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Supplementary Discussion - Effects from fluctuations

It is quite surprising that the model introduced in the main text, which neglects fluctuations, pro-

vides such an excellent description of the experimentally determined slopes and torques after buck-

ling (see Figures 1c and 2, main text). Judging the success of the model by its agreement with the

experimental data, one would conclude that it correctly covers the major determinants of superhe-

lix formation under external tension. However, it is also clear that fluctuations should influence the

measured parameters. Within this section we discuss the reasons for the success of our approach

as well as its disadvantages and limitations.

Verification of the applied parameters. One possible explanation for the agreement of our the-

oretical approach with the experimental data is that the parameters which enter the formula for

the superhelix formation energy Esh
tot (see eq 1, main text) were over- or underestimated, thereby

compensating the error due to neglected fluctuations.

The only adjustable parameters entering our model are the persistence length p (for which a

constant value of 50 nm is taken throughout the paper) and the DNA charge adaptation factor χCR.

∗To whom correspondence should be addressed
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Although the persistence length is expected to depend weakly on the ionic strength,1 varying this

parameter within a reasonable range1 only leads to minor changes of χCR (changing p by 5 nm

alters χCR only by ±0.03). Thus, the salt dependence of the persistence length can be neglected

within error.

To obtain verification for the charge adaptation factor χCR, we carried out coarse-grained

Monte-Carlo (MC) simulations (see main text) that, by definition, include all fluctuation-based

effects, such as undulation enhancement of the electrostatic interactions.2 No additional entropic

energy terms, e.g. due to DNA confinement within the plectoneme,3 are required. The Hamiltonian

for the MC simulations includes energy terms corresponding to those in the theoretical model with

the same values for the parameters p and χCR. In addition, the MC simulations include the DNA

twist energy, for which a torsional persistence length ptor = 100 nm was taken.4 While variations

of ptor change the buckling position in an approximately proportional fashion,5 they do not impact

the slope or torque after buckling. In fact buckling does occur slightly earlier in simulations than

in experiments (compare Figures 1b and 3b, main text), but this can be adjusted in the simulations

by applying a slightly reduced value for ptor of 94 nm as recently reported.6

We verified that the electrostatic energies agree as calculated by the theoretical model and the

MC simulations. In addition, the dependence of the superhelix energy on the superhelical radius

ρ was found to agree when calculated using either approach (Figure S8). We can also exclude

mistakes due to imprecise writhe estimates, since the twist is explicitly included for each segment

in the MC simulations. Writhe calculations are only carried out to prevent MC moves in which

strands would virtually cross each other and change the linking number (defined as twist plus

writhe) by ±2.

For χCR = 0.42 the slopes from the MC simulations are in excellent agreement with the ones

predicted by the theoretical model (Figure 3c, main text). Therefore, χCR = 0.42 must be applied in

order to describe the supercoiling data given the manner with which the electrostatic interactions

are calculated.

Applying additional entropic energy terms. In previous theoretical work on supercoiled plas-
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mid DNA, additional entropic energy terms have been included to model the effect of the con-

finement that DNA experiences within a tight plectonemic superhelix compared to the more freely

fluctuating non-superhelical state. Marko & Siggia3 considered the additional free energy per

DNA length Eentr/L = kBT [p−1/3(h/2)−2/3 + p−1/3ρ−2/3] to model confinement of the radial

fluctuations within the superhelical radius ρ and pitch fluctuations within the superhelical re-

peat length h. Ubbink et al.2 considered a similar confinement, where the radial fluctuations are

limited to an adjustable confinement length dr and the pitch fluctuations to h/2π with Eentr/L =

kBT ·3/28/3[p−1/3(h/2π)−2/3 + p−1/3d−2/3
r ]. Additionally Ubbink et al. introduced a correction

to the electrostatic interaction energy due to radial superhelix fluctuations leading to an enhance-

ment factor of exp(2d2
r /λ 2

D) compared to the interaction energy in the absence of fluctuations.

