Parallel Synthesis of a Desketoraloxifene Analogue Library via Iodocyclization/Palladium-Catalyzed Coupling

Chul-Hee Cho,[†] Dai-II Jung,^{†,‡} Benjamin Neuenswander,[§] and Richard C. Larock^{†,*}

[†]Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
[‡]Department of Chemistry, Dong-A University, Saha-Gu, Busan 604-714, Korea
[§]NIH Center of Excellence in Chemical Methodologies and Library Development, University of Kansas, Lawrence, Kansas 66047, United States

Supporting Information

Contents

1. General considerations	S2
2. Experimental details and characterization	S2-S34
3. References	S35
4. Copies of selected ¹ H and ¹³ C NMR spectra	S36-S112

The ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃ as the solvent using tetramethylsilane (TMS) as an internal standard, unless otherwise stated. Chemical shifts are reported in δ units (ppm) by assigning the TMS resonance in the ¹H NMR spectrum as 0.00 ppm and the CDCl₃ resonance in the ¹³C NMR spectrum as 77.23 ppm. All coupling constants, *J*, are reported in Hertz (Hz). Analytical thin layer chromatography (TLC) was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points are uncorrected. High resolution mass spectra (HRMS) were obtained using a Waters/Micromass LCT Premier TOF instrument. Commercially available reagents were used without further purification unless otherwise stated. The organic solvents (*e.g.* Et₂O, EtOAc, CHCl₃, MeOH, EtOH, CH₃CN, DMF, hexane, toluene, *etc.*) were used as anhydrous solvents. THF and CH₂Cl₂ were distilled from sodium/benzophenone and CaH₂ respectively under an atmosphere of argon prior to use. The palladium catalysts, such as PdCl₂(PPh₃)₂ and Pd(PPh₃)₄, were donated by Johnson Matthey Inc. and Kawaken Fine Chemicals Co. Ltd. The 4-[(tetrahydro-2*H*-pyran-2-yl)oxy]benzeneboronic acid was donated by Frontier Scientific Co. Ltd.

Preparation of starting materials 1

1-lodo-2-(methylthio)benzene [$1{1}$] was obtained commercially. 1-Bromo-2-iodo-4-methoxybenzene [$1{2}$], 1-bromo-2-iodo-4,5-dimethoxybenzene [$1{4}$], and 5-bromo-6-iodo-1,3-benzodioxole [$1{5}$] were prepared according to a published procedure as a single isomer through regioselective bromination of 3-iodoanisole, 1-iodo-3,4-dimethoxybenzene, and 1-iodo-3,4-(methylenedioxy)benzene, respectively, using Br_2 .¹ 3-Bromo-4-iodoanisole [$1{3}$] was prepared according to a published procedure through regioselective iodination of 3-bromoanisole, 1-(tosyloxy)benziodoxolone and I_2 .²

Preparation of the Bromoalkynes 2

To a solution of dihalobenzene **1** (10.0 mmol), 2 mol % $PdCl_2(PPh_3)_2$ and 2 mol % CuI in Et_3N (20 mL), the terminal alkyne (10.5 mmol) was added. The reaction mixture was stirred vigorous at 50 °C for *ca*. 5-8 h under an Ar atmosphere. The resulting mixture was diluted with EtOAc (2 × 200 mL). The separated organic layer was washed with water and brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexanes as the eluent to afford the corresponding products **2**. Products **2**(*1*-*14*) have been reported in our previous publications.³⁻⁶

General procedure for methylthiolation to form compounds 3

The bromoalkyne **2** (8.0 mmol) was dissolved in dry THF (80 mL) under an Ar atmosphere and cooled to -78 °C for 0.5 h. Then, 2.0 equiv of *n*-BuLi (2.0 M solution in cyclohexane, 8.0 mmol) was added dropwise to the stirred solution. After the addition was complete, the reaction was stirred for 1 h at -78 °C. Dimethyl disulfide (9.6 mmol) was then added and the reaction mixture was stirred further at this temperature under an Ar atmosphere before being allowed to warm to room temperature for 2 h. The resulting mixture was diluted with EtOAc (2 × 160 mL). The separated organic layer was washed with water and brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexanes as the eluent to afford the corresponding products **3**. Products **3**{*1-7,9-11*} have been reported in our previous publications.^{3,5}

Compound 3{8}

The product was obtained as a yellow oil (63% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.53 (s, 3H), 3.82 (s, 3H), 3.88 (s, 3H), 3.92 (s, 3H), 6.81 (s, 1H), 6.89 (dd, *J* = 2.5, 8.5 Hz, 1H), 7.03 (s, 1H), 7.07-7.10 (m, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.23-7.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.1, 55.5, 56.2, 56.3, 87.4, 94.0, 111.1, 114.90, 114.91, 115.4, 116.4, 124.2, 124.6, 129.5, 133.3, 147.2, 149.9, 159.5; HRMS calcd for C₁₈H₁₈O₃S [M⁺], 314.0977, found 314.0983.

