Top-Down Quantitative Proteomics Identified Phosphorylation of Cardiac Troponin I as a Candidate Biomarker for Chronic Heart Failure

Jiang Zhang¶†#, Moltu J. Guy¶, Holly S. Norman‡, Yi-Chen Chen¶, Qingge Xu¶‡, Xintong Dong¶, Huseyin Guner¶, Sijian Wang§, Takushi Kohmoto††, Ken H. Young⊥, Richard L. Moss¶‡, Ying Ge¶‡*

¶Human Proteomics Program, ‡Department of Physiology, §Departments of Statistics and Biostatistics and Medical Informatics, ††Department of Surgery, ⊥Department of Pathology and Laboratory Medicine, School of Medicine and Public Health; †School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53706

Running Title: Top-down proteomics for cardiac biomarker discovery

¶ Corresponding author: Ying Ge, PhD. 1300 University Ave., SMI 130, Madison, WI 53706, Tel: 608-263-9212, Fax: 608-265-5512. E-mail: <u>yge@physiology.wisc.edu</u>

Current address: 607 Charles East Young Dr., Dept. Chemistry and Biochemistry UCLA, Los Angeles, CA 90095.

Supplemental Tables

Table S1. Clinical characteristics of postmortem human heart samples. NOR, controls with normal cardiac function; HYP, mild hypertrophy; SHD, severe hypertrophy/dilation; CHF, congestive heart failure; CAD, coronary artery disease; LV, left ventricle; RV, right ventricle; AA, African American; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CCB, Ca²⁺ channel blocker. (-) indicates data not available.

Subject#	Age	Sex	Race	Heart Defect(s)
NOR1	43	М	White	None
NOR2	86	F	White	None
NOR3	52	М	White	None
NOR4	58	F	White	None
NOR5	65	F	White	None
NOR6	21	М	AA	None
NOR7	66	F	White	None
HYP1	47	F	White	LV hypertrophy
HYP2	71	F	White	Mild LV&RV hypertrophy
HYP3	53	М	White	LV hypertrophy,
HYP4	68	М	White	LV hypertrophy
HYP5	49	F	White	Moderate hypertrophy
SHD1	20	М	White	Severe LV hypertrophy& dilation, RV hypertrophy
SHD2	61	F	Hispanic	Arrythmia, severe dilation
SHD3	65	М	White	Severe hypertrophy
SHD4	71	М	White	Severe hypertrophy & dilation
CHF1	39	М	White	CHF, severe CAD
CHF2	66	Μ	White	Severe CAD, CHF
CHF3	55	Μ	White	Severe CAD & CHF
CHF4	85	F	White	CHF, Mild CAD,
CHF5	85	М	White	Severe CAD,CHF
CHF6	54	F	White	Severe CHF

Subject											
#	ACE - Inhibitor	ARB Agents	Amiod- arone	β- blocker	ССВ	Digoxin	Diu- retic	Nitrate	Spirono -lactone	Warf -arin	
HYP1	n	n	n	у	у	n	у	n	n	n	
HYP2	n	у	n	n	n	n	n	n	n	n	
HYP3	n	n	n	n	n	n	У	n	n	n	
HYP4	n	n	n	n	n	у	у	n	n	n	

HYP5	n	n	n	n	n	n	у	n	n	n	
SHD1	n	n	n	У	n	n	У	n	n	n	
SHD2	-	-	-	-	-	-	-	-	-	-	
SHD3	у	n	n	n	n	n	n	n	n	n	
SHD4	у	n	n	У	n	n	У	n	n	n	
CHF1	n	n	n	У	n	n	У	У	n	n	
CHF2	n	n	n	У	n	У	У	У	n	n	
CHF3	У	n	n	У	n	n	У	n	n	n	
CHF4	n	n	n	n	n	n	n	n	n	n	
CHF5	n	n	n	n	n	n	n	n	n	n	
CHF6	n	n	n	n	n	n	У	n	n	n	

Table S2. Clinical characteristics of donor and end-stage failing hearts from transplant surgical operations. DOR, donor hearts with normal cardiac function but deemed unacceptable for transplants; ICM, ischemic cardiomyopathy; DCM, dilated cardiomyopathy.^a, explanted tissues during operations; OCT, orthotopic cardiac transplantation; VAD, ventricular assist device. LVEF, left ventricular ejection fraction; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blockers; (-) indicates data not available.

Subject #	Surgical operation ^a	Gender	Age	LVEF	Fractional shortening	Hypertension
DOR1	Donor	М	46	-	-	-
DOR2	Donor	F	59	-	-	-
DOR3	Donor	М	-	-	-	-
DOR4	Donor	F	14	-	-	-
ICM1	OCT	М	52	10%	-	у
ICM2	VAD	М	65	10%	-	n
ICM3	VAD	М	54	15%	4-29%	у
ICM4	VAD	М	67	30%	9-29%	У
ICM5	VAD	М	61	30%	-	n
ICM6	OCT	М	63	25%	28-29%	n
DCM1	VAD	М	56	10%	7-29%	n
DCM2	VAD	М	64	25%	-	у
DCM3	OCT	М	-	-	-	-
DCM4	VAD	М	-	-	-	-

	Medication in mg/day								
Subject #	ACE Inhibitor	ARB Agents	Amiod- arone	β-blocker	Digoxin	Diuretic	Nitrate	Aldosterone antagonist	Warf -arin
ICM1	5	0	200	12.5	0	160	0	25	0
ICM2	30	0	0	25	62.5	0	0	12.5	0
ICM3	0	25	0	0	0	80	0	25	5
ICM4	0	80	320	50	0.25	40	0	0	2.5
ICM5	0	0	0	25	0	790	90	50	2.5
ICM6	0	0	0	0	0	160	0	0	7.5
DCM1	30	0	0	100	0.25	320	0	50	4
DCM2	0	0	0	25	0.125	160	30	0	7.5
DCM3	-	-	-	-	-	-	-	-	-
DCM4	-	-	-	-	-	-	-	-	-

