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CALMODULIN AND ALPHAII-SPECTRIN
2JF9	ВQ	Q	ESTROGEN RECEPTOR ALPHA LBD IN COMPLEX WITH A TAMOXIFEN- SPECIFIC PEPTIDE ANTAGO
2060	AB	В	CALMODULIN BOUND TO PEPTIDE FROM NEURONAL NITRIC OXIDE SYNTHASE
2PQK	AB	В	X-RAY CRYSTAL STRUCTURE OF HUMAN MCL-1 IN COMPLEX WITH BIM BH3
2QAC	ΑT	Т	THE CLOSED MTIP-MYOSINA-TAIL COMPLEX FROM THE MALARIA PARASITE INVASION MACHINI
2V6Q	AB	В	CRYSTAL STRUCTURE OF A BHRF-1 : BIM BH3 COMPLEX
3BS5	AB	В	CRYSTAL STRUCTURE OF HCNK2-SAM/DHYP-SAM COMPLEX
3D7V	AB	В	CRYSTAL STRUCTURE OF MCL-1 IN COMPLEX WITH AN MCL-1 SELECTIVE BH3 LIGAND
3DA7	GH	Н	A CONFORMATIONALLY STRAINED, CIRCULAR PERMUTANT OF BARNASE
3DD7	C D	D	STRUCTURE OF DOCH66Y IN COMPLEX WITH THE C-TERMINAL DOMAIN OF PHD
3DI2	C D	С	CRYSTAL STRUCTURE OF THE COMPLEX OF HUMAN INTERLEUKIN-7 WITH UNGLYCOSYLATED H
3DVE	AB	В	CRYSTAL STRUCTURE OF CA2+/CAM-CAV2.2 IQ DOMAIN COMPLEX
3EAB	D J	J	CRYSTAL STRUCTURE OF SPASTIN MIT IN COMPLEX WITH ESCRT III
3FWB	AB	В	SAC3:SUS1:CDC31 COMPLEX

A. PDB		F. $\Delta\Delta G_{AVG,HELIX}$	G. $\Delta\Delta G_{SUM, HELIX}$	H. $\Delta\Delta G_{SUM, CHAIN}$	I. HELIX
CODE	E. FUNCTION	(KCAL/MOL)	(KCAL/MOL)	(KCAL/MOL)	CONTRIBUTION
1FQV	LIGASE	2.0	8.1	11.7	69%
2ZFD	SIGNALING PROTEIN/TRANSFERASE	2.8	11.1	23.2	48%
1CDL	CALCIUM-BINDING PROTEIN	2.4	21.8	23.3	94%
1E3A	ANTIBIOTIC RESISTANCE	2.4	11.9	110.8	11%
1E3A	ANTIBIOTIC RESISTANCE	2.8	19.7	110.8	18%
1IHF	TRANSCRIPTION/DNA	2.4	11.9	32.3	37%
1JFI	TRANSCRIPTION/DNA	2.7	8.1	8.1	100%
1MXE	METAL BINDING PROTEIN	2.4	23.8	27.5	87%
1N1J	DNA BINDING PROTEIN	2.5	17.2	43.7	39%
1N2D	CELL CYCLE	2.0	15.7	15.7	100%
10R7	TRANSCRIPTION	2.2	11.1	33.3	33%
1PQ1	APOPTOSIS	2.3	20.4	20.4	100%
1RP3	TRANSCRIPTION	2.0	10.0	25.0	40%
1ZUZ	METAL BINDING PROTEIN/TRANSFERASE	2.6	21.1	22.7	93%
2BCX	CALCIUM BINDING PROTEIN	2.2	15.1	15.1	100%
2BE6	MEMBRANE PROTEIN	2.1	14.9	14.9	100%
2F66	TRANSPORT PROTEIN	3.4	10.2	11.3	90%
2F66	TRANSPORT PROTEIN	2.6	20.5	21.5	95%