In order to better understand the role of fluctuations in particular the influence of confining

the DNA within the superhelix, we applied the energetic corrections from both theoretical works

within our theoretical model. While the slopes are well described for χCR = 0.45, the torques are

overestimated considerably by the corrections from both theories (Figure S6). Plotting only the

entropic contribution to the superhelix free energy reveals an approximately constant offset to the

energy for all forces considered. Subtracting the energetic corrections for confinement and fluc-

tuations provides torque values in close agreement with our theoretical model (Figure S7a). This

is because the superhelix parameters hardly change when the additional corrections are applied

(shown for ρ in Figure S7b).

From this we can formulate two conclusions: (i) including energetic penalties for confinement

of the DNA within a tight superhelix does not lead to an increase of the superhelix dimensions

and (ii) the actual free energy contributions of the fluctuations are considerably smaller than pre-

dicted for supercoiled plasmids. The latter is not surprising, since DNA under tension is already

significantly confined before superhelix formation compared to relatively freely fluctuating non-

superhelical, circular DNA. Additionally, extrusion of a superhelix, which can freely diffuse along

and around the stretched part of the DNA, liberates some of the confinement of the stretched config-

uration. In our opinion this is the most likely reason for the relatively small entropic contributions

S3



to the free energy of superhelix formation.

Though the predictions for supercoiled plasmids do not provide a correct quantification of the

entropic contributions for DNA under tension, it is interesting to note that they seem to add a

constant energetic offset for the range of forces considered. Comparing the torque predictions

from our theoretical model with the torque from the MC simulations reveals a constant offset

of ∼1.5 pN nm for all forces and salt concentrations (Figure 3e, main text), which is likely the

aforementioned contribution due to fluctuations.

Fluctuations within stretched versus superhelical DNA - relative extension of DNA. An addi-

tional complication arises when considering the influence of fluctuations on DNA length changes.

If one considers the average DNA path, i.e. the average over the DNA fluctuations in time, it ap-

pears to be always shorter than the contour length of the molecule. Thus, for DNA under tension,

the end-to-end distance is always shorter than the contour length and the DNA can be considered

as an entropic spring. Consequently, within a DNA supercoiling experiment, the plectonemic su-

perhelix takes up more DNA per added turn than indicated by the slope of the supercoiling curve.

To account for the additional DNA sequestered within the average DNA path, previous works7,8

solved for superhelix parameters in the absence of fluctuations, as done here, and scaled the re-

sultant slopes by the relative extension zrel of the DNA at zero twist, defined as the end-to-end

distance under the given tension divided by the contour length of the DNA.

This approach, however, ignores the strong dependence of zrel on the DNA twist (which is

particularly large at low forces). More importantly, only the average DNA path is rescaled but not

the relevant energy terms which define the superhelix dimensions.

The superhelix energy should, however, be rescaled to account for the rescaling of the DNA

geometry and the resulting rescaled energy should be minimized to produce a new set of superhe-

lix parameters. When rescaling with zrel as done before7,8 one could assume that the fluctuations

contributing to zrel are suppressed within the superhelix (with zrel = 1 within the superhelix) so that

only the potential energy imposed by the applied tension would need to be rescaled (i). Alterna-

tively, all energy terms could be linearly rescaled by zrel (ii). The first possibility would lead to
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different superhelix parameters and therefore to a different slope prediction than previously deter-

mined,7,8 whereas the second approach would provide slopes (as obtained before7,8) and torques,

both rescaled by zrel.

However, fluctuations do occur within the plectoneme, so zrel = 1 (assumption i) is not obeyed

within the plectoneme. Also, the energies for the supercoiled DNA do not scale linearly with the

superhelix dimensions (assumption ii). In particular, the electrostatic interactions do not decrease

but rather increase in an approximately exponential fashion upon scaling the superhelix with zrel. In

agreement with these arguments, we find that neither approach of rescaling the superhelix energies

with zrel appropriately models the experimental data, since both bias the obtained slopes towards

lower values (not shown). Matching the experimental data would require a significantly increased

χCR, which contradicts the results from the MC simulations. Still, the dependence of the slopes

on force would be poorly reproduced; adjusting χCR to obtain agreement for the slopes at elevated

forces provides significant underestimation of the slopes at lower forces.