General procedure for iodocyclization using I₂ to prepare compounds 4

To a solution of 5.0 mmol of the alkynes $2{1-4}$ and $3{1-11}$ in CH₂Cl₂ (20 mL) was added gradually 1.2 equiv of I₂ dissolved in CH₂Cl₂ (30 mL). The reaction mixture was allowed to stir at room temperature for up to 10 min. The reaction was monitored by TLC to establish completion. The remaining I₂ was removed by washing with satd aq Na₂S₂O₃. The mixture was then extracted by EtOAc (2 × 100 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated under a vacuum to yield the crude product, which was purified by flash chromatography using EtOAc/hexanes as the eluent to afford the corresponding products **4**.

3-lodobenzo[b]thiophene 4{1}

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (91% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.52 (m, 5H), 7.60-7.88 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 79.6, 122.3, 125.6, 125.7, 126.5, 128.7 (×2), 129.1, 130.2 (×2), 134.8, 139.1, 142.1, 142.4.

3-lodobenzo[*b*]thiophene 4{2}³

-MeO

The product was obtained as a white solid (96% yield): mp 84-85 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 6.95 (d, *J* = 8.7 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 8.7 Hz, 2H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 79.1, 114.0 (×2), 122.2, 125.4, 125.5, 126.2, 126.9, 131.4 (×2), 138.9, 142.0, 142.2, 160.2; HRMS calcd for C₁₅H₁₁IOS [M⁺], 365.9575, found 365.9578.

3-lodobenzo[b]thiophene 4{3}

The product was obtained as a pale yellow solid (88% yield): mp 73-74 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 6.98-7.04 (m, 1H), 7.27-7.32 (m, 2H), 7.38-7.44 (m, 2H), 7.49 (t, *J* = 8.1 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 79.6, 114.9, 115.6, 122.3, 122.6, 125.6, 125.7, 126.5, 129.7, 136.0, 139.0, 142.0, 142.1, 159.6; HRMS calcd for C₁₅H₁₁IOS [M⁺], 365.9575, found 365.9577.

3-lodobenzo[b]thiophene 4{4}³

The product was obtained as a pale yellow solid (89% yield): mp 105-106 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H), 6.92 (d, *J* = 8.2 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 7.27-7.41 (m, 4H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.7, 82.9, 111.5, 120.5, 122.2, 123.5, 125.2, 125.3, 126.0, 130.8, 132.5, 139.5, 139.7, 141.3, 157.1; HRMS calcd for C₁₅H₁₁IOS [M⁺], 365.9575, found 365.9575.

3-lodobenzo[b]thiophene 4{5}^{3,5}

The product was obtained as a pale yellow solid (94% yield): mp 114-115 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 3H), 3.90 (s, 3H), 6.95-7.00 (m, 3H), 7.24 (d, *J* = 2.4 Hz, 1H), 7.58-7.60 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.8, 78.8, 108.4, 114.0 (×2), 115.7, 123.0, 127.1, 131.1 (×2), 131.3, 143.2, 143.5, 158.6, 160.2; HRMS calcd for C₁₆H₁₃IO₂S [M⁺], 395.9681, found 395.9684.

3-lodobenzo[b]thiophene 4{6}^{3,5}

The product was obtained as a yellow oil (89% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H), 3.94 (s, 3H), 6.96-7.05 (m, 2H), 7.23-7.29 (m, 3H), 7.38 (t, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 55.9, 79.3, 108.6, 114.9, 115.5, 116.1, 122.6, 123.1, 129.7, 131.2, 136.1, 143.2, 143.4, 158.7, 159.8; HRMS calcd for C₁₆H₁₃IO₂S [M⁺], 395.9681, found 395.9686.

3-lodobenzo[b]thiophene 4{7}^{3,5}

The product was obtained as a yellow oil (94% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 3.88 (s, 3H), 6.92-7.05 (m, 3H), 7.24 (d, *J* = 2.0 Hz, 1H), 7.34-7.42 (m, 2H), 7.60 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.7, 55.8, 82.6, 108.1, 111.5, 115.7, 120.5, 123.0, 123.7, 130.8, 131.7, 132.5, 141.0, 142.5, 157.1, 158.4; HRMS calcd for C₁₆H₁₃IO₂S [M⁺], 395.9681, found 395.9677.

3-Iodobenzo[b]thiophene 4{8}^{3,5}

The product was obtained as a yellow solid (88% yield): mp 135-136 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 6H), 3.93 (s, 3H), 6.54 (t, *J* = 2.2 Hz, 1H), 6.83 (d, *J* = 2.3 Hz, 2H), 7.02 (dd, *J* = 2.4, 8.7 Hz, 1H), 7.27 (d, *J* = 2.4 Hz, 1H), 7.64 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.7 (×2), 55.9, 79.2, 101.3, 108.2 (×2), 108.6, 116.1, 123.1, 131.1, 136.5, 143.1, 143.4, 158.7, 160.7 (×2); HRMS calcd for C₁₇H₁₅IO₃S [M⁺], 425.9787, found 425.9795.