Table S3. ECD fragment list and ion assignments of mono-phosphorylated cTnI ($_p$ cTnI) from normal heart samples in support of Fig. 5A and S3a. c/z^{\bullet} ions containing mono-phosphorylation were labeled as " $_p$ ". Please note that c ions counts from the N-terminus and z^{\bullet} counts from the C-terminus. E.g., c_{21} covers the first 21 amino acids from the N-terminus (residues 1-21) and z^{\bullet}_{21} covers the first 21 amino acids from the C-terminus (resides 189-209). Ser22 was identified as the phosphorylation site for the following reasons: (1) No phosphorylated product ions were detected for smaller c ions before Ser22 ($c_9 - c_{21}$). (2) The detection of mono-phosphorylated c_{22} ($_pc_{22}$) clearly identified the phosphorylation of Ser22, and the absence of un-phosphorylated c_{22} indicated the nearly exclusive phosphorylation occupancy at Ser22 in $_p$ cTnI. (3) All the larger cions ($c_{23} - c_{208}$) were present only as mono-phosphorylated forms, supporting the phosphorylation site assignment at Ser22. This is also consistent with the fact that all the z^{\bullet} ions ($z^{\bullet}_{3} - z^{\bullet}_{186}$) which do not cover Ser22 were detected in their un-phosphorylated form and z^{\bullet} ions (z^{\bullet}_{208}) including Ser22 was detected in its mono-phosphorylated form only.

Observed most abundant M/Z	Charge state	Experimental monoisotopic mass (Da)	Fragment assignment	Calculated monoisotopic mass (Da)	Error (ppm)
890.397	1	889.389	c 9	889.389	0.3
769.372	2	1536.730	<i>c</i> ₁₅	1536.728	1.4
853.419	2	1704.824	<i>c</i> ₁₇	1704.818	3.7
909.954	2	1817.894	c_{18}	1817.902	-4.5
659.343	3	1974.004	c_{19}	1974.003	0.5
711.377	3	2130.106	c_{20}	2130.104	0.8
572.810	4	2286.206	c_{21}	2286.205	0.3
819.078	3	2453.211	<i>pc</i> ₂₂	2453.204	2.9
848.087	3	2540.238	<i>pc</i> ₂₃	2540.236	0.9
664.825	4	2654.272	<u>p</u> c ₂₄	2654.279	-2.6
940.460	3	2817.347	pc ₂₅	2817.342	1.7
744.619	4	2973.446	pc ₂₆	2973.443	0.9
282.723	12	3379.597	pc ₃₀	3379.628	-9.2
722.550	5	3605.706	pc ₃₂	3605.724	-5.0
937.212	4	3742.783	pc ₃₃	3742.783	0.1
764.169	5	3813.809	<u>p</u> c ₃₄	3813.820	-2.9
679.674	6	4069.993	<i>pc</i> ₃₆	4070.010	-4.1
701.027	6	4198.102	<i>pc</i> ₃₇	4198.105	-0.7
715.531	6	4285.142	<u></u> <i>pc</i> ₃₈	4285.137	1.1
736.878	6	4413.216	pc ₃₉	4413.232	-3.6

705.366	7	4927.497	<u>р</u> С ₄₄	4927.518	-4.3
723.669	7	5055.628	pc ₄₅	5055.613	2.9
862.951	6	5168.681	pc ₄₆	5168.697	-3.1
663.474	8	5296.750	 <i>p</i> <i>C</i> ₄₇	5296.755	-1.1
677.614	8	5409.851	<u>р</u> С ₄₈	5409.840	2.1
693.626	8	5537.938	<u>р</u> С ₄₉	5537.934	0.6
807.002	7	5638.964	_p c ₅₀	5638.982	-3.2
720.388	8	5752.043	pc ₅₁	5752.066	-4.0
734.524	8	5865.124	<i>pc</i> ₅₂	5865.150	-4.5
748.660	8	5978.216	<u>р</u> С ₅₃	5978.234	-3.0
235.980	26	6106.304	<u>р</u> С ₅₄	6106.293	1.8
787.682	8	6290.376	<u>р</u> С ₅₆	6290.414	-6.0
1071.254	6	6418.475	_p c ₅₇	6418.509	-5.3
728.735	9	6546.540	_p c ₅₈	6546.568	-4.2
743.184	9	6675.582	<mark>р</mark> С ₅₉	6675.610	-4.3
755.748	9	6788.672	pc ₆₀	6788.694	-3.3
989.847	7	6917.874	pc ₆₁	6917.737	19.8
787.431	9	7073.809	pc ₆₂	7073.838	-4.1
801.768	9	7202.844	pc ₆₃	7202.881	-5.0
809.666	9	7273.923	<u>р</u> С ₆₄	7273.918	0.7
823.996	9	7402.892	pc ₆₅	7402.960	-9.2
943.003	8	7531.980	<u>р</u> С ₆₆	7532.003	-3.0
855.682	9	7688.086	<u></u> <i>pc</i> ₆₇	7688.104	-2.3
785.827	10	7844.179	<u></u> <i>pc</i> ₆₈	7844.205	-3.3
791.528	10	7901.191	pc ₆₉	7901.227	-4.6
893.832	9	8030.413	pc ₇₀	8030.269	17.9
908.041	9	8158.294	pc ₇₁	8158.364	-8.6
762.503	11	8371.418	pc ₇₃	8371.487	-8.2
768.974	11	8442.622	<u>р</u> С ₇₄	8442.524	11.6
730.062	12	8743.655	<u></u> ₽ с 77	8743.688	-3.7
1272.968	7	8899.731	<u></u> <i>pc</i> ₇₈	8899.789	-6.5
1423.434	12	17059.101	pC ₁₄₈	17059.204	-6.0
1397.901	13	18147.608	pC ₁₅₉	18147.704	-5.3