Why does our simple approach, which ignores fluctuations, work well?

One way of looking at this is to assume that the relative extension within the superhelix remains

unchanged compared to the stretched DNA, i.e. that the bending fluctuations are not affected by the

confinement of the DNA within the superhelix with zrel being constant throughout the molecule.

In this case, the superhelix from our theoretical model can be viewed as an effective path obtained

after averaging out the fluctuations around it. The superhelical geometry and potential energy due

to the applied tension would be correctly described; only the bending energy and the electrostatic

interaction energy would change. We consider these changes to be minor, and in case of the

electrostatic interactions even to cause a further reduction of χCR. Comprising more DNA, i.e.

more charge, per average superhelical path length together with an enhancement of the effective

electrostatic repulsion due to undulations2 leads to an increased electrostatic contribution, which

would need to be adjusted by lowering rather than increasing χCR. Thus, if assuming a constant

zrel throughout the molecule, our approach is expected to provide a reasonable description of the

experimental slopes with minor adaptations for electrostatic and bending energies.
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Another way of looking at the problem is to consider the asymmetry of the fluctuations of su-

perhelix radius and pitch. Compared to the energetic minimum position, fluctuations that increase

ρ and h are preferred over fluctuations which decrease these parameters due to the asymmetry of

the energy landscape (shown for ρ in Figure S8), thereby increasing the slope (we note here that,

judging from the energy landscape of the superhelix (not shown), correlated fluctuations of ρ and

h are favored over anti-correlated ones). Indeed, at lower forces, we find that the mean superhe-

lix radius obtained from MC simulations is shifted to higher values (Figure S7b) compared to the

most probable radius, i.e. the energetic minimum position. However, we obtain excellent agree-

ment between theory and MC simulation for the most probable radius (Figure S8). Thus to some

extent, our model underestimates the mean superhelix dimensions by neglecting the asymmetry of

fluctuations.

Taking the two viewpoints together:

(i) It is likely that confinement of the tightly wrapped DNA molecule partially suppresses bend-

ing fluctuations within the superhelix. This would increase zrel within the superhelix and cause a

reduction of the slopes as discussed above for the extreme suppression of the bending fluctuations,

where zrel = 1 in the plectoneme was considered. (We note that such a slope reduction is partially

compensated by the writhe originating from bending fluctuations,9 which becomes liberated upon

suppression of these fluctuations within the superhelix and needs additionally be accommodated.)

(ii) Global superhelix fluctuations favor larger averages for the superhelical parameters ρ and h

(Figure S8), leading to a balancing increase in the slopes. The torque offset between our theoretical

model and the MC simulations can then be viewed as the occupancy of less energetically favorable

superhelix geometries due to ongoing fluctuations.

We therefore think that the striking agreement of our theoretical model with MC simulations

and experimental data is due to opposing effects from the fluctuations - a reduced relative stretch-

ing within the superhelix versus fluctuations of the superhelix towards larger dimensions. Previous

work ignored the latter part and failed to provide a quantitative description of the supercoiling

slopes.7,8 In any case our model provides a satisfactory way to calculate and predict slopes and
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torques in supercoiling experiments under tension, which will be helpful for both future experi-

mental10 and theoretical work.5,11

S7



Supplementary Methods

Coarse-grained Monte-Carlo simulations

Representation of the tethered DNA. DNA is represented as a linear chain of 129 straight seg-

ments with a length of 5 nm, which is significantly shorter than the bending and torsional persis-

tence lengths (Figure S9a). Each segment is defined by its position and a local coordinate system,

describing its spatial orientation. The elastic properties of the chain are described by standard har-

monic potentials for stretching, bending and twisting.12,13 The electrostatic interaction between

DNA segments is described by a Debye-Hückel approximation adapted to fit the non-linear PB

solution at large distances (see below and Figure S2). The DNA is attached to a 400 nm-radius

sphere, that represents the magnetic bead on one end, and an infinite impenetrable plane on the

other end (Figure S9b). Additional mechanical potentials were introduced to model the stretching

of DNA by an external force, volume exclusion of any DNA segment from the bead and surface

as well as tethering of the DNA chain at its extremities (see below). An overview of the used

parameters is given in Table S1.