3-lodobenzo[b]thiophene 4{9}^{3,5}

The product was obtained as a yellow solid (95% yield): mp 112-113 °C (uncorrected); ¹H NMR

(400 MHz, CDCl₃) δ 3.85 (s, 3H), 3.87 (s, 3H), 6.98 (d, *J* = 8.5 Hz, 2H), 7.05 (dd, *J* = 1.9, 8.8 Hz, 1H), 7.24 (d, *J* = 2.0 Hz, 1H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.9, 78.2, 104.7, 114.1 (×2), 115.3, 126.9, 127.1, 131.4 (×2), 136.2, 139.9, 158.3, 160.0; HRMS calcd for C₁₆H₁₃IO₂S [M⁺], 395.9681, found 395.9686.

3-lodobenzo[b]thiophene 4{10}³

The product was obtained as a colorless oil (93% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 3.83 (s, 3H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.99-7.06 (m, 2H), 7.24 (d, *J* = 2.3 Hz, 1H), 7.35-7.43 (m, 2H), 7.65 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.7, 55.9, 82.0, 104.6, 111.5, 115.1, 120.5, 123.7, 126.6, 130.7, 132.7, 135.5, 136.9, 140.6, 157.2, 158.2; HRMS calcd for C₁₆H₁₃IO₂S [M⁺], 395.9681, found 395.9686.

3-lodobenzo[b]thiophene 4{11}^{3,5}

The product was obtained as a pale yellow solid (89% yield): mp 140-142 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.96 (s, 3H), 4.01 (s, 3H), 6.98 (d, *J* = 8.8 Hz, 2H), 7.21 (s, 1H), 7.22 (s, 1H), 7.59 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 56.3, 56.5, 78.2, 103.6, 107.5, 114.0 (×2), 127.2, 130.3, 131.3 (×2), 135.7, 140.2, 149.0, 149.1, 160.0; HRMS calcd for C₁₇H₁₅IO₃S [M⁺], 425.9787, found 425.9795.

3-Iodobenzo[b]thiophene 4{12}

The product was obtained as a pale yellow solid (85% yield): mp 134-136 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.96 (s, 3H), 4.01 (s, 3H), 6.93-6.97 (m, 1H), 7.21-7.27 (m, 4H), 7.36 (t, *J* = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 56.4, 56.5, 78.6, 103.6, 107.6, 114.5, 115.5, 122.5, 129.7, 131.1, 135.8, 136.1, 140.0, 149.25, 149.3, 159.6; HRMS calcd for C₁₇H₁₅IO₃S [M⁺], 425.9787, found 425.9791.

3-lodobenzo[b]thiophene 4{13}³

The product was obtained as a yellow solid (83% yield): mp 144-145 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 3.94 (s, 3H), 4.01 (s, 3H), 6.96-7.07 (m, 2H), 7.21 (s, 1H), 7.23 (s, 1H), 7.35-7.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.8, 56.3, 56.5, 81.9, 103.6, 107.3, 111.5, 120.5, 123.8, 130.7, 131.7, 132.7, 135.1, 137.5, 148.98, 149.02, 157.2; HRMS calcd for C₁₇H₁₅IO₃S [M⁺], 425.9787, found 425.9795.

3-lodobenzo[b]thiophene 4{14}³

The product was obtained as a white solid (94% yield): mp 163-164 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 6.04 (s, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 7.14 (s, 1H), 7.23 (s, 1H), 7.57 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 78.3, 101.3, 101.8, 105.4, 114.1 (×2), 127.2, 131.3 (×2), 132.4, 137.1, 140.7, 147.4, 147.7, 160.1; HRMS calcd for C₁₆H₁₁IO₃S [M⁺], 409.9474, found 409.9479.

3-lodobenzo[b]thiophene 4{15}³

The product was obtained as a yellow solid (85% yield): mp 135-136.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 5.97 (s, 2H), 6.94 (d, *J* = 8.2 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 7.11 (s, 1H), 7.21 (s, 1H), 7.33-7.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.7, 82.0, 101.2, 101.6, 105.1, 111.4, 120.4, 123.7, 130.7, 132.6, 133.0, 136.3, 137.9, 147.3, 147.5, 157.1; HRMS calcd for C₁₆H₁₁IO₃S [M⁺], 409.9474, found 409.9479.

General procedure for Suzuki-Miyaura coupling to prepare compounds 5

To a solution of **4** (1.0 mmol) and 5 mol % of Pd(PPh₃)₄ in toluene (10 mL) was added K₂CO₃ (2.5 mmol) under an Ar atmosphere. To the resulting mixture was added the THP-protected phenylboronic acid (1.5 mmol) dissolved in ethanol (2 mL) and water (0.5 mL) and the mixture was heated at 80 °C for 6-8 h with vigorous stirring. After concentration of the solvent under reduced pressure, to the crude compounds in THF (0.1 M conc.) was added 10% aq HCl at room temperature and then the mixture was stirred for 1 h. The mixture was then extracted by EtOAc (2 × 20 mL) and the aqueous phase was also extracted with EtOAc or CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO₄ and concentrated under a vacuum to yield the crude product, which was purified by flash chromatography using EtOAc/hexanes as the eluent to afford the corresponding products **5**.