2FOT	METAL BINDING, STRUCTURAL PROTEIN	2.9	20.3	20.3	100%
2JF9	TRANSCRIPTION	2.2	10.9	10.9	100%
2060	METAL BINDING PROTEIN	2.5	25.1	25.1	100%
2PQK	APOPTOSIS	2.2	20.0	21.1	95%
2QAC	MEMBRANE PROTEIN	2.3	18.0	18.0	100%
2V6Q	APOPTOSIS	2.1	12.7	12.7	100%
3BS5	SIGNALING PROTEIN/MEMBRANE PROTEIN	2.3	11.5	11.5	100%
3D7V	APOPTOSIS	2.4	17.1	17.1	100%
3DA7	PROTEIN BINDING	2.7	13.7	18.3	75%
3DD7	RIBOSOME INHIBITOR	4.9	24.4	26.6	92%
3DI2	CYTOKINE/CYTOKINE RECEPTOR	2.1	6.4	9.2	70%
3DVE	MEMBRANE PROTEIN	2.6	18.1	20.0	91%
3EAB	CELL CYCLE	2.1	10.6	12.1	88%
3FWB	CELL CYCLE, TRANSCRIPTION	3.3	19.9	19.9	100%

A. PDB	J. # HOTSPOT	K. HOTSPOT RESIDUES, RESIDUE #		
CODE	RESIDUES	$\Delta\Delta G_{(\text{KCAL/MOL})}$		
1FQV	4	K137, 1.9; R138, 1.2; W139, 2.5; Y140, 2.5;		
2ZFD	4	F313, 5.1; D314, 1.0; I315, 2.1; I316, 2.9;		
1CDL	9	R798, 2.1; K799, 2.2; W800, 7.1; H805, 2.3; V807, 2.1; R808, 2.1; I810, 1.2; R812, 1.3; L813, 1.4;		
1E3A	5	E152, 3.2; I153, 2.1; D154, 1.7; N155, 2.6; L158, 2.3;		
1E3A	7	W25, 3.5; L27, 3.0; F28, 1.9; Y29, 1.2; Y31, 6.1; Y33, 2.3; D38, 1.7;		
1IHF	5	E28, 4.2; M29, 1.9; L30, 2.3; H32, 2.3; M33, 1.2;		
1JFI	3	L219, 1.1; Q222, 1.2; L225, 5.8;		
1MXE	10	F298, 2.8; K302, 1.6; W303, 6.9; K304, 1.1; F307, 2.6; V312, 1.4; V313, 1.6; R314, 2.1; H315, 1.8; M316, 1.9;		
1N1J	7	V67, 1.1; L68, 2.7; F69, 4.7; K71, 1.5; I75, 1.3; I77, 3.0; W85, 2.9;		
1N2D	8	K812, 1.4; L814, 2.5; Q815, 2.8; I818, 1.7; F821, 2.4; I822, 1.4; I823, 1.1; R824, 2.4;		
10R7	5	W33, 2.8; H37, 2.4; L38, 1.2; I39, 2.4; M43, 2.3;		
1PQ1	9	F101, 4.3; Y105, 2.8; E87, 1.7; I90, 1.5; E93, 1.0; L94, 1.9; R95, 1.6; I97, 2.0; D99, 3.6;		
1RP3	5	K190, 1.8; Q194, 2.1; L195, 1.2; F197, 2.4; Y198, 2.5;		
1ZUZ	8	R304, 1.9; W305, 6.6; L307, 1.6; F309, 3.2; V312, 2.2; L314, 1.6; H317, 2.3; L318, 1.7;		
2BCX	7	L3623, 2.3; K3626, 1.0; R3628, 2.7; R3629, 1.6; V3632, 1.5; V3633, 1.8; F3636, 4.2;		
2BE6	7	T1614, 1.3; K1617, 1.5; F1618, 4.5; Y1619, 1.6; F1622, 2.6; L1623, 1.0; I1624, 2.4;		