Table S1: Parameters used in the Monte-Carlo simulations. The values of the elastic potentials
are based on experimentally determined values, corresponding to a 50 nm bending persistence
length14 and a torsional persistence length of 100 nm4 and for elastic stretching to a stretching
modulus of 1100 pN.15

Parameter Value

Stretching modulus 1.10 · 10-18 J/nm
Bending modulus 2.06 · 10-19 J nm
Torsion modulus 4.05 · 10-19 J nm
Tether modulus (αtether) 5.53 · 10-19 J/nm2

Intersection modulus (αIntSec) 2.78 · 10-7 J/nm12

Temperature 293.0 K
Number of segments 129
Segment length 5 nm

Electrostatic Energy. The electrostatic interaction energy of the whole DNA chain was calculated

by summing up the electrostatic interaction energy of individual segment pairs. Each pair entered
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the sum only once. The electrostatic interaction between two individual DNA segments is deter-

mined in analogy to the calculations described in the main text (Eq. (4), main text, and Figure S2)

by integrating the Poisson-Boltzmann adapted solution of the Debye-Hückel equation for a point

charge over two charged line segments:12

EEstat
i j = lB · kBT ·ξ ∗2

∫
dsi

∫
ds j

exp(−ri j/λD)

ri j
(S1)

The value lB is the Bjerrum length in water, and λD the Debye length. ri j = r(si,s j) is the distance

between the current positions si s j at the segments i and j. As described (see main text and Fig-

ure S2), the linear charge density ξ ∗ = ξ ·χCR ·χRod ·χPB is chosen such that the obtained potential

coincides for large enough distances with the solution of the Poisson-Boltzmann equation for an

infinite cylinder with charge density ξ ∗χCR, with ξ = 2e/0.34 nm. Unless indicated the factor χCR

was set to 0.42 (see main text). To save computational time, the double integral of S1 was tabulated

at the applied ionic strength prior to the simulations. The distance of the segments and three values

describing the relative orientation of the segments to each other parameterize the table. During the

simulation a linear interpolation of the tabulated values was used.

Potential, tethering and volume exclusion energies. For the simulation of DNA under tension

and torsion, additional energy terms were introduced. The stretching was implemented by an

energy Epull:

Epull = αtether ·d2 −F · z (S2)

The first term of the equation tethers the DNA to the attachment plane and the magnetic bead, with

d being the displacement of the first segment with respect to its origin. The strength with which the

DNA chain was held at the tether point was determined by the parameter αtether (see Tab. Table S1).

The second term of the equation represents the potential energy of the DNA chain in the presence

of the external pulling force F , where z is the distance between the last DNA segment and the

attachment plane.
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To fix the twist in the DNA, two additional segments with a fixed local coordinate system were

placed in front of the first and behind the last DNA segment (Figure S9a). These two segments

were only considered regarding their contributions to bending and twisting energy.

Chain movements were restricted by an impenetrable, infinite plane and a spherical excluded

volume, modeling the cover slip of the flow cell and the magnetic bead, respectively, (Figure S9b).

Both exclusions were realized by soft core potentials. The energetic penalty EIntSec for a DNA-

segment intersecting either bead or surface plane was calculated from its penetration depth p and

a scaling factor:

EIntSec = αIntSec · p12 (S3)

Knots and Writhe. The MC procedure allows segments to cross one another during simulation

steps, which can cause knotted configurations16 or change the number of turns initially added to

the chain, i.e. the linking number Lk of the chain. To exclude such non-physical steps, the linking

number was checked periodically using the condition Lk = Tw+Wr, where Tw is the twist and

Wr the writhe of the DNA chain. The total twist can easily be derived by summing up the twist

for each pair of adjacent segments. The writhe was computed according to ref. 17. Since the

writhe is only defined for circular structures, the linear chain was closed virtually16 (Figure S9c).

Due to numerical errors the linking number fluctuated slightly (± 0.1 turns). However, if the

linking number differed more than a threshold of 0.5 from its nominal value, the obtained DNA

configuration was rejected. Similarly, if a knot was detected using an algorithm described in ref.