Compound 5{2}

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (92% yield): mp 201-202 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 5.16 (br s, 1H), 6.79 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.7 Hz, 2H), 7.29-7.34 (m, 2H), 7.54-7.57 (m, 1H), 7.83-7.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 114.0 (×2), 115.9 (×2), 122.2, 123.3, 124.4, 124.5, 127.0, 128.2, 130.9 (×2), 131.9 (×2), 132.1, 138.7, 139.2, 141.3, 155.1, 159.3; HRMS calcd for C₂₂H₁₇O₄S [M+HCOO⁺], 377.0848, found 377.0848.

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (84% yield): mp 145-146 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.62 (s, 3H), 5.62 (br s, 1H), 6.78 (dd, *J* = 2.6, 8.2 Hz, 1H), 6.84-6.88 (m, 3H), 6.96 (d, *J* = 7.7 Hz, 1H), 7.13-7.23 (m, 3H), 7.30-7.35 (m, 2H), 7.56-7.59 (m, 1H), 7.82-7.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 114.0, 114.8, 115.9 (×2), 122.3, 123.5, 124.6, 124.7, 128.0, 129.6, 131.9 (×2), 133.2, 135.8, 138.9, 139.1,

141.2, 155.2, 159.4; HRMS calcd for $C_{21}H_{16}O_2S$ [M⁺], 332.0871, found 332.0869.

The product was obtained as a pale yellow oil (89% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.56 (s, 3H), 5.05 (br s, 1H), 6.76 (d, *J* = 8.6 Hz, 2H), 6.82-6.89 (m, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 7.21-7.29 (m, 2H), 7.31-7.36 (m, 2H), 7.66-7.72 (m, 1H), 7.83-7.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 111.4, 115.3 (×2), 120.6, 122.3, 123.3, 123.4, 124.3, 124.4, 128.7, 129.8, 131.2 (×2), 132.8, 134.7, 135.5, 139.9, 140.0, 154.6, 157.2; HRMS calcd for C₂₂H₁₇O₄S [M+HCOO⁺], 377.0848, found 377.0851.

Compound 5{5}⁵

The product was obtained as a pale yellow oil (89% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 3.78 (s, 3H), 5.12 (br s, 1H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 6.96-7.03 (m, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.8, 105.8, 114.0 (×2), 114.3, 115.9 (×2), 122.9, 127.1, 128.3, 130.8 (×2), 131.1, 131.85 (×2), 131.89, 140.7, 142.4, 155.0, 157.8, 159.2; HRMS calcd for C₂₂H₁₈O₃S [M⁺], 362.0977, found 362.0983.

Compound $5{6}^{5}$

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (86% yield): mp 142-143 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.62 (s, 3H), 3.78 (s, 3H), 5.45 (br s, 1H), 6.77 (dd, *J* = 2.5, 8.2 Hz, 1H), 6.82-6.85 (m, 1H), 6.86 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.2

Hz, 1H), 6.98-7.05 (m, 2H), 7.15 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 8.6 Hz, 2H), 7.71 (d, J = 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 55.8, 105.9, 114.0, 114.71, 114.74, 115.9 (×2), 122.2, 123.0, 128.1, 129.6, 131.3, 131.8 (×2), 132.9, 135.9, 140.5, 142.2, 155.1, 157.8, 159.3; HRMS calcd for C₂₂H₁₈O₃S [M⁺], 362.0977, found 362.0983.

Compound 5{7}⁵

The product was obtained as a pale yellow oil (91% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.54 (s, 3H), 3.79 (s, 3H), 5.74 (br s, 1H), 6.76 (d, *J* = 8.7 Hz, 2H), 6.79-6.89 (m, 2H), 6.99 (dd, *J* = 2.5, 8.7 Hz, 1H), 7.14 (d, *J* = 8.7 Hz, 2H), 7.14-7.16 (m, 1H), 7.20-7.27 (m, 2H), 7.71 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.8, 105.8, 111.4, 114.4, 115.4 (×2), 120.5, 123.0, 123.5, 128.6, 129.7, 131.1 (×2), 132.3, 132.7, 134.5, 136.8, 141.0, 154.8, 157.1, 157.6; HRMS calcd for C₂₂H₁₈O₃S [M⁺], 362.0977, found 362.0983.

Compound 5{8⁵

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (83% yield): mp 172-174 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 6H), 3.79 (s, 3H), 5.13 (br s, 1H), 6.35 (br s, 1H), 6.48 (d, *J* = 2.2 Hz, 2H), 6.88 (d, *J* = 7.9 Hz, 2H), 6.98-7.04 (m, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4 (×2), 55.8, 100.4, 105.8, 107.7 (×2), 114.8, 115.9 (×2), 123.0, 128.0, 131.2, 131.8 (×2), 133.1, 136.4, 140.5, 142.2, 155.4, 157.8, 160.5 (×2); HRMS calcd for C₂₄H₂₁O₆S [M+HCOO⁺], 437.1059, found 437.1044.

