Functional characterization of *BjCET3* and *BjCET4*, two new cation-efflux transporters

from Brassica juncea L.

Minglin Lang, Mengyu Hao, Qiangwang Fan, Wei Wang, Shaojing Mo, Weicheng Zhao, Jie

Zhou

Supporting information

Figure legends

Fig. S1. Multiple alignment analysis of deduced amino acid sequences of the CE proteins. Clustal X software were used for multiple alignments of deduced amino acid sequences of the CE proteins. Conserved amino acid and putative zinc binding site were indicated. Accession numbers and species names of each gene are shown in supplemental Table S2.

Fig. S2. Testing the effect of Cd stress on the growth of *B. juncea*. A serial of Cd concentration (0, 25, 200, 500, 1000, 5000 μ M CdCl₂) and 0-16 days time course were used for the treatment. The photographs showed no significant harmful effect on the *B. juncea* plants in the two days of Cd treatment (A, B). After 16 d Cd treatment, plants treated with 25 μ M CdCl₂ grew normally as the control (without Cd treatment), plants treated with 200 and 500 μ M CdCl₂ grew similar to each other, and a little more worse than control and 25 μ M CdCl₂ treated plants (C). Plants treated with 1000 and 5000 μ M CdCl₂ grew much worse than the others (C).

Fig. S3. A representative of zinc-tolerance assay plates. The image shows growth of vector control and *BjCET4* expressing *cot1& zrc1* strains. Disks 1–5 containing 1.2, 2.4, 4, 6, and 8 µmol of Zn, respectively.

Fig. S4. Analysis of the effect of expressing BjCET3 and BjCET4 in *cot1* mutant yeast with over supplied metal ions. Expression of BjCET3 and BjCET4 restore growth of empty vector (pYES2) transformed *cot1* yeast strain under metal stressed condition. Growth on SMM-Uracil liquid medium (6.7 g yeast nitrogen base without amino acids, 20 mg histidine and 4 % (w/v) galactose per liter) with or without metal supplementation is shown. Control shows yeast growth on medium without metal supplementation.

Fig. S5. The photographs show representative performance of BiCET3, BjCET4 and empty vector (control) transgenic tobaccos at day 50 of growing at normal condition.

Fig. S6. Testing the exporting activity of BjCET:GFP proteins. The BjCET3:GFP and BjCET4:GFP proteins were expressed in the *zrc1* mutant yeast (YK41) and cultured with oversupplied Zn. Metal tolerance was quantified by using the assay system described in Persans *et al.*, 2001. Data are means \pm SD of three biological repeats. *zrc1* yeast expressing BjCET3:GFP or BjCET4:GFP show high tolerance to Zn stress than control (*zrc1* expressing pYES2:GFP).

В

С

Fig. S2

pYES2

BjCET4

Fig. S3

Fig. S4

50 days in normal medium

Fig. S6

Gene	Sneries	GenBank	Residue	N-terminal signature		T	ransmembra	ane-spanning	g regions	
name	operies	Accession no.	s	sequence	No.	TM1	TM2	TM3	TM4	TM5
BjCETI	B. juncea	AY187082	382	SLAILTDAAHLLSD (CSS)	6	59 -76	92-111	126-145	161-182	248-269
BjCET2	B. juncea	AY188449	388	SLAILTDAAHLLSD (CSS)	6	59 - 76	92-111	126-145	161-182	255-274
BjCET3	B. juncea	AY188450	385	SLAILTDAAHLLSD (CSS)	6	59 - 76	92-111	126-145	161-182	253-272
BjCET4	B. juncea	AY188451	376	SLAILTDAAHLLSD (CSS)	6	58 -75	91-110	125-144	160-181	244263
BjMTP I	B. juncea	AY483149	382	SLAILTDAAHLLSD (CSS)	6	55 -72	88-107	122-141	156-177	250-269
ZAT	A.thaliana	NM180128	398	SLAILTDAAHLLSD (CSS)	6	58 -77	91-110	125-144	160-180	266-285
AtMTP6	A.thaliana	NP182304	483	STAIIADAAHSVSD (CSS)	S	89 -108	107-130	147-163	191-212	237-257
AhCDF1-	A. halleri	AJ556183	389	SLAILTDAAHLLSD (CSS)	6	54 -71	87-106	121-140	156-177	257-276
<i>T</i> gMTP1	T.goesingense	AAK91869	390	SLAIMTDAAHLLSD(CSS)	6	54 -73	87-106	121-140	156-177	258-277
ShMTP1	Stylosanthes hamata	AY181256	415	SVNSLKSAF -ASLD(PSS) SVNSLRSAFL-ASLD(PSS) A ST D	S	121-141	146-170	189-208	230-249	284-302
ZnTI	Rattus orvegicus	Q62720	507	SLAIMLSDSPHMLSD(CSS)	6	11-28	42-61	79-101	114 -134	246-270
Cotl	S. cerevisiae	NP014961	439	SLALIADSPHMLND(CSS)	6	10 -29	43-60	78-100	114-133	243-267
ZRC1	S. cerevisiae	S56057	442	SLALIADSPHMLND(CSS)	6	9 -30	34-59	77-99	113-132	234-263
ZiTB	Yersinia pestis	Q8ZGY6	312	SLALLADAGHMLTD(CSS)	6	16 -35	48-66	84 -102	114-137	159-177
czcD	Alcaligenes sp. CT14	P94178	316	SLALISDAAHMLTD(CSS)	6	19 -37	47-67	84 -103	119-135	156-174