18, the obtained configuration was rejected, too.

Simulation procedure. An ensemble of configurations which represents the thermal equilibrium

distribution was generated with pivot, rotation,19,20 crank shaft16,21 moves and segment length

variation.22 The simulations were carried out at a temperature of 293.0 K. An overview of the

simulation parameters is given in Table S1.

To calculate the number of uncorrelated configurations, the correlation times were determined

from the autocorrelation function as described in ref. 13. The autocorrelation function was calcu-

lated for the energy, the average twist between adjacent DNA segments and the z-position of the
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middle segment. The maximum autocorrelation time was calculated for different configurations.

The maximal correlation time measured was 4.7 · 104 MC steps. Configurations separated by more

than two times the correlation time can be considered as statistically independent.23 Therefore,

only configurations obtained every 105 MC steps were considered in our analysis. Additionally,

the first 200 statistically independent configurations were not included in our analysis to avoid a

bias towards the start structure. Every simulation run was carried out at least four times, each with

6 · 107 MC steps, to verify the results. Thus, overall a set of 1600 uncorrelated configurations was

obtained for each combination of salt concentration, applied turns and pulling force used in the

simulations.

Analyzing the MC-ensembles. According to the experimental results we derived several param-

eters from the statistically independent ensemble of DNA-configurations. In particular, we com-

puted the average z-distance of the last segment of the chain, which was attached to the magnetic

bead, as well as the average twist angle between adjacent DNA-segments from which the torque

within the chain was calculated.

For a detailed analysis of the geometry of the plectonemic superhelix, we implemented a

plectoneme-detecting algorithm as described in ref. 24 and labeled every segment that was a part of

a superhelix. The distance of each segment in the plectoneme to the opposite strand was obtained

to determine the distribution of the superhelix radius.

Simulation Software. The used simulation software was written in C++ and has been success-

fully used in several studies.13,25–27 The algorithms were verified with an extensive set of unit tests

and tests using simplified chain models with stretching modulus only and with additional bending

and torsion energies, which reproduced the expected analytical values. In addition to run-time

checks and automated unit tests, Rational Purify for Linux was used as a dynamic code analy-

sis tool for error checks. Computations were performed on a Linux cluster (Quad Core AMD

Opteron, 2.2 GHz) and on the parallel supercomputer at the North German Supercomputing Al-

liance (HLRN). A single simulation with 6 · 107 MC steps on a single processor core took between
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7 h and 28 h, depending on the frequency in which invalid configurations were produced by Monte-

Carlo moves (see section Knots and Writhe).

All-atom MD simulations

All MD simulations were performed using the program NAMD,28 the parmbsc0 refinement of the

AMBER parm99 force field,29,30 the TIP3P water model,31 standard parameters for ions,32 peri-

odic boundary conditions, and 1–2–4-fs multiple time stepping.33 Van der Waals and short-range

electrostatic potentials were calculated using a smooth (10–12 Å) cutoff; the particle mesh Ewald

method was used to compute long-range electrostatics using a 1.0 Å-spaced grid. The tempera-

ture was kept constant by applying Langevin forces34 to all non-hydrogen atoms; the Langevin

damping constant was set to 0.1 ps−1. Simulations were performed in the NPT ensemble using

Nosé-Hoover Langevin piston pressure control35 at 1 bar.

To find the ion distribution around double-stranded DNA, a two-turn poly(A·T) molecule was

immersed in NaCl electrolyte. The DNA was placed so that its helical axis coincided with the z-

axis of the simulation cell. Bonds were placed across the periodic boundary to make an effectively

infinite DNA molecule. Hexagonal boundary conditions were employed in the xy-plane with 40 Å

between periodic images for systems containing 1000, 320, or 170 mM electrolyte, and 85 Å for

systems containing 60 or 30 mM electrolyte.