Compound $5{9}^{5}$

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (81% yield): mp 185-186 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 3.89 (s, 3H), 5.04 (br s, 1H), 6.78 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 6.94 (dd, *J* = 2.4, 8.9 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 2H), 7.23 (d, *J* = 8.9 Hz, 2H), 7.33 (d, *J* = 2.4 Hz, 1H), 7.44 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.9, 104.8, 114.0 (×2), 114.4, 115.8 (×2), 124.0, 127.2, 128.4, 130.8 (×2), 131.6, 131.9 (×2), 135.4, 136.5, 139.9, 154.9, 157.5, 159.0; HRMS calcd for C₂₂H₁₈O₃S [M⁺], 362.0977, found 362.0990.

Compound 5{10}⁵

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (83% yield): mp 98-99 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.54 (s, 3H), 3.86 (s, 3H), 5.53 (br s, 1H), 6.74 (d, *J* = 8.5 Hz, 2H), 6.80-6.86 (m, 2H), 6.95 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.12 (d, *J* = 8.5 Hz, 2H), 7.16-7.24 (m, 2H), 7.33 (d, *J* = 2.3 Hz, 1H), 7.56 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.9, 104.8, 111.4, 114.2, 115.3 (×2), 120.6, 123.5, 124.0, 128.7, 129.5, 131.1 (×2), 132.6, 132.8, 134.18, 134.20, 141.2, 154.7, 157.1, 157.4; HRMS calcd for C₂₂H₁₈O₃S [M⁺], 362.0977, found 362.0986.

Compound $5{11}^5$

The product was obtained as a yellow solid (78% yield): mp 157-158 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 3.84 (s, 3H), 3.97 (s, 3H), 5.09 (br s, 1H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 6.97 (s, 1H), 7.20 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 56.3, 56.4, 103.9, 104.7, 114.0 (×2), 116.0 (×2), 127.2, 128.5, 130.7 (×2), 131.2, 131.8 (×2), 134.8, 137.4, 148.4, 148.4, 155.0, 159.0; HRMS calcd for C₂₄H₂₁O₆S [M+HCOO⁺], 437.1059, found 437.1047.

Compound 5{12}

The product was obtained as a yellow solid (77% yield): mp 123-124.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 3H), 3.83 (s, 3H), 3.97 (s, 3H), 5.17 (br s, 1H), 6.76 (dd, *J* = 2.4, 8.2 Hz, 1H), 6.80 (br s, 1H), 6.86-6.93 (m, 1H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.98 (s, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 56.3, 56.5, 104.1, 105.0, 113.7, 114.7, 116.0 (×2), 116.4, 122.1, 128.5, 129.5, 131.6, 131.8 (×2), 132.9, 134.8, 136.1, 148.6, 148.7, 155.2, 159.5; HRMS calcd for C₂₃H₂₀O₄S [M⁺], 392.1082, found 392.1084.

The product was obtained as a yellow oil (84% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.56 (s, 3H), 3.84 (s, 3H), 3.95 (s, 3H), 5.50 (br s, 1H), 6.76-6.88 (m, 4H), 7.12 (s, 1H), 7.14-7.28 (m, 4H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 56.3, 56.4, 103.9, 104.7, 111.4, 115.4 (×2), 120.5, 123.6, 128.9, 129.5, 131.0 (×2), 132.5, 132.8, 133.47, 133.51, 134.3, 148.15, 148.22, 154.8, 157.1; HRMS calcd for C₂₃H₂₀O₄S [M⁺], 392.1082, found 392.1092.

Compound 5{14}

The product was obtained as pale yellow oil that solidified upon standing to an ivory solid (85% yield): mp 202-203 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 4.89 (br s, 1H), 5.99 (s, 2H), 6.77 (d, *J* = 9.0 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 6.94 (s, 1H), 7.17 (d, *J* = 8.6 Hz, 2H), 7.19 (s, 1H), 7.21 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 101.4, 101.5, 102.3, 114.0 (×2), 115.5, 115.9 (×2), 127.1, 128.4, 130.6 (×2), 131.8 (×2), 132.0, 136.0, 137.6, 146.6, 146.9,

155.0, 159.1; HRMS calcd for C₂₂H₁₆O₄S [M⁺], 376.0769, found 376.0777.

The product was obtained as a pale yellow oil (87% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.55 (s, 3H), 5.48 (br s, 1H), 5.96 (s, 2H), 6.75 (d, *J* = 7.9 Hz, 2H), 6.77-6.87 (m, 2H), 7.08 (s, 1H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.16-7.26 (m, 2H), 7.23 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 101.4, 101.5, 102.3, 111.4, 115.3 (×2), 120.5, 123.5, 128.7, 129.5, 131.1 (×2), 132.7, 133.3, 133.6, 134.5, 134.6, 146.5, 146.7, 154.7, 157.0; HRMS calcd for C₄₄H₃₆ONO₈S₂ [2M+NH₄⁺], 770.1882, found 770.1857.

General Procedure for the Mitsunobu reaction to prepare compounds 6

To a solution of **5** (0.2 mmol), PPh₃ (0.4 mmol), and the alkylaminoethanol (0.3 mmol) in anhydrous THF (2 mL) was added diisopropyl azodicarboxylate (DIAD) (0.3 mmol) with stirring at 0-5 °C. The resulting solution was stirred at room temperature for *ca*. 24-32 h (monitored by TLC until completion) and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel using methanol/ethyl acetate/hexanes as the eluent to afford the corresponding products **6**.