1473.579	13	19131.287	pc ₁₆₈	19131.244	2.3
1435.630	15	21506.473	pC ₁₈₈	21506.511	-1.7
915.684	26	23766.578	рС ₂₀₇	23766.700	-5.2
957.436	25	23895.697	pC ₂₀₈	23895.743	-1.9
406.258	1	405.251	z •3	405.250	0.8
494.236	1	493.228	z •4	493.230	-3.3
622.330	1	621.322	z •5	621.325	-4.0
750.424	1	749.417	z • ₆	749.420	-3.8
453.768	2	905.521	z • ₇	905.521	0.2
482.278	2	962.542	z_8	962.542	-0.1
546.800	2	1091.585	z •9	1091.585	0.3
612.320	2	1222.626	$z^{\bullet}{}_{10}$	1222.625	0.2
640.829	2	1279.643	z^{\bullet}_{11}	1279.647	-3.3
725.885	2	1449.755	z • ₁₃	1449.752	1.9
776.404	2	1550.793	z• ₁₄	1550.800	-4.4
833.917	2	1665.820	z•15	1665.827	-4.3
675.025	3	2021.052	z• ₁₈	2021.049	1.3
1132.601	2	2262.188	z •19	2262.182	2.7
827.428	3	2478.258	z•21	2478.256	0.6
879.460	3	2634.351	z •23	2634.346	1.7
922.472	3	2763.394	Z [•] 24	2763.389	1.7
731.128	4	2919.477	z •25	2919.490	-4.5
759.642	4	3033.533	z [•] 26	3033.533	0.1
1069.223	3	3203.648	Z [•] 27	3203.638	2.9
823.926	4	3290.674	Z [•] 28	3290.670	1.2
685.352	5	3419.709	z •29	3419.713	-1.1
1213.598	3	3635.776	Z [•] 31	3635.788	-3.3
974.732	4	3892.900	Z [•] 33	3892.925	-6.6
1006.759	4	4020.992	Z [•] 24	4021.020	-7.0
1063 551	4	4248 171	7°24	4248 147	5.6
730.717	6	4376.246	Z 30	4376.242	1.0
	~		1 7 2/		

899.273	5	4489.328	z • ₃₈	4489.326	0.5
899.273	5	4489.323	z • ₃₈	4489.326	-0.7
810.259	6	4853.507	z^{\bullet}_{41}	4853.523	-3.4
829.273	6	4966.585	z • ₄₂	4966.607	-4.6
867.295	6	5194.721	z •44	5194.718	0.6
1057.954	5	5281.756	z •45	5281.750	1.0
1083.761	5	5410.753	z •46	5410.793	-7.4
1123.584	5	5609.942	z •48	5609.925	3.0
962.509	6	5765.997	z •49	5766.026	-5.0
974.348	6	5837.027	z • ₅₀	5837.063	-6.3
859.609	7	6007.207	z • ₅₂	6007.169	6.4
875.758	7	6120.250	z • ₅₃	6120.253	-0.5
549.795	12	6581.454	z • ₅₇	6581.429	3.7
1733.392	4	6925.527	z • ₆₁	6925.563	-5.2
1043.568	7	7293.915	z • ₆₄	7293.816	13.6
952.254	8	7605.977	z • ₆₆	7606.018	-5.4
703.108	11	7719.108	z • ₆₇	7719.102	0.8
870.354	9	7820.090	z• ₆₈	7820.150	-7.7
1154.902	7	8073.257	$z^{\bullet}{}_{70}$	8073.304	-5.9
836.347	10	8348.418	z • ₇₂	8348.467	-5.9
854.862	10	8533.536	z • ₇₄	8533.584	-5.6
801.711	11	8802.817	z • ₇₆	8802.769	5.4
812.170	11	8917.753	z • ₇₇	8917.796	-4.8
878.661	11	9648.143	z• ₈₃	9648.234	-9.4
906.580	12	10860.845	z •94	10860.905	-5.5
904.413	13	11737.281	z • ₁₀₁	11737.303	-1.8
1713.912	7	11981.279	z • ₁₀₃	11981.372	-7.8
1533.679	14	21444.373	z • ₁₈₆	21444.531	-7.4
1405.102	17	23854.560	p ^z [•] 208	23854.693	-5.6

Table S4. ECD fragment list and ion assignments of mono-phosphorylated cTnI ($_p$ cTnI) from hypertrophy (HYP) heart samples in support of Fig. 5B and S3b. c/z^{\bullet} ions containing mono-phosphorylation were labeled as " $_p$ ". Ser22 was identified as the phosphorylation site for the similar reasons as described in Table S3.

Observed most abundant M/Z	Charge State	Observed monoisotopic mass (Da)	Fragment assignment	Calculated monoisotopic mass (Da)	Error (ppm)
890.391	1	889.384	c 9	889.389	-5.7
1116.485	1	1115.478	c_{11}	1115.484	-6.0
769.372	2	1536.730	c_{15}	1536.728	1.4
853.418	2	1704.821	c_{17}	1704.818	1.6
909.960	2	1817.906	c_{18}	1817.902	1.9
988.516	2	1974.006	c_{19}	1974.003	1.4
711.378	3	2130.107	c_{20}	2130.104	1.5
763.411	3	2286.208	c_{21}	2286.205	1.3
819.077	3	2453.207	_p c ₂₂	2453.204	1.4
848.088	3	2540.238	pc ₂₃	2540.236	1.1
664.824	4	2654.263	<u>р</u> С ₂₄	2654.279	-5.8
940.459	3	2817.352	_р С ₂₅	2817.342	3.4
744.620	4	2973.448	<u>р</u> С ₂₆	2973.443	1.8
677.331	5	3379.617	рС 30	3379.628	-3.3
722.554	5	3605.730	<i>pc</i> ₃₂	3605.724	1.7
749.967	5	3742.795	pc ₃₃	3742.783	3.3
764.174	5	3813.823	<i>р</i> С 34	3813.820	1.0
658.324	6	3941.892	_р С ₃₅	3941.915	-5.6
679.673	6	4069.986	рС 36	4070.010	-5.9
841.031	5	4198.113	_р С ₃₇	4198.105	2.1
715.527	6	4285.112	_р С ₃₈	4285.137	-5.8
736.877	6	4413.212	<u>р</u> С ₃₉	4413.232	-4.4
670.488	7	4684.360	р С ₄₂	4684.385	-5.3
682.921	7	4771.386	р С ₄₃	4771.417	-6.4
705.369	7	4927.527	р С ₄₄	4927.518	1.9
844.107	6	5055.587	pC ₄₅	5055.613	-5.2
739.824	7	5168.707	₽С 46	5168.697	2.0