The method used to obtain the force between parallel double-stranded DNA molecules is de-

scribed in the main text.
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Supplementary Figures
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Figure S1: Comparison of the experimental slopes from the supercoiling curves with theoretical
predictions after ref. 36. Experimental slopes (open circles) were taken from Figure 1 (main text).
Theoretical predictions (dashed lines) were calculated as described36,37 for empirically determined
values of the plectonemic twist stiffness of 31, 28, 24, and 21 nm, to approximate the measured
slopes at 30, 60, 170 and 320 mM Na+, respectively. Particularly at elevated ionic strength, the
theoretical prediction fails to correctly reproduce the force dependence of the measured slopes
correctly.6

S16



1 2 3 4

0

-1

-2

-3

-4
Φ la itnet op citatso rtc el

E
(k

B
T/
e)

Distance from DNA center (nm)

 DH cylinder
PB cylinder
DH cylinder, PB corrected

 DH line charge

Figure S2: Electrostatic potential around a charged cylinder as applied within our theory com-
pared to a full Poisson-Boltzmann (PB) solution. Potentials were calculated for a homogeneously
charged cylinder with radius a = 1.2 nm and line charge density χCR · ξ at 170 mM monovalent
ions, where the adjustable charge adaptation factor χCR = 1.0 and the nominal DNA charge density
ξ = 2e/0.34 nm. A converging numerical solution for the electrostatic potential to the nonlinear
PB equation (red line) was obtained using the COMSOL Multiphysics package (COMSOL, Inc.)
in a one-dimensional geometry. The solution of the linearized PB, i.e. the Debye-Hückel (DH),
equation for a charged, straight line with the same charge density (gray dotted line) was obtained
by Φ = kBT · lB · χCR ·ξ

∫
s exp[−r(s)/λD]/r(s) ·ds in analogy to Eq. (4) (main text). The solution

of the DH equation for the cylindrical geometry (dashed gray line) is obtained the same way by
multiplying ξ with χRod, a geometry compensating factor; χRod = λD/[a ·K1(a/λD)], where K1 is
the 1st order modified Bessel function of the second kind. Due to the high DNA charge density
the solution of the DH equation deviates significantly from that of the PB equation. Therefore,
the DH solution was adapted by multiplication with another charge adaptation factor χPB to fit the
PB solution for large distances (solid gray line). Values for χPB were taken from Stigter.38 The
final adapted line charge ξ ∗ density results then to ξ ∗ = ξ ·χCR ·χRod ·χPB. The obtained potential
is in good agreement with the full solution of the PB equation with minor deviations close to the
cylinder surface. Since χPB approximates 1 for low charge densities, the deviations shown in the
figure for χCR = 1 become even smaller for χCR = 0.42. The cylinder boundaries are represented
by a gray box.
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Figure S3: Interaction forces and energies between two charged cylinders as calculated within
our theory compared to full Poisson-Boltzmann solutions. Interaction forces (in a) and interac-
tion energies (in b) were calculated for two parallel homogeneously charged cylinders with ra-
dius a =1.2 nm at 170 mM monovalent ions and for a DNA line charge densities of χCR · ξ with
ξ = 2 e/0.34 nm and χCR = 0.42. Curves obtained from full PB solutions are shown as red lines.
The gray box denotes the DNA-DNA distances at which the two cylinders would intersect each
other. Simplified calculations as applied in our theory are shown as gray lines. Numerical so-
lutions for the electrostatic potential of the nonlinear PB equation in a bicylindrical coordinate
system were obtained as described39 using the COMSOL Multiphysics package (COMSOL, Inc.).
The obtained potentials were then used to calculate the interaction forces and energies within the
PB formalism.39 Approximate interaction energies as applied within our theory using adapted DH
solutions that approach the PB solutions for large distances (see Figure S2) were calculated ac-
cording to Eq. (4) (main text). A more detailed description of the charge adaptation parameters
is given in Figure S2. Interaction forces were obtained by differentiating the interaction energies
with respect to the DNA-DNA distance. The insets depict the ratios of the interaction forces and
energies obtained from full PB solutions and adapted DH solutions for values of χCR of 0.42 and
1.0 with respect to the values from the adapted DH solution with χCR = 0.42. Deviations of the
simplified calculations from the full PB treatment are small (<10% for χCR = 0.42 for DNA-DNA
distances larger than 3 nm) compared to changing χCR from 1.0 to 0.42 (more than 3-fold change)
except for small distances where the cylinders almost touch each other. The stronger repulsion
at short distances found for the PB solutions can not explain the small effective charge used to
describe the supercoiling data, since the interactions calculated from the adopted DH solutions
already underestimate the interaction from the PB solutions, which would thus correspond to an
even smaller effective value of χCR.
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a
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χCR= 0.32