Compound 6{1}

The product was obtained as a pale yellow oil (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.50 (m, 2H), 1.59-1.66 (m, 4H), 2.53 (br s, 4H), 2.80 (t, *J* = 6.0 Hz, 2H), 4.14 (t, *J* = 6.0 Hz, 2H), 6.94 (d,

J = 8.8 Hz, 2H), 7.20-7.25 (m, 4H), 7.31-7.34 (m, 3H), 7.43-7.56 (m, 3H), 7.83-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.2 (×2), 55.3 (×2), 58.2, 66.2, 114.9, 122.2, 123.5, 124.5, 124.6, 128.6 (×2), 128.7 (×2), 132.2 (×2), 132.3 (×2), 133.0, 133.2, 134.6, 138.9, 139.2, 141.2, 158.3; HRMS calcd for C₂₇H₂₈NOS [M+H⁺], 414.1892, found 414.1894.

Compound 6{2}

The product was obtained as a pale yellow oil (78% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.60 (t, *J* = 4.4 Hz, 4H), 2.83 (t, *J* = 5.7 Hz, 2H), 3.75 (t, *J* = 4.6 Hz, 4H), 4.14 (t, *J* = 5.7 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 7.20-7.23 (m, 2H), 7.29-7.34 (m, 3H), 7.42-7.54 (m, 3H), 7.63-7.70 (m, 2H), 7.85-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3 (×2), 57.9, 66.0, 67.1 (×2), 114.9 (×2), 122.2, 123.5, 124.5, 124.6, 127.8, 128.5 (×2), 128.6, 128.7, 129.8 (×2), 131.7 (×2), 134.5, 138.9, 139.3, 141.2, 158.2; HRMS calcd for C₂₆H₂₆NO₂S [M+H⁺], 416.1684, found 416.1682.

Compound 6{4}

The product was obtained as a pale yellow oil (79% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 6H), 2.76 (t, *J* = 5.8 Hz, 2H), 4.10 (t, *J* = 5.8 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 7.22-7.26 (m, 4H), 7.30-7.35 (m, 4H), 7.58-7.70 (m, 2H), 7.85-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.2 (×2), 58.6, 66.2, 115.0 (×2), 122.3, 123.6, 124.6, 124.7, 127.8, 128.5 (×2), 129.8 (×2), 131.7 (×2), 132.3, 133.1, 134.6, 139.0, 139.3, 141.3, 158.4; HRMS calcd for C₂₄H₂₄NOS [M+H⁺], 374.1579, found 374.1576.

Compound 6{5}

The product was obtained as a pale yellow oil (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.39-1.50 (m, 2H), 1.55-1.66 (m, 4H), 2.50-2.58 (m, 4H), 2.81 (t, *J* = 6.0 Hz, 2H), 3.79 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 7.21-7.27 (m, 4H), 7.30-7.34 (m, 2H), 7.54-7.58 (m, 1H), 7.82-7.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.2 (×2), 55.3 (×2), 55.4, 58.3, 66.2, 114.0 (×2), 115.0, 122.2, 123.3, 124.4, 124.5, 127.0, 128.1, 130.9 (×2), 131.7 (×2), 132.4, 138.7, 139.2, 141.4, 158.3, 159.3; HRMS calcd for C₂₈H₂₉NO₂S [M⁺], 443.1919, found 443.1911.

Compound 6{6}

The product was obtained as a pale yellow oil (73% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.61 (t, *J* = 4.6 Hz, 4H), 2.84 (t, *J* = 5.8 Hz, 2H), 3.76 (t, *J* = 4.6 Hz, 4H), 3.78 (s, 3H), 4.15 (t, *J* = 5.8 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 7.23-7.26 (m, 4H), 7.29-7.34 (m, 2H), 7.55-7.58 (m, 1H), 7.83-7.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3 (×2), 55.4, 57.9, 66.0, 67.1 (×2), 114.0 (×2), 114.9 (×2), 122.2, 123.3, 124.4, 124.5, 126.9, 128.2, 130.9 (×2), 131.7 (×2), 133.2, 138.6, 139.2, 141.3, 158.1, 159.3; HRMS calcd for C₂₇H₂₇NO₃S [M⁺], 445.1712, found 445.1716.

The product was obtained as a pale yellow oil (85% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.83 (br s, 4H), 2.62-2.70 (m, 4H), 2.95 (t, *J* = 6.0 Hz, 2H), 3.78 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.79 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 2H), 7.26 (d, *J* = 8.9 Hz, 2H), 7.29-7.34 (m, 2H), 7.54-7.58 (m, 1H), 7.82-7.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.3, 55.4, 67.2, 114.0 (×2), 115.0 (×2), 122.2, 123.3, 124.4, 124.5, 127.0, 128.1, 130.9 (×2), 131.7 (×2), 132.2, 138.6, 139.2, 141.4, 158.3, 159.3; HRMS calcd for C₂₇H₂₇NO₂S [M⁺], 429.1762, found 429.1765.

