Cubane-Type Co₄S₄ Clusters: Synthesis, Redox Series, and Magnetic Ground States

Liang Deng[§], Eckhard Bill[‡], Karl Wieghardt,[‡] and R. H. Holm[§]*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 and Max-Plank-Institut für Bioanorganische Chemie, Mulheim an der Ruhr, Germany E-mail: holm@chemistry.harvard.edu

Supporting Information

Figure S-1: Magnetic data for $[Co(Pr_2^iNHCMe_2)_2(SBu^i)_2]$ (1).

Figure S-2: Magnetic data for $[Co(Pr_2^iNHCMe_2)_2Cl_2]$ (2).

- Figure S-3: Energy levels and Boltzmann population for $[Co_4S_4(Pr_2^iNHCMe_2)_4]$ (5).
- Figure S-4: Structure depiction for $[Co_8S_8(PPr_3^i)_6]$ (7) and $[Co_8S_8(PPr_3^i)_6]^{1+}$ (8).
- Table S-1. Crystal Data and Summary of Data Collection and Refinement for 1, 3, [4](BF₄), 5, [6](BPh₄), 7, and [8](BF₄).
- Table S-2. Selected Interatomic Distances (A) and Angles (deg) of $[Co_4S_4(PPr_3^i)_4]$ and $[Co_4S_4(Pr_2^iNHCMe_2)_4]$.
- Table S-3. Selected Interatomic Distances (A) and Angles (deg) of $[Co_4S_4(PPr_3^i)_4]^{1+}$ and $[Co_4S_4(Pr_2^iNHCMe_2)_4]^{1+}$.

FigureS-1:(A)Temperaturedependenceof the effective magnetic moment, and (B) multi-field variable temperature measurement of $[Co(Pr^{i_2}NHCMe_2)_2(SBu^{i})_2\}$ (1). The lines in (A) are spin Hamiltonian simulations for S = 3/2with the following parameters: (A) $g_{Co} = 2.186$, $D_{Co} = 0$, and $\Theta_W = 0.8$ K. (B): The Brillouinfunction for S = 3/2 calculated with $g_{Co} = 2.$, $D_{Co} = 0$, $\Theta_W = 0$.

Figure S-2:

(A) Temperature dependence of the effective magnetic moment, and (B) multi-field variable temperature measurement of $[Co(Pr_{i_2}NHCMe_2)_2Cl_2]$ (2. The lines are spin Hamiltonian simulations for S = 3/2 with parameters for (A): $g_{Co} = 2.18$, $D_{Co} = 2.3 \text{ cm}^{-1}$, and $\Theta_W = 0.7 \text{ K}$. (B): g = 2.18, $D_{Co} = 4.3 \text{ cm}^{-1}$, and $\Theta_W = 1.0 \text{ K}$. The values of D_{Co} and Θ_W in (B) are optimized independently from those in (A).

Figure S-3. (A) Energies of the four total-spin manifolds for $[Co_4S_4(Pr_{i_2}NHCMe_2)_4]$ (5) as function of an applied field, and calculated with the parameter used for the simulation in Figure 8 (S_i = 3/2, i = 1-4; J = -420 cm⁻¹, J' = -100 cm⁻¹, g₁ = 2.17, g₂₋₄ = 2.0, D_i = 0). (B) Boltzmann population of the lowest level as function of temperature.

 $[{\rm Co_8S_8}({\rm PPr^i}_3)_6]^{1+}$

Figure S-4: Molecular structures of $[Co_8S_8(PPr^i_3)_6]$ (7) and $[Co_8S_8(PPr^i_3)_6]^{1+}$ (8). Isopropyl groups are omitted for clarity

Table S-1. Cry	stal Data and	Summary of I	Data Collection a	nd Refine	ement for 1, 3, [4](BF ₄)	, 5 , [6](BPh ₄),	7 , and
[8](BF ₄). ^{<i>a,b</i>}		-					
	4	•		~		-	[O]/F

	1	3	[4](BF ₄)	5	[6](BPh ₄)	7	[8](BF ₄)
formula	C ₃₀ H ₅₈ Co	C ₃₆ H ₈₄ Co ₄	C ₃₆ H ₈₄ BCo ₄	C ₄₄ H ₈₀ Co ₄	C ₆₈ H ₁₀₀ B	C ₅₄ H ₁₂₆ Co ₈ P ₆	C ₅₄ H ₁₂₆ B
	N_4S_2	P_4S_4	$F_4P_4S_4$	N_8S_4	Co ₄ N ₈ S ₄	S ₈	$Co_8F_4P_6S_8$
fw	597.85	990.76	1091.68	1085.12	1404.33	1689.29	1776.10
Т, К	193(2)	130(2))	193(2)	105(2)	100(2)	193(2)	193(2)
crystal system	triclinic	monoclinic	orthorhombic	monoclinic	triclinic	triclinic	triclinic
space group	<i>P</i> 1	C2/c	l-42m	Cc	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a, Å	9.890(1)	19.057(3)	12.442(1)	14.321(3)	9.507(1)	12.3518(6)	13.5596(7)
b, Å	10.303(1)	12.780(2)	12.442(1)	20.380(5)	18.56(1)	12.4877(6)	20.897(1)
<i>c,</i> Å	10.437(1)	39.863(6)	16.575(2)	18.726(4)	20.32(1)	13.9495(7)	41.467(2)
α , deg	106.082(2)	90	90	90	85.581(2)	73.960(1)	86.085(1)
β , deg	99.487(2)	92.948(3)	90	96.093(4)	87.589(3)	84.740(1)	81.220(1)
γ, deg	117.495(2)	90	90	90	88.381(2)	64.229(1)	88.473(1)
V, Å ³	851.3(1)	9695(3)	2565.8(4)	5434(2)	3571(2)	1861.2(2)	11584(1)
Ζ	1	8	2	4	2	1	6
<i>d</i> _{calcd} , g/cm ³	1.166	1.357	1.413	1.326	1.306	1.507	1.528
2θ range, deg	4.3 to 50.0	2.0-50.0	4.1-50.0	3.4-50.0	4.0-50.0	3.6-50.0	2.7-50.0
GOF (F ²)	0.937	1.070	1.009	1.027	1.034	1.027	1.047
R1 ^b	0.0439, ^d	0.0749, ^d	0.0255, ^d	0.0200, ^d	0.0447, ^d	0.0344, ^d	0.0538, ^d
	0.0520 [°]	0.0919 ^e	0.0260 ^e	0.0205 [°]	0.0597 ^e	0.0393 ^e	0.0785 [°]
wR2 ^c	0.0870, ^a	0.1981, ^a	0.0672, ^d	0.0489, ^a	0.1117, ^a	0.0893, ^a	0.1430, ^{<i>d</i>}
	0.0913 ^e	0.2109 ^e	0.0677 ^e	0.0492 ^e	0.1215 ^e	0.0940 ^e	0.1589 ^e
^a Collected using Mo K α radiation ($\lambda = 0.71073$ Å). ^b R1 = $\Sigma[(F_o - F_c)] / \Sigma(F_o)$. ^c wR2 = { $\Sigma[w(F_o^2 - F_c^2)^2 / \Sigma[w(F_o^2)^2]]^{\frac{1}{2}}$. ^d I > 2_(I). ^e All data.							