1060.964	5	5296.766	₽С 47	5296.755	2.0
774.272	7	5409.846	$_{p}c_{48}$	5409.840	1.2
792.566	7	5537.902	₽С 49	5537.934	-5.8
706.258	8	5639.001	p c ₅₀	5638.982	3.3
720.394	8	5752.087	p c ₅₁	5752.066	3.7
734.523	8	5865.121	p c ₅₂	5865.150	-5.0
748.658	8	5978.199	рС 53	5978.234	-6.0
692.380	9	6219.327	p c 55	6219.377	-8.0
714.509	9	6418.516	рС 57	6418.509	1.1
728.734	9	6546.534	₽С 58	6546.568	-5.1
743.189	9	6675.620	p C 59	6675.610	1.5
1699.173	4	6788.653	₽с 60	6788.694	-6.1
693.178	10	6917.699	pc ₆₁	6917.737	-5.4
787.436	9	7073.852	₽С 62	7073.838	2.0
809.661	9	7273.879	 <i>p</i> € 64	7273.918	-5.3
823.998	9	7402.957	pc ₆₅	7402.960	-0.5
1077.583	7	7531.991	рС 66	7532.003	-1.5
989.162	8	7901.242	₽С 69	7901.227	1.9
817.345	10	8158.367	₽С 71	8158.364	0.4
857.069	10	8555.614	рС 75	8555.608	0.7
796.340	11	8743.642	₽С 77	8743.688	-5.3
751.654	12	9002.791	рС 79	9002.798	-0.7
800.101	12	9583.119	₽С 84	9583.120	-0.1
674.697	15	10099.331	₽С 90	10099.390	-5.8
1001.879	12	12003.450	pc ₁₀₆	12003.395	4.6
876.359	26	23619.482	<i>pc</i> ₂₀₆	23619.632	-6.4
259.188	1	258.180	z •2	258.182	-5.3
387.282	1	386.275	z •3	386.277	-5.5
494.237	1	493.230	z •4	493.230	0.5
622.333	1	621.326	z • ₅	621.325	1.3
750.428	1	749.421	z •6	749.420	1.4
453.768	2	905.522	z • ₇	905.521	0.9
482.279	2	962.543	z_8^{\bullet}	962.542	1.0

1			1		
546.800	2	1091.586	z •9	1091.585	1.2
612.321	2	1222.627	$z^{\bullet}{}_{10}$	1222.625	1.3
640.832	2	1279.650	z • ₁₁	1279.647	2.2
652.346	2	1302.677	z • ₁₂	1302.684	-5.6
740.890	2	1479.765	z •13	1479.763	1.6
765.908	2	1529.802	z • ₁₄	1529.811	-5.8
833.922	2	1665.830	z •15	1665.827	2.0
605.673	3	1813.997	z • ₁₆	1814.007	-5.5
668.033	3	2000.076	z • ₁₇	2000.086	-5.3
1059.059	2	2115.101	z^{\bullet}_{18}	2115.113	-5.9
727.059	3	2177.154	Z •19	2177.150	1.8
789.086	3	2363.232	z • ₂₀	2363.229	1.1
1240.639	2	2478.262	z • ₂₁	2478.256	2.4
846.436	3	2535.283	z •22	2535.278	2.1
879.458	3	2634.350	Z •23	2634.346	1.3
934.480	3	2799.416	z •24	2799.432	-5.9
977.179	3	2927.511	z •25	2927.527	-5.7
1012.522	3	3033.536	z • ₂₆	3033.533	1.0
1055.537	3	3162.580	z • ₂₇	3162.575	1.3
1098.235	3	3290.679	z • ₂₈	3290.670	2.6
1141.583	3	3419.719	Z 29	3419.713	1.7
1178.263	3	3529.764	z •30	3529.782	-5.1
1213.608	3	3635.803	z • ₃₁	3635.788	4.1
1256.623	3	3764.843	z • ₃₂	3764.830	3.3
972.754	4	3884.983	z •33	3885.004	-5.5
1004.779	4	4013.077	z •34	4013.099	-5.4
1033.048	4	4126.159	z •35	4126.183	-5.9
1063.548	4	4248.156	z • ₃₆	4248.147	2.0
1095.571	4	4376.254	z • ₃₇	4376.242	2.7
1123.845	4	4489.344	z^{\bullet}_{38}	4489.326	4.0
1158.108	4	4626.371	Z •39	4626.385	-3.1

1	1	1	1	1	
1175.866	4	4697.436	z^{\bullet}_{40}	4697.422	3.0
810.263	6	4853.534	z •41	4853.523	2.1
985.123	5	4918.582	z •42	4918.607	-5.1
1011.133	5	5047.609	z •43	5047.650	-8.1
875.967	6	5246.751	z •45	5246.782	-6.0
901.984	6	5402.861	z •46	5402.883	-4.1
1096.387	5	5473.895	z •47	5473.920	-4.5
1123.596	5	5609.926	z •48	5609.925	0.1
807.723	7	5643.992	Z •49	5644.026	-6.0
835.305	7	5837.077	z •50	5837.063	2.3
1002.708	6	6007.198	z • ₅₂	6007.169	4.9
1016.044	6	6087.215	z •53	6087.246	-5.0
801.923	8	6404.291	z •56	6404.350	-9.3
941.783	7	6581.434	z •57	6581.429	0.6
939.064	7	6562.387	z • ₅₈	6562.420	-5.0
1129.599	6	6767.531	Z •59	6767.493	5.6
1155.943	6	6925.617	z • ₆₁	6925.563	7.8
906.865	8	7242.836	z • ₆₃	7242.875	-5.5
1043.552	7	7293.838	z • ₆₄	7293.816	3.0
1088.157	7	7606.046	z^{\bullet}_{66}	7606.018	3.6
858.133	9	7710.139	z •67	7710.161	-2.9
1010.549	8	8073.321	z^{\bullet}_{70}	8073.304	2.1
758.417	11	8326.500	z • ₇₂	8326.542	-5.0
845.466	10	8439.596	z • ₇₃	8439.626	-3.6
949.741	9	8533.594	z • ₇₄	8533.584	1.2
792.525	11	8701.679	z • ₇₅	8701.721	-4.9
979.650	9	8802.774	z^{\bullet}_{76}	8802.769	0.6
775.178	12	9285.039	$z^{\bullet}{}_{80}$	9285.091	-5.6
878.667	11	9648.252	z • ₈₃	9648.234	1.9
831.378	14	11618.168	z^{\bullet}_{100}	11618.229	-5.3
857.329	14	11981.489	Z •103	11981.372	9.8