Compound 6{8}

The product was obtained as a pale yellow oil (81% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 6H), 2.76 (t, *J* = 6.0 Hz, 2H), 3.78 (s, 3H), 4.10 (t, *J* = 6.0 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 7.21-7.27 (m, 4H), 7.30-7.34 (m, 2H), 7.54-7.58 (m, 1H), 7.82-7.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.2 (×2), 55.4, 58.6, 66.2, 114.0 (×2), 114.9 (×2), 122.1, 123.3, 124.4, 124.5, 127.0, 128.1, 130.9 (×2), 131.6 (×2), 132.1, 138.6, 139.1, 141.3, 158.3, 159.2; HRMS calcd for C₂₅H₂₅NO₂S [M⁺], 403.1606, found 403.1611.

Compound 6{9}

The product was obtained as a pale yellow oil (78% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.50 (m, 2H), 1.59-1.66 (m, 4H), 2.50-2.56 (m, 4H), 2.80 (t, *J* = 6.1 Hz, 2H), 3.63 (s, 3H), 4.14 (t, *J* = 6.1 Hz, 2H), 6.78 (dd, *J* = 2.4, 8.2 Hz, 1H), 6.86 (t, *J* = 2.2 Hz, 1H), 6.95-6.97 (m, 1H), 6.95 (d, *J* = 8.6 Hz, 2H), 7.17 (t, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 8.6 Hz, 2H), 7.31-7.37 (m, 2H), 7.57-7.62 (m, 1H), 7.84-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.2 (×2), 55.2, 55.3 (×2), 58.2, 66.3, 114.0, 114.8, 115.0 (×2), 122.2, 122.3, 123.5, 124.6, 124.7, 128.0, 129.5, 131.6 (×2), 133.3, 135.8, 138.9, 139.1, 141.3, 158.4, 159.5; HRMS calcd for C₂₈H₂₉NO₂S [M⁺], 443.1919, found 443.1916.

Compound 6{10}

The product was obtained as a pale yellow oil (73% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.61 (br s, 4H), 2.84 (t, *J* = 5.7 Hz, 2H), 3.64 (s, 3H), 3.76 (t, *J* = 4.4 Hz, 4H), 4.15 (t, *J* = 5.7 Hz, 2H), 6.79 (dd, *J*

= 2.4, 8.2 Hz, 1H), 6.86 (br s, 1H), 6.93-6.97 (m, 1H), 6.95 (d, J = 8.6 Hz, 2H), 7.17 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.6 Hz, 2H), 7.30-7.36 (m, 2H), 7.56-7.61 (m, 1H), 7.83-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.4 (×2), 55.3, 57.9, 66.1, 67.2 (×2), 113.9, 114.9, 115.0 (×2), 122.2, 122.3, 123.5, 124.6, 124.7, 128.2, 129.5, 131.7 (×2), 133.2, 135.8, 138.9, 139.1, 141.2, 158.3, 159.5. **Compound 6{11}**

The product was obtained as a pale yellow oil (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.80-1.85 (m, 4H), 2.61-2.68 (m, 4H), 2.93 (t, *J* = 6.0 Hz, 2H), 3.63 (s, 3H), 4.14 (t, *J* = 6.0 Hz, 2H), 6.78 (dd, *J* = 2.4, 8.2 Hz, 1H), 6.86 (br s, 1H), 6.93-6.97 (m, 1H), 6.95 (d, *J* = 8.6 Hz, 2H), 7.17 (t, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.6 Hz, 2H), 7.30-7.36 (m, 2H), 7.56-7.61 (m, 1H), 7.83-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.2, 55.4, 67.3, 114.0, 114.8, 115.0 (×2), 122.20, 122.23, 123.6, 124.6, 124.7, 128.0, 129.5, 131.6 (×2), 133.2, 135.8, 138.9, 139.1, 141.3, 158.4, 159.4.

Compound 6{12}

The product was obtained as a pale yellow oil (69% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 6H), 2.76 (t, *J* = 5.7 Hz, 2H), 3.62 (s, 3H), 4.10 (t, *J* = 5.7 Hz, 2H), 6.78 (dd, *J* = 2.5, 8.2 Hz, 1H), 6.86 (br s, 1H), 6.93-6.97 (m, 1H), 6.96 (d, *J* = 8.6 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.6 Hz, 2H), 7.30-7.36 (m, 2H), 7.56-7.61 (m, 1H), 7.83-7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.2, 58.5, 66.2, 114.0, 114.8, 115.0 (×2), 122.19, 122.22, 123.5, 124.5, 124.7, 128.0, 129.5, 131.6 (×2), 133.2, 135.8, 138.8, 139.1, 141.2, 158.4, 159.4.