and other species CSS, conserved N-terminal signature sequence; PSS, partial N-terminal signature sequence; TM, Table S1 Topology and hydrophile analysis of putative proteins of CE members from *B. juncea*

TM6		C-terminal Cation-efflux domain	His-rich domain	Molecular weight (D)	Isoelectric point	Solubility (soluble %)	Hydrophobic (%)	Hydrophil ic (%)	Basic (%)	Acidic (%)
275-293	N-terminus inside	59-382	TM4 -TM5	42,074	6.32	71	46.1	28.5	14.1	11.3
280-298	N-terminus inside	59-388	TM4 -TM5	42,297	6.42	69	46.4	28.6	14.2	10.8
278-296	N-terminus inside	59-385	TM4 -TM5	42,426	6.47	69	46.8	27.0	14.8	11.4
269-287	N-terminus inside	58-376	TM4 -TM5	41,487	6.05	79	46.3	28.2	13.6	12.0
275-293	N-terminus inside	55-382	TM4 -TM5	41,728	6.39	89	45.0	29.6	14.4	11.0
291-309	N-terminus inside	58-398	TM4 -TM5	44,064	6.53	89	46.2	27.1	15.3	11.3
no	N-terminus inside	77-371	no	52,311	7.44	76	44.7	32.7	13.9	8.7
282-300	N-terminus inside	54-389	TM4 -TM5	42,920	6.09	76	45.5	27.5	14.4	12.6
283-301	N-terminus inside	54-390	TM4 -TM5	42,963	6.03	77	44.6	27.6	14.9	13.3
no	N-terminus outside	122-401	no	46,701	5.87	56	47.2	28.0	12.5	12.3
312-333	N-terminus inside	11-425	TM4 -TM5	55,142	6.43	55	45.2	30.8	13.0	11.0
278-297	N-terminus inside	10-386	TM4 -TM5	48,155	6.27	54	43.5	34.4	12.1	10.0
269-288	N-terminus inside	9-378	TM4 -TM5	48,345	6.34	62	44.8	32.6	12.4	10.2
179-197	N-terminus inside	16-291	no	34,828	6.94	64	52.6	24.7	14.1	8.7
174 -194	N-terminus outside	17-292	no	33,741	6.24	52	54.4	26.9	9.8	8.9

Gene Name	Accession No.	Species
BjCET1	AAO64482	Brassica juncea
BjCET2	AAO83658	Brassica juncea
BjCET3	AAO83659	Brassica juncea
BjCET4	AAO83660	Brassica juncea
BjMTP1	AAR83910	Brassica juncea
AtMTP1(ZAT)	NP_182203	Arabidosis thaliana
AtMTP2	NP_191753	Arabidosis thaliana
AtMTP3	NP_191440	Arabidosis thaliana
tMTP4	NP_180502	Arabidosis thaliana
AtMTP5	NP_187817	Arabidosis thaliana
AtMTP6	NP_182304	Arabidosis thaliana
AtMTP7	NP 564594	Arabidosis thaliana
AtMTP8	NP_191365	Arabidosis thaliana
AtMTP9	NP_178070	Arabidosis thaliana
AtMTP10	NP 173081	Arabidosis thaliana
AtMTP11	NP 181477	Arabidosis thaliana
AtMTP12	NP_178539	Arabidosis thaliana
TgMTP1	AAR83910	Thlaspi goesingense
TcMTP1	AAR83907	Thlaspi caerulescens
TaMTP1	AAR83906	Thlaspi arvense
AsMTP1	AAR83908	Arabidopsis lyrata
AsMTP2	AAR83909	Arabidopsis lyrata
AhCDF1-3	CAD89013	Arabidopsis halleri
AhMTP1-1	AJ704801	Arabidopsis halleri
AhMTP1-2	CAG28977	Arabidopsis halleri
ShMTP1	AY181256	Stylosanthes hamata
ZnT-1	AAA79234	Rattus norvegicus
ZnT-2	AAB02775	Rattus norvegicus
ZnT-3	AAB39732	Homo sapiens
ZnT-4	NP_742063	Rattus norvegicus
COT1	CAA99636	Saccharomyces cerevisiae
ZRC1	CAA88653	Saccharomyces cerevisiae
ZiTB	NP_670349	Yersinia pestis
czcD	BAA11062	Alcaligenes sp. CT14

Table S2 Gene name, GenBank accession number and species