2F66	3	V332, 2.4; D340, 6.5; M348, 1.3;		
2F66	8	F184, 1.0; I185, 1.7; Y188, 4.9; L189, 1.7; R192, 4.1; H196, 2.4; L197, 2.4; E200, 2.3;		
2FOT	7	W1192, 4.5; R1196, 2.1; L1197, 2.8; V1199, 2.3; T1204, 1.2; F1205, 4.4; K1209, 3.0;		
2JF9	5	L12, 2.1; R5, 1.0; W7, 2.8; F8, 4.0; K9, 1.0;		
2060	10	L10, 4.5; E12, 1.0; V14, 2.1; K15, 1.0; F16, 3.9; K19, 1.0; L20, 2.0; F7, 5.0; K8, 1.4; K9, 3.2;		
2PQK	9	L10, 2.2; R11, 3.2; I13, 2.2; D15, 2.7; F17, 2.7; Y21, 2.2; E3, 1.8; W5, 1.0; I6, 2.0;		
2QAC	8	R806, 4.3; V807, 1.7; Q808, 2.2; H810, 3.4; I811, 2.3; R812, 1.1; K813, 2.0; V816, 1.0;		
2V6Q	6	W57, 2.2; I58, 1.8; E61, 3.1; L62, 2.3; R63, 1.4; F69, 1.9;		
3BS5	5	1165, 1.7; H167, 2.9; Q168, 1.6; L170, 3.2; E173, 2.1;		
3D7V	7	E55, 2.7; W57, 1.0; I58, 3.3; R63, 2.7; I65, 2.4; D67, 2.9; Y73, 2.1;		
3DA7	5	L35, 1.6; D36, 1.5; D40, 6.7; C41, 1.0; W45, 2.9;		
3DD7	5	E55, 1.6; F56, 2.6; L59, 2.0; F60, 17.0; D61, 1.2;		
3DI2	3	D74, 1.0; L77, 1.4; L80, 4.0;		
3DVE	7	M1854, 1.5; K1856, 1.6; I1863, 3.1; F1864, 1.9; F1866, 3.9; Y1867, 4.3; K1868, 1.8;		
3EAB	5	E184, 2.9; Q185, 3.7; D186, 1.1; L188, 1.9; R191, 1.0;		
3FWB	6	K789, 1.7; L794, 1.0; K795, 3.5; F798, 1.3; F799, 4.1; W802, 8.3;		

A. PDB		M. HOTSPOT RESIDUE	N. HELIX	O. HELIX START
CODE	L. HOTSPOT RESIDUE HELIX POSITIONS	END TO END LENGTH	LENGTH	RESIDUE #
1FQV	i; i+1; i+2; i+3;	5	8	137
2ZFD	i; i+1; i+2; i+3;	2	7	312
1CDL	i; i+1; i+2; i+7; i+9; i+10; i+12; i+14; i+15;	12	17	798
1E3A	i; i+1; i+2; i+3; i+6;	19	15	152
1E3A	i; i+2; i+3; i+4; i+6; i+8; i+13;	18	16	24
1IHF	i; i+1; i+2; i+4; i+5;	9	21	19
1JFI	i; i+3; i+6;	12	28	215
1MXE	i; i+4; i+5; i+6; i+9; i+14; i+15; i+16; i+17; i+18;	9	21	298
1N1J	i; i+1; i+2; i+4; i+8; i+10; i+18;	8	29	63
1N2D	i; i+2; i+3; i+6; i+9; i+10; i+11; i+12;	19	46	808
10R7	i; i+4; i+5; i+6; i+10;	11	18	27
1PQ1	i; i+3; i+6; i+7; i+8; i+10; i+12; i+14; i+18;	8	27	86
1RP3	i; i+4; i+5; i+7; i+8;	7	13	187
1ZUZ	i; i+1; i+3; i+5; i+8; i+10; i+13; i+14;	9	16	304