Co1-S1	2.223(2)	Co1-Co2	2.618(1)	S-Co-S 10	03.8(1)-106.39(7)
Co1-S2	2.229(2)	Co1-Co3	2.604(1)	Co-S-Co 71	.24(6)-72.00(6)
Co1-S3	2.232(2)	Co1-Co4	2.604(1)		
Co2S1	2.231(2)	Co2-Co3	2.602(1)		
Co2-S2	2.236(2)	Co2-Co4	2.600(1)		
Co2-S4	2.233(2)	Co3-Co4	2.592(2)		
Co3-S2	2.232(2)	mean of 6	2.603[9]		
Co3-S3	2.218(3)				
Co3-S4	2.223(2)	$Co2-P2^a$	2.235(2)		
Co4-S1	2.220(2)				
Co4-S3	2.214(3)	P2-Co2-S1 ^a	114.6(1)		
Co4-S4	2.210(2)	P2-Co2-S2	112.7(1)		
mean of 122.2	23[8] P2-C	Co2-S4 112.5	5(2)		
		[Co ₄ S ₄ (Pr ⁱ ₂ N	HCMe2)4]0		
Co1-S1	2.264(2)	Co1-Co2	2.723(1)	S-Co-S 103.17(3)-105.26(3)	
Co1-S2	2.256(1)	Co1-Co3	2.677(1)	Co-S-Co	72.45(2)-74.13(3
Co1-S3	2.240(1)	Co1-Co4	2.678(1)		
Co2-S1	2.253(1)	Co2-Co3	2.711(1)		
Co2-S2	2.262(1)	Co2-Co4	2.679(1)		
Co2-S4	2.260(1)	Co3-Co4	2.680(1)		
Co3-S1	2.250(1)	mean of 6	2.69[2]		
Co3-S3	2.246(1)				
Co3-S4	2.245(1)	Co1-C1	1.988(2)		
Co4-S2	2.245(1)	Co2-C2	2.000(2)		
Co4-S3	2.254(1)	Co3-C3	1.973(2)		
Co4-S4	2.274(1)	Co4-C4	1.979(2)		
mean of 122.2	5[1] mean of 4	1.99[1]			

 $[Co_4S_4(PPr^{i_3})_4]$

^aData for non-disordered P2 atom.

Co1-S1	2.206(1)	S1-Co1-S1A		105.20(4)		
Co1-S1C	2.207(1)	S1-Co1-S1C		104.94(3)		
Co1-Co1A	2.612(1)	Co1-S1-Co1C		72.59(3)		
Co1-Co1B2.60	06(1)	Co1-S1-Co1	B 72.4	4(3)		
Co1-P1	2.257(1)	P1-C	P1-Co1-S1			
		P1-Co1-S1C		114.49(4)		
		[Co ₄ S ₄ (P	r ⁱ 2NHCMe2)4	ı]1+		
Co1-S1	2.221(1)	Co1-Co2	2.661(1)	S-Co-S103.09(3)-105.69(3)		
Co1-S2	2,209(1)	Co1-Co3	2.682(1)	Co-S-Co	72.53(3)-74.87(3)	
Co1-S4	2.223(1)	Co1-Co4	2.622(1)			
Co2-S1	2.231(1)	Co2-Co3	2684(1)			
Co2-S2	2.227(1)	Co2-Co4	2.663(1)			
Co2-S3	2.260(1)	Co3-Co4	2.658(1)			
Co3-S2	2.204(1)	mean of 6	2.66[2]			
Co3-S3	2.232(1)					
Co3-S4	2.238(1)	Co1-C1	1.977(3)			
Co4-S1	2.204(1)	Co2-C12	1.984(3)			
Co4-S3	2.227(1)	Co3-C23	1.984(3)			
Co4-S4	2.210(1)	Co4-C34	1.964(3)			
mean of 12	2.22[2]mea	an of 4 1.977	7[9]			

Table S-3. Selected Interatomic Distances (A) and Angles (deg) of $[Co_4S_4(PPr^{i_3})_4]^{1+}$ and $[Co_4S_4(Pr^{i_2}NHCMe_2)_4]^{1+}$

 $[Co_4S_4(PPr^{i_3})_4]^{1+}$