χCR= 0.55

c

χCR= 1.00

Figure S4: Comparison of experimental slopes from supercoiling curves with predictions of our
theoretical model for different values of the charge adaptation factor χCR. Experimental slopes
from Figure 1 are shown as open circles. Theoretical predictions for (a) χCR = 0.32, (b) χCR = 0.55
and (c) χCR = 1.00 are shown as solid lines. Gray, red, black and blue colors indicated values
obtained for Na+ concentrations of 30, 60, 170 and 320 mM, respectively. Note that changing
χCR from its optimum value of χCR = 0.42 (see Figure 1c, main text), leads to a global under- or
overestimation of the slopes at all salt concentrations. These deviations occur most prominently at
higher forces, i.e. for small superhelix radii (Figure S7). They are relatively less pronounced (see
also Figures 1b and 3c, main text) at low forces (≤ 1 pN), i.e. larger superhelix radii. This likely
explains why previous theoretical work2,3 and MC simulations12,40 describing the configurations
of supercoiled plasmid DNA with larger superhelix radii were less sensitive to the correct choice
of χCR.
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Figure S5: Double-logarithmic plots of experimentally obtained slopes and torques after buckling
compared to theoretical predictions with χCR = 0.42. The plots shown correspond to Figures 2a,
2b and 1c. Experimental data in (a) and (b) was taken from ref. 6. Experimental data in (c) is from
the present study. The double-logarithmic plots demonstrate that our theoretical model accurately
describes the scaling of slopes and torques with the applied force. The slopes at elevated ionic
strength and the torques at all ionic strength approximately scale with a power law.6
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Figure S6: Model predictions including fluctuations. (a,c) Slopes, torques after buckling from
coarse-grained Monte-Carlo simulations together with theoretical predictions that include an en-
tropic energy term after Marko & Siggia3 (see Supplementary discussion). (b,d) Slopes, torques
after buckling from coarse-grained Monte-Carlo simulations together with theoretical predictions
that include an entropic energy term and electrostatic undulation enhancement after Ubbink et al.2

(see Supplementary discussion). Data from Monte-Carlo simulations is shown as filled circles, the-
oretical predictions as solid lines. For both models χCR = 0.45 was taken, for which best agreement
of the slopes was obtained.
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Figure S7: Entropic contributions to superhelix formation. (a) Torque after buckling at 60 mM
Na+ from coarse-grained Monte-Carlo simulations (red circles) together with predictions (solid
lines) from the theoretical model (see main text), which neglects entropy, and alternative models
(see Supplementary discussion) including entropic terms after Marko & Siggia3 (brown line) and
Ubbink et al.2 (rose line). Dashed lines represent the entropic contributions to the torque. Dotted
lines are obtained from the total predicted torque after subtracting the entropic contributions from
the alternative models as well as the electrostatic undulation enhancement of about 2 pN nm (not
shown) from the model of Ubbink et al. Predictions were calculated using χCR = 0.42 for the
model excluding entropy and χCR = 0.45 for the models including entropy. (b) Mean superhelical
radius ρ for different salt concentrations obtained from coarse-grained Monte-Carlo simulations
(circles) and predictions from the model excluding entropy (solid lines). For 60 mM Na+ also the
predictions for the two models including entropy are shown (dashed lines, colors as in a).
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Figure S8: Fluctuations of the superhelical radius ρ as function of force at 60 mM monovalent
ions. (Top) Dependence of the superhelix formation energy Esh

