
Supporting Information

Kohara et al. 10.1073/pnas.1104692108

Fig. S1. Visualization of the DFT optimized structure of (A) MgSiO₃ glass (510 atoms) and (B) Mg₂SiO₄ glass (511 atoms). Light gray, silicon; Red, oxygen; Gold: magnesium.

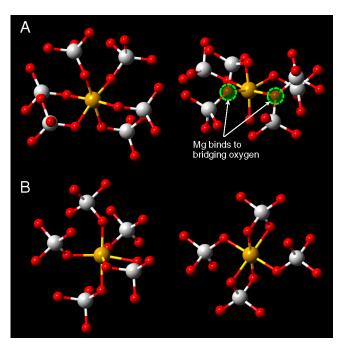
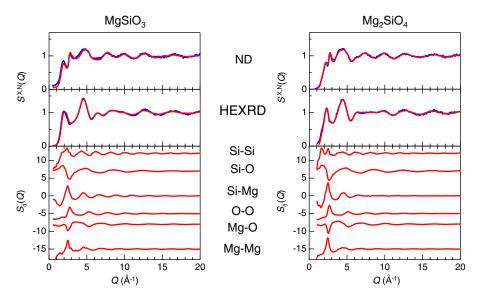



Fig. S2. Local environment around Mg cations in the crystalline phase of (A) MgSiO₃ and (B) Mg₂SiO₄. Both structures comprise two classes of Mg-sites. Light gray, silicon; Red, oxygen; Gold: magnesium.

Fig. S3. Experimental X-ray and neutron total structure factors, S(Q), of MgSiO₃ and Mg₂SiO₄ glasses together with total S(Q) and partial structure factors, $S_{ij}(Q)$, obtained from RMC modeling. Blue line, Experimental data; Red line, RMC model. Experimental X-ray diffraction data was measured at high-energy X-ray diffraction beamline BL04B2 of SPring-8 using 61.6 keV X-rays.

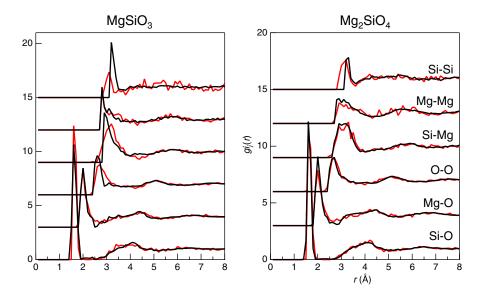
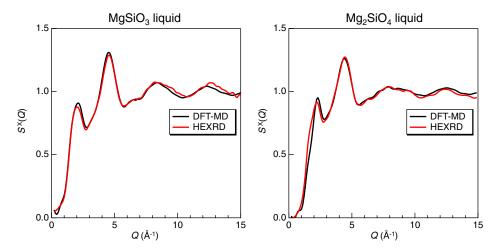
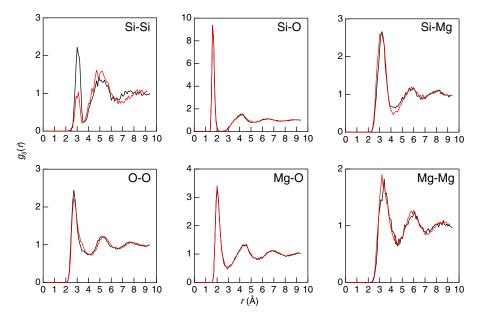




Fig. S4. Partial-pair distribution functions, g_{ij}(r), of MgSiO₃ and Mg₂SiO₄ glasses obtained from the RMC model (back line) and the DFT model (red line).

Fig. S5. X-ray structure factors, $S^{X}(Q)$, of MgSiO₃ (2,153 K) and Mg₂SiO₄ (2,223 K) liquids obtained from the high-energy X-ray diffraction measurement (red line) and DFT-MD data (black line). The DFT-MD simulations of 510/511 atoms were performed in the canonical *NVT* ensemble (thermostat, average temperatures 2,180 K and 2,230 K for MgSiO₃ and Mg₂SiO₄, respectively) by starting from an RMC configuration, and they lasted 30 ps in total (1 fs time step). In order to accommodate structural relaxation, only snapshots from the last 15 ps were used for the structure factor plot.

Fig. S6. Partial-pair distribution functions, $g_{ij}(r)$, of MgSiO₃ (black, 2,153 K) and Mg₂SiO₄ (red, 2,223 K) liquids obtained from the DFT-MD simulations. The DFT-MD data is averaged over the last 15 ps of the 30 ps MD trajectory. Differences in the Si-Si partials are due to the smaller concentration of Si and vanishing SiO₄ network in Mg₂SiO₄. The first peak of the Mg-O partial is slightly higher for Mg₂SiO₄ which explains the small difference in coordination number: $N_{Mg-O} = 4.03$ in MgSiO₃ liquid (up to 2.5 Å) and 4.79 (up to 2.8 Å) while $N_{Mg-O} = 4.19$ in Mg₂SiO₄ liquid (up to 2.5 Å) and 5.02 (up to 2.8 Å).