Table S5. ECD fragment list and ion assignments of bis-phosphorylated cTnI ($_{pp}$ cTnI) from normal heart samples in support of Fig. 5C and S3c. c/z^{\bullet} ions containing mono-, or bisphosphorylation were labeled as " $_p$ ", or " $_{pp}$ " respectively). Ser22 and Ser23 were identified as the phosphorylation sites for the similar reasons as described in Table S3. c_{22} was detected in its mono-phosphorylated form ($_pc_{22}$) since it only contains one phosphorylation site (Ser22) whereas c_{23} and larger c ions was detected in their bis-phosphorylated froms (i.e. $_{pp}c_{23}$) because they contain two phosphorylation sites, Ser22 and Ser23). The fact that neither un- nor monophosphorylated c_{23} and c_{24} (c_{23} and c_{24} , $_pc_{23}$ and $_pc_{24}$) were observed suggests that Ser22/23 are the only two phosphorylation sites. Conversely, if other sites were phosphorylated (in case of positional isomers), one would expect to see un- and mono-phosphorylated c_{23} and c_{24} .

Observed most abundant M/Z	Charge State	Experimental monoisotopic mass (Da)	Fragment assignment	Calculated monoisotopic mass (Da)	Error (ppm)
890.396	1	889.389	c 9	889.389	0.1
1116.488	1	1115.481	c ₁₁	1115.484	-3.2
769.371	2	1536.727	c ₁₅	1536.728	-0.6
853.416	2	1704.817	<i>c</i> ₁₇	1704.818	-0.3
659.343	3	1974.002	c_{19}	1974.003	-0.7
711.376	3	2130.103	c_{20}	2130.104	-0.5
572.807	4	2286.197	c_{21}	2286.205	-3.4
819.076	3	2453.203	<i>pc</i> ₂₂	2453.204	-0.4
874.739	3	2620.194	<i>ppC</i> ₂₃	2620.202	-3.0
912.753	3	2734.235	<i>ppC</i> ₂₄	2734.245	-3.8
967.107	3	2897.298	<i>ppC</i> ₂₅	2897.308	-3.5
764.607	4	3053.397	_{рр} С ₂₆	3053.409	-4.2
866.404	4	3459.584	₽₽С 30	3459.595	-3.0
765.954	5	3822.733	<i>pp</i> C 33	3822.749	-4.1
714.351	6	4278.056	₽₽С 37	4278.071	-3.5
1153.072	4	4606.254	$_{pp}c_{40}$	4606.282	-6.0
783.566	6	4693.348	<i>pp</i> c ₄₁	4693.314	7.2
836.086	6	5007.459	_{рр} С ₄₄	5007.484	-5.0
857.434	6	5135.564	$_{pp}c_{45}$	5135.579	-2.9
876.281	6	5248.640	<i>pp</i> C 46	5248.663	-4.4
1076.947	5	5376.687	<i>pp</i> €47	5376.722	-6.5
703.618	8	5617.881	_{рр} С ₄₉	5617.901	-3.5