2BCX	i; i+3; i+5; i+6; 10; 11; 14;	7	23	3617
2BE6	i; i+3; i+4; i+5; i+8; 10; 11;	15	13	1613
2F66	i; i+8; i+16;	12	29	323
2F66	i; i+1; i+4; i+5; i+8; i+12; i+13; i+16;	11	26	178
2FOT	i; i+4; i+5; i+7; 13; 14; 18;	8	21	1191
2JF9	i; i+2; i+3; i+4; i+7;	8	9	5
2060	i; i+1; i+2; i+3; i+5; i+7; i+8; i+9; i+12; i+13;	17	15	7
2PQK	i; i+2; i+3; i+7; i+8; i+10; i+12; i+14; i+18;	8	22	1
2QAC	i; i+1; i+2; i+4; i+5; i+6; i+7; i+10;	15	13	805
2V6Q	i; i+1; i+4; i+5; i+6; i+12;	14	19	53
3BS5	i; i+2; i+3; i+5; i+8;	14	19	165
3D7V	i; i+2; i+3; i+8; i+10; i+12; i+18;	8	22	54
3DA7	i; i+1; i+5; i+10;	8	12	35
3DD7	i; i+1; i+4; i+5; i+6;	8	11	53
3DI2	i; i+3; i+6;	8	18	74
3DVE	i; i+2; i+9; i+10; i+12; i+13; i+14;	12	17	1854
3EAB	i; i+1; i+2; i+4; i+7;	9	19	174
3FWB	i; i+5; i+6; i+9; i+10; i+13;	6	52	753

A. PDB CODE	P. HELIX END RESIDUE #	Q. HELIX SEQUENCE	R. RESOLUTION
1FQV	144	KRWYRLAS	2.80
2ZFD	318	AFDIISG	1.20
1CDL	814	RKWQKTGHAVRAIGRLS	2.00
1E3A	166	EIDNLALLTALKDKY	1.80
1E3A	39	TWHLFYGYGYVVAQDR	1.80
1IHF	39	AKTVEDAVKEMLEHMASTLAQ	2.20
1JFI	242	EEELLRQQQELFAKARQQQAELAQQEWL	2.62
1MXE	318	FAKSKWKQAFNATAVVRHMRK	1.70
1N1J	91	AEAPVLFAKAAQIFITELTLRAWIHTEDN	1.67
1N2D	853	SQAIKYLQNNIKGFIIRQRVNDEMKVNCATLLQAAYRGHSIRANVF	2.00
10R7	44	PEMQKTWESYHLIRDSMR	2.00
1PQ1	112	PEIRIAQELRRIGDEFNETYTRRVFAN	1.65
1RP3	199	EREKLVIQLIFYE	2.30
1ZUZ	319	RWKLDFSIVSLCNHLT	1.91
2BCX	3639	KAVWHKLLSKQRRRAVVACFRMT	2.00
2BE6	1625	VTVGKFYATFLIQ	2.00
2F66	351	DGLNQLYNLVAQDYALTDTIEALSRMLHR	2.80
2F66	203	ADDLDQFIKNYLDIRTQYHLRREKLA	2.80
2FOT	1211	PWKSARLMVHTVATFNSIKER	2.45
2JF9	13	REWFKDMLS	2.10
2060	21	FKKLAEAVKFSAKLM	1.55
2PQK	22	RPEIWIAQELRRIGDEFNAYYA	2.00
2QAC	817	MRVQAHIRKRMVA	1.70
2V6Q	71	RPEIWIAQELRRIGDEFNA	2.70
3BS5	183	IGHQELILEAVDLLCALNY	2.00
3D7V	75	PEIWIAQEARRIGDEANAYYAR	2.03
3DA7	46	LDALWDCLTGWV	2.25
3DD7	63	DAEFASLFDTL	1.70
3DI2	123	DFDLHLLKVSEGTTILLK	2.70
3DVE	1870	MGKVYAALMIFDFYKQN	2.35
3EAB	192	GSVGTSVASAEQDELSQRL	2.50
3FWB	804	EANYRKDFIDTMTRELYDAFLHERLYLIYMDSRAELKRNSTLKKKFFEKWQA	2.50