tot on ρ around the energy minimum
position at constant superhelical pitch h as calculated from the theoretical model (see Eq. (1) main
text). (Bottom) Negative natural logarithm of the probability distribution for the superhelical ra-
dius ρ obtained from coarse-grained Monte-Carlo simulations. It corresponds in arbitrary units to
the energy to form a superhelix with radius ρ albeit with non-constant h. While the shapes of the
energy distributions along ρ as well as the energy minimum positions (red lines) of the theoretical
model and the simulations are in good agreement, the mean superhelical radius from the simula-
tions (blue line) is shifted to higher values compared to the position of the energy minimum. This
is most pronounced at lower forces. Due to the asymmetry of the energy distribution, deviations of
ρ from the minimum position towards higher values are preferred over deviations towards lower
values. The good agreement between the shapes of the energy distributions from theory and sim-
ulations serves as an independent validation that equivalent energy terms have been used in both
approaches .
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a b c

Figure S9: Representation of the tethered DNA within the coarse-grained MC simulations. (a) The
DNA is represented as a linear chain of 129 straight segments, each with a length of 5 nm. To
achieve torsional constriction, two additional segments (indicated as red arrows) with a fixed local
coordinate system were introduced at each end of the chain. For these segments only energetic
contributions due to bending and twisting were considered. (b) The chain is sterically restricted
by an impenetrable infinite surface and the magnetic bead (bead is not to scale, the bead radius
was 400 nm in the simulations). Volume exclusion was achieved by applying soft core potentials
(see Supplementary Methods). (c) For the computation of writhe, the chain was virtually closed
(image not to scale). The chain was extended at each end with the additional segments 1 and 4,
each having the length of the DNA contour. These two long segments were connected with the
perpendicular segments 2 and 3 in order to close the chain.
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Figure S10: The distribution of monovalent ions around double-stranded DNA. (a,b) All-atom
model used to find the ion distribution around DNA in MD simulations. The DNA atoms are
depicted as red spheres; the counter and co ions are depicted as blue and red spheres, respectively;
the water is shown as a semi-transparent molecular surface. (c,d) The radial ion distribution around
DNA. Counter-ion (open symbols) and co-ion (filled symbols) distributions are shown for 1000,
320, 170 (c), 60, and 30 (d) mM NaCl concentrations. (e,f) The 2D counter-ion density around
DNA. A z-dependent rotation was applied in the xy-plane to counter the helical pitch of canonical
DNA; the counter-ion density was subsequently averaged along the z-axis. Data is shown for 320
(e) and 30 (f) mM bulk ion concentrations. A typical basepair is shown after the transformation
was applied, indicating the approximate position of the DNA. The transformation has the effect of
radially smearing the ion distribution, making it appear as though the ion concentration near the
adenine is larger than that near the DNA phosphates (which are located further from the origin). In
actuality, more counter ions can be found in close proximity of a DNA phosphate than an adenine
at a given time.
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Figure S11: Charge distribution and potential around double-stranded DNA. Data resulting from
MD simulations described in Figure S10 are plotted as solid symbols. Solutions to the non-linear
Poisson-Boltzmann equation for a cylinder of 1.2 nm radius within a hexagonal unit cell (of same
size as used in the simulations) are shown for χCR = 1.0 (dotted lines) and χCR = 0.42 (dashed lines)
at each ion concentration. The cylinder boundary is represented by a gray box. (a) The fraction of
the total ionic charge contained within virtual cylinders of increasing radii around the DNA nearly
matches the PB solution for χCR = 1.0 at low ion concentration. At higher ion concentration, the
enclosed charge is somewhere between the PB predictions for χCR = 0.42 and χCR = 1.0. (b) The
mean electrostatic potential around the DNA similarly matches the prediction for χCR = 1.0 at
low ion concentration, but falls to zero even more rapidly than predicted with χCR = 0.42 at high
ion concentration. The instantaneous 3D electrostatic potential was calculated by averaging over
the trajectory in 5 ps intervals. Subsequently the z-axis and azimuthal angles were averaged out
to obtain the data shown. Using Boltzmann weights to perform the spatial average was found
to affect the results only very weakly. (c) Comparing the counter ion distribution expected from
a Boltzmann weight of the potential from the MD simulations in b (solid line) to the directly
observed counter ion density (symbols) reveals that the mean electrostatics fails to describe the
counter ion density at high ion concentration.
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