818.282 7 5718.919 $_{\mu\nu}c_{50}$ 5718.948 -5.2 737.731 9 6626.508 $_{\mu\nu}c_{58}$ 6626.534 -3.9 845.951 8 6755.547 $_{\mu\nu}c_{59}$ 6755.577 -4.3 920.739 8 7353.848 $_{\mu\nu}c_{64}$ 7353.884 -4.9 936.870 8 7482.895 $_{\mu\nu}c_{65}$ 7482.927 -4.2 1088.999 7 7611.951 $_{\mu\nu}c_{66}$ 7611.969 -2.4 888.246 9 7981.160 $_{\mu\nu}c_{69}$ 7981.193 -4.2 916.705 9 8238.268 $_{\mu\nu}c_{71}$ 8238.330 -7.6 803.609 11 8823.607 $_{\mu\nu}c_{77}$ 8823.654 -5.3 827.074 11 9082.727 $\mu_{\mu}c_{79}$ 9082.764 -4.1 967.913 10 9663.046 $\mu_{\mu}c_{92}$ 10421.482 14.4 930.878 13 12083.315 μ_{μ						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	818.282	7	5718.919	<i>ppC</i> ₅₀	5718.948	-5.2
845.951 8 6755.547 $\mu_{\mu}c_{59}$ 6755.577 -4.3 920.7398 7353.848 $\mu_{\mu}c_{64}$ 7353.884 -4.9 936.8708 7482.895 $\mu_{\mu}c_{65}$ 7482.927 -4.2 1088.9997 7611.951 $\mu_{\mu}c_{66}$ 7611.969 -2.4 888.2469 7981.160 $\mu_{\mu}c_{69}$ 7981.193 -4.2 916.7059 8238.268 $\mu_{\mu}c_{71}$ 8238.330 -7.6 803.60911 8823.607 $\mu_{\mu}c_{77}$ 8823.654 -5.3 827.07411 9082.727 $\mu_{\mu}c_{79}$ 9082.764 -4.1 967.91310 9663.046 $\mu_{\mu}c_{91}$ 10308.398 6.3 1304.4638 10421.632 $\mu_{\mu}c_{92}$ 10421.482 14.4 930.87813 12083.315 $\mu_{\mu}c_{106}$ 12327.430 14.9 868.46515 13003.850 $\mu_{\mu}c_{114}$ 13132.791 -3.9 10016 13132.740 $\mu_{\mu}c_{114}$ 13132.791 -3.9	737.731	9	6626.508	_{pp} c ₅₈	6626.534	-3.9
920.73987353.848 $p_{\mu}c_{64}$ 7353.884-4.9936.87087482.895 $p_{\mu}c_{65}$ 7482.927-4.21088.99977611.951 $p_{\mu}c_{66}$ 7611.969-2.4888.24697981.160 $p_{\mu}c_{69}$ 7981.193-4.2916.70598238.268 $p_{\mu}c_{71}$ 8238.330-7.6803.609118823.607 $p_{\mu}c_{77}$ 8823.654-5.3827.074119082.727 $p_{\mu}c_{79}$ 9082.764-4.1967.913109663.046 $p_{\mu}c_{91}$ 10308.3986.31304.463810421.632 $p_{\mu}c_{91}$ 10308.3986.31028.8931212327.614 $p_{0}c_{106}$ 12083.361-3.81028.8931212327.614 $p_{0}c_{113}$ 13003.7487.8822.3041613132.740 $p_{0}c_{114}$ 13132.791-3.9	845.951	8	6755.547	_{pp} c ₅₉	6755.577	-4.3
936.87087482.895 ppc_{65} 7482.927-4.21088.99977611.951 ppc_{66} 7611.969-2.4888.24697981.160 ppc_{69} 7981.193-4.2916.70598238.268 ppc_{71} 8238.330-7.6803.609118823.607 ppc_{77} 8823.654-5.3827.074119082.727 ppc_{79} 9082.764-4.1967.913109663.046 ppc_{84} 9663.086-4.2794.4281310308.463 ppc_{91} 10308.3986.31304.463810421.632 ppc_{92} 10421.48214.4930.8781312083.315 ppc_{106} 12083.361-3.81028.8931212327.614 ppc_{108} 12327.43014.9868.4651513003.850 ppc_{114} 13132.791-3.91015.0551613132.740 ppc_{114} 13132.791-3.9	920.739	8	7353.848	<i>ppc</i> ₆₄	7353.884	-4.9
1088.999 7 7611.951 ppc_{66} 7611.969 -2.4 888.246 9 7981.160 ppc_{69} 7981.193 -4.2 916.705 9 8238.268 ppc_{71} 8238.330 -7.6 803.609 11 8823.607 ppc_{77} 8823.654 -5.3 827.074 11 9082.727 ppc_{79} 9082.764 -4.1 967.913 10 9663.046 ppc_{84} 9663.086 -4.2 794.428 13 10308.463 ppc_{91} 10308.398 6.3 1304.463 8 10421.632 ppc_{92} 10421.482 14.4 930.878 13 12083.315 ppc_{106} 12083.361 -3.8 1028.893 12 12327.614 ppc_{108} 12327.430 14.9 868.465 15 13003.850 ppc_{113} 13003.748 7.8 822.304 16 13132.740 ppc_{114} 13132.791 -3.9	936.870	8	7482.895	_{pp} c ₆₅	7482.927	-4.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1088.999	7	7611.951	<i>ppc</i> ₆₆	7611.969	-2.4
916.70598238.268 $p_{p}c_{71}$ 8238.330-7.6803.609118823.607 $p_{p}c_{77}$ 8823.654-5.3827.074119082.727 $p_{p}c_{79}$ 9082.764-4.1967.913109663.046 $p_{p}c_{84}$ 9663.086-4.2794.4281310308.463 $p_{p}c_{91}$ 10308.3986.31304.463810421.632 $p_{p}c_{92}$ 10421.48214.4930.8781312083.315 $p_{p}c_{106}$ 12083.361-3.81028.8931212327.614 $p_{p}c_{108}$ 12327.43014.9868.4651513003.850 $p_{p}c_{113}$ 13003.7487.8822.3041613132.740 $p_{p}c_{114}$ 13132.791-3.9	888.246	9	7981.160	<i>ppC</i> ₆₉	7981.193	-4.2
803.609 11 8823.607 ppc_{77} 8823.654 -5.3 827.074 11 9082.727 ppc_{79} 9082.764 -4.1 967.913 10 9663.046 ppc_{84} 9663.086 -4.2 794.428 13 10308.463 ppc_{91} 10308.398 6.3 1304.463 8 10421.632 ppc_{92} 10421.482 14.4 930.878 13 12083.315 ppc_{106} 12083.361 -3.8 1028.893 12 12327.614 ppc_{108} 12327.430 14.9 868.465 15 13003.850 ppc_{113} 13003.748 7.8 822.304 16 13132.740 ppc_{114} 13132.791 -3.9	916.705	9	8238.268	_{pp} c ₇₁	8238.330	-7.6
827.074 11 9082.727 $pp c_{79}$ 9082.764 -4.1 967.913 10 9663.046 $pp c_{84}$ 9663.086 -4.2 794.428 13 10308.463 $pp c_{91}$ 10308.398 6.3 1304.463 8 10421.632 $pp c_{92}$ 10421.482 14.4 930.878 13 12083.315 $pp c_{106}$ 12083.361 -3.8 1028.893 12 12327.614 $pp c_{108}$ 12327.430 14.9 868.465 15 13003.850 $pp c_{113}$ 13003.748 7.8 822.304 16 13132.740 $pp c_{114}$ 13132.791 -3.9	803.609	11	8823.607	_{pp} c ₇₇	8823.654	-5.3
967.913109663.046 $pp c_{84}$ 9663.086-4.2794.4281310308.463 $pp c_{91}$ 10308.3986.31304.463810421.632 $pp c_{92}$ 10421.48214.4930.8781312083.315 $pp c_{106}$ 12083.361-3.81028.8931212327.614 $pp c_{108}$ 12327.43014.9868.4651513003.850 $pp c_{113}$ 13003.7487.8822.3041613132.740 $pp c_{114}$ 13132.791-3.9	827.074	11	9082.727	_{pp} c ₇₉	9082.764	-4.1
794.428 13 10308.463 $pp c_{91}$ 10308.398 6.3 1304.463 8 10421.632 $pp c_{92}$ 10421.482 14.4 930.878 13 12083.315 $pp c_{106}$ 12083.361 -3.8 1028.893 12 12327.614 $pp c_{108}$ 12327.430 14.9 868.465 15 13003.850 $pp c_{113}$ 13003.748 7.8 822.304 16 13132.740 $pp c_{114}$ 13132.791 -3.9	967.913	10	9663.046	_{pp} c ₈₄	9663.086	-4.2
1304.463810421.632 $pp c_{92}$ 10421.48214.4930.8781312083.315 $pp c_{106}$ 12083.361-3.81028.8931212327.614 $pp c_{108}$ 12327.43014.9868.4651513003.850 $pp c_{113}$ 13003.7487.8822.3041613132.740 $pp c_{114}$ 13132.791-3.9	794.428	13	10308.463	<i>ppC</i> ₉₁	10308.398	6.3
930.878 13 12083.315 $pp c_{106}$ 12083.361 -3.8 1028.893 12 12327.614 $pp c_{108}$ 12327.430 14.9 868.465 15 13003.850 $pp c_{113}$ 13003.748 7.8 822.304 16 13132.740 $pp c_{114}$ 13132.791 -3.9	1304.463	8	10421.632	_{pp} c ₉₂	10421.482	14.4
1028.893 12 12327.614 ppc_{108} 12327.430 14.9 868.465 15 13003.850 ppc_{113} 13003.748 7.8 822.304 16 13132.740 ppc_{114} 13132.791 -3.9	930.878	13	12083.315	<i>ppC</i> 106	12083.361	-3.8
868.465 15 13003.850 ppc_{113} 13003.748 7.8 822.304 16 13132.740 ppc_{114} 13132.791 -3.9	1028.893	12	12327.614	<i>ppC</i> ₁₀₈	12327.430	14.9
822.304 16 13132.740 $_{pp}c_{114}$ 13132.791 -3.9	868.465	15	13003.850	<i>ppC</i> ₁₁₃	13003.748	7.8
	822.304	16	13132.740	<i>ppC</i> ₁₁₄	13132.791	-3.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1017.295	13	13203.758	<i>ppC</i> ₁₁₅	13203.828	-5.3
1129.342 12 13531.997 $_{pp}c_{118}$ 13532.039 -3.1	1129.342	12	13531.997	<i>ppC</i> ₁₁₈	13532.039	-3.1
869.463 16 13887.272 ppc ₁₂₁ 13887.261 0.8	869.463	16	13887.272	<i>ppC</i> ₁₂₁	13887.261	0.8
845.005 20 16869.947 _{pp} c ₁₄₆ 16869.985 -2.3	845.005	20	16869.947	<i>ppC</i> ₁₄₆	16869.985	-2.3
849.424 22 18654.145 ppc ₁₆₃ 18653.940 11.0	849.424	22	18654.145	<i>ppC</i> ₁₆₃	18653.940	11.0
859.278 27 23159.292 ppc ₂₀₂ 23159.212 3.4	859.278	27	23159.292	_{рр} С ₂₀₂	23159.212	3.4
857.817 28 23975.647 ppc ₂₀₈ 23975.709 -2.6	857.817	28	23975.647	<i>ppC</i> ₂₀₈	23975.709	-2.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	494.237	1	493.229	z •4	493.230	-0.9
622.332 1 621.324 z_{5}^{\bullet} 621.325 -0.6	622.332	1	621.324	z • ₅	621.325	-0.6
750.427 1 749.420 z_{6}^{\bullet} 749.420 -0.3	750.427	1	749.420	z_{6}^{\bullet}	749.420	-0.3
906.528 1 905.520 z^{\bullet}_{7} 905.521 -0.5	906.528	1	905.520	z • ₇	905.521	-0.5
482.276 2 962.539 z•8 962.542 -3.6	482.276	2	962.539	Z [•] 8	962.542	-3.6
1092.589 1 1091.583 z [•] ₉ 1091.585 -2.2	1092.589	1	1091.583	Z [•] 9	1091.585	-2.2
612.320 2 1222.625 z^{\bullet}_{10} 1222.625 -0.5	612.320	2	1222.625	Z [•] 10	1222.625	-0.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	640.830	2	1279.646	z • ₁₁	1279.647	-0.7

740.888	2	1479.762	z • ₁₃	1479.763	-0.6
776.407	2	1550.799	z •14	1550.800	-0.4
833.920	2	1665.826	z •15	1665.827	-0.4
890.460	2	1778.906	z •16	1778.911	-2.7
947.986	2	1892.953	z • ₁₇	1892.954	-0.7
675.022	3	2021.043	z • ₁₈	2021.049	-3.1
727.058	3	2177.149	z •19	2177.150	-0.3
789.084	3	2363.228	z •20	2363.229	-0.7
1240.637	2	2478.256	z 21	2478.256	-0.2
1269.146	2	2535.279	z •22	2535.278	0.5
1318.679	2	2634.345	z •23	2634.346	-0.6
1383.203	2	2763.388	Z •24	2763.389	-0.3
974.505	3	2919.486	Z [•] 25	2919.490	-1.3
1012.520	3	3033.531	z •26	3033.533	-0.6
1055.533	3	3162.575	z • ₂₇	3162.575	-0.1
1098.232	3	3290.670	z • ₂₈	3290.670	-0.1
1141.580	3	3419.715	z •29	3419.713	0.5
881.698	4	3520.755	z •30	3520.761	-1.5
1213.605	3	3635.790	z • ₃₁	3635.788	0.6
754.371	5	3764.817	z • ₃₂	3764.830	-3.5
1375.039	3	4120.093	z •35	4120.088	1.0
1417.727	3	4248.151	z • ₃₆	4248.147	0.8
876.653	5	4376.225	z • ₃₇	4376.242	-3.9
1123.841	4	4489.328	z • ₃₈	4489.326	0.4
772.402	6	4626.367	z • ₃₉	4626.385	-4.0
940.886	5	4697.398	$z^{\bullet}{}_{40}$	4697.422	-5.2
694.795	7	4853.510	z • ₄₁	4853.523	-2.8
1243.412	4	4966.586	z •42	4966.607	-4.3
1272.167	4	5081.633	z •43	5081.634	-0.3
1300.439	4	5194.715	Z •44	5194.718	-0.7
1322.198	4	5281.759	Z •45	5281.750	1.6

1354.458	4	5410.812	z •46	5410.793	3.5
693.748	8	5538.920	z •47	5538.888	5.9
1404.240	4	5609.928	z •48	5609.925	0.6
825.151	7	5766.001	z •49	5766.026	-4.4
1461.025	4	5837.063	$z^{\bullet}{}_{50}$	5837.063	0.0
738.141	8	5894.065	z • ₅₁	5894.085	-3.3
1203.043	5	6007.156	z • ₅₂	6007.169	-2.2
1021.547	6	6120.233	z • ₅₃	6120.253	-3.2
885.903	7	6191.265	z •54	6191.290	-4.0
1054.733	6	6319.350	z • ₅₅	6319.348	0.2
1291.685	5	6450.390	z • ₅₆	6450.389	0.2
941.784	7	6581.432	z • ₅₇	6581.429	0.3
951.925	7	6652.419	z• ₅₈	6652.467	-7.1
1355.307	5	6767.491	z •59	6767.493	-0.3
761.287	9	6838.513	z^{\bullet}_{60}	6838.531	-2.5
1386.922	5	6925.563	z • ₆₁	6925.563	0.0
1029.402	7	7194.753	z • ₆₃	7194.748	0.7
1217.310	6	7293.803	z • ₆₄	7293.816	-1.8
1243.329	6	7449.871	z • ₆₅	7449.917	-6.2
952.260	8	7606.019	z • ₆₆	7606.018	0.1
773.316	10	7719.080	z • ₆₇	7719.102	-2.9
1305.034	6	7820.156	z • ₆₈	7820.150	0.7
1154.909	7	8073.303	z • ₇₀	8073.304	-0.1
929.172	9	8348.471	z • ₇₂	8348.467	0.5
949.739	9	8533.574	z • ₇₄	8533.584	-1.2
870.477	10	8689.686	z • ₇₅	8689.685	0.2
1101.980	8	8802.739	z • ₇₆	8802.769	-3.4
1275.694	7	8917.795	z • ₇₇	8917.796	-0.2
756.828	12	9064.838	z • ₇₈	9064.864	-2.9
966.427	10	9648.250	z • ₈₃	9648.234	1.7
988.903	11	10860.805	Z •94	10860.905	-9.3

842.384	13	10931.883	z • ₉₅	10931.942	-5.5
738.804	15	11060.939	z • ₉₆	11060.985	-4.1
1162.537	10	11608.248	Z •100	11608.260	-1.1
1320.274	9	11866.306	Z•102	11866.345	-3.3
1333.051	9	11981.393	Z 102	11981.372	1.8
 1222 563	10	12208 547	7 105	12208 536	1.0
1234 067	10	12323 584	7 100	12323 563	1.7
 1145 165	11	12578 722	7 100	12578 732	-0.8
 822 441	17	13956 366	7 •108	13956 414	-3.5
 1154 162	17	14981 990	4 120	1/081 060	1.4
 1037.006	16	16581 805	4 130 7 ●	16581.907	0.1
1025.655	22	22528 221	<u> </u>	22528.005	-0.1
998 902	22	22326.221	7 194	22328.003	-4.1
JJ0.J02	27	23754.301	pp - 208	2373 T .037	7.1

Supplemental Figures

Fig. S1. Representative SDS-PAGE analysis of immunoaffinity purification of cTn from postmortem (a-d) and transplant (e-f) human myocardial tissues. (a) NOR1; (b) HYP3; (c) SHD3; (d) CHF1; (e) DOR4; (f) DCM4. L stands for molecular markers; FT, flow through; W, wash; E, affinity elution with 0.1 M glycine solution.

Fig. S2. Technical reproducibility of top-down quantitative proteomics analysis of cTnI phosphorylation. (a-c) three representative experimental repeated measurements (technical replicates) for one biological sample (NOR1). Subscript p stands for monophosphorylation and pp stands for bisphosphorylation.

Fig. S3. Mapping phosphorylation site(s) in mono- and bis-phosphorylated cTnI purified from normal and diseased heart samples. (a1-6), key product ions from ECD fragmentation of mono-phosphorylated cTnI ($_p$ cTnI) in a normal heart sample (NOR1); (b1-6), key product ions from ECD fragmentation of mono-phosphorylated cTnI ($_p$ cTnI) in a hypertrophic heart sample (HYP2); (c1-6), key product ions from ECD fragmentation of bis-phosphorylated cTnI ($_{pp}$ cTnI) in a normal heart sample (NOR1). ECD was not performed on the bis-phosphorylated cTnI in diseased heart samples due to its low abundance.

Fig. S4. Correlation between cTnI degradation level and heart disease conditions in postmortem samples. (a-c) NOR1-3; (d-f) HYP1-3; (g-i) SHD1-3; (j-l) CHF1-3. Only representative cases are shown. The three C-terminally trunctaed cTnI isoforms (II-IV) and three major degradation products are labeled and highlighted. Subscript p stands for mono-phosphorylation and pp stands for bis-phosphorylation. Asterisks represent the co-purified cTnT related products.

Fig. S5. Sequence confirmation of representative major cTnI proteolytic products by high accuracy mass measurements and MS/MS fragmentation. (a) High accuracy mass measurement of cTnI Y[28-205]K; (b)-(e) key product ions of cTnI Y[28-205]K; (f) fragmentation map of CAD experiment of cTnI Y[28-205]K.

Fig. S6. Correlations between (a) cTnI degradation levels and postmortem interval and (b) cTnI degradation and phosphorylation level. No significant correlation was observed between these parameters.

Fig. S7. Correlation between β -blockade and cTnI phosphorylation. (a) From post-mortem hearts including both control and diseased groups; (b) from transplant hearts of ICM/DCM. Detailed clinical characteristics are listed in Table S1 and S2. %P_{total}, total phosphorylated cTnI percentage over the entire cTnI populations. No significant correlation was observed between these parameters.

Fig. S8. Correlation between left ventricular ejection fraction (LVEF) and cTnI phosphorylation. Samples were from ICM/DCM group (see Table S2 for detailed clinical characteristics). No significant correlation was observed between these parameters.