Compound 6{*13*}

The product was obtained as a pale yellow oil (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.48 (m, 2H), 1.57-1.65 (m, 4H), 2.48-2.54 (m, 4H), 2.77 (t, *J* = 6.1 Hz, 2H), 3.57 (s, 3H), 4.10 (t, *J* = 6.1 Hz, 2H), 6.81-6.90 (m, 4H), 7.17-7.28 (m, 4H), 7.31-7.34 (m, 2H), 7.68-7.72 (m, 1H), 7.83-7.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.1 (×2), 55.3 (×2), 55.5, 58.2, 66.2, 111.4, 114.5 (×2), 120.5, 122.2, 123.3, 123.5, 124.2, 124.3, 128.7, 129.7, 131.0 (×2), 132.8, 134.7, 135.5, 139.9, 140.1, 157.3, 158.0; HRMS calcd for C₂₈H₂₉NO₂S [M⁺], 443.1919, found 443.1917.

The product was obtained as a pale yellow oil (67% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.75-1.85 (m, 4H), 2.60-2.66 (m, 4H), 2.93 (t, *J* = 6.0 Hz, 2H), 3.56 (s, 3H), 4.10 (t, *J* = 6.0 Hz, 2H), 6.81-6.90 (m, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.20-7.29 (m, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.31-7.34 (m, 2H), 7.68-7.72 (m, 1H), 7.83-7.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 54.9 (×2), 55.3, 55.5, 67.2, 111.4, 114.5 (×2), 120.6, 122.2, 123.3, 123.5, 124.2, 124.3, 128.6, 129.7, 131.0 (×2), 132.8, 134.7, 135.5, 139.9, 140.1, 157.3, 158.0.

Compound 6{16}

The product was obtained as a pale yellow oil (71% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 6H), 2.73 (t, *J* = 5.8 Hz, 2H), 3.56 (s, 3H), 4.05 (t, *J* = 5.8 Hz, 2H), 6.81-6.90 (m, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.20-7.29 (m, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.31-7.34 (m, 2H), 7.68-7.72 (m, 1H), 7.83-7.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.5, 58.5, 66.1, 111.4, 114.5 (×2), 120.6,

122.2, 123.3, 123.5, 124.26, 124.34, 128.7, 129.7, 131.0 (×2), 132.8, 134.7, 135.5, 139.9, 140.1, 157.3, 158.0.

Compound $6{17}^{5}$

The product was obtained as a pale yellow oil (87% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.50 (m, 2H), 1.59-1.66 (m, 4H), 2.50-2.58 (m, 4H), 2.81 (t, *J* = 6.0 Hz, 2H), 3.779 (s, 3H), 3.780 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.95-7.03 (m, 2H), 7.20-7.27 (m, 4H), 7.70 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.2 (×2), 55.3 (×2), 55.4, 55.8, 58.3, 66.1, 105.7, 114.0 (×2), 114.4, 115.0 (×2), 122.9, 127.1, 128.2, 130.8 (×2), 131.0, 131.6 (×2), 132.0, 140.6, 142.4, 157.8, 158.2, 159.2; HRMS calcd for C₂₉H₃₂NO₃S [M+H⁺], 474.2103, found 474.2050.

Compound 6{19}

The product was obtained as a pale yellow oil (81% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.78-1.86 (m, 4H), 2.63-2.68 (m, 4H), 2.95 (t, *J* = 5.7 Hz, 2H), 3.779 (s, 3H), 3.780 (s, 3H), 4.16 (t, *J* = 5.7 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.93-7.03 (m, 4H), 7.20-7.25 (m, 4H), 7.70 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.35, 55.38, 55.7, 67.2, 105.8, 114.0 (×2), 114.3, 115.0 (×2), 122.8, 127.1, 128.2, 130.8 (×2), 131.0, 131.6 (×2), 132.0, 140.6, 142.4, 157.8, 158.3, 159.2; HRMS calcd for C₂₈H₂₉NO₃S [M⁺], 459.1868, found 459.1876.

Compound 6{20}

The product was obtained as a pale yellow oil (81% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s,

6H), 2.77 (t, J = 5.7 Hz, 2H), 3.769 (s, 3H), 3.770 (s, 3H), 4.10 (t, J = 5.7 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 6.95-7.03 (m, 2H), 7.20-7.25 (m, 4H), 7.69 (d, J = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.2 (×2), 55.4, 55.7, 58.6, 66.2, 105.8, 114.0 (×2), 114.3, 115.0 (×2), 122.8, 127.1, 128.2, 130.8 (×2), 131.0, 131.6 (×2), 132.0, 140.6, 142.4, 157.8, 158.2, 159.3. **Compound 6{21}**⁵

The product was obtained as a pale yellow oil (86% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.49 (m, 2H), 1.59-1.66 (m, 4H), 2.50-2.58 (m, 4H), 2.81 (t, *J* = 6.0 Hz, 2H), 3.63 (s, 3H), 3.78 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.76-6.84 (m, 2H), 6.90-6.95 (m, 1H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.98-7.04 (m, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.2 (×2), 55.25, 55.33 (×2), 55.8, 58.2, 66.2, 105.8, 114.0, 114.7, 114.8, 115.1 (×2), 122.1, 123.0, 128.1, 129.5, 131.6 (×2), 132.3, 133.0, 135.9, 140.5, 142.3, 157.9, 158.4, 159.4; HRMS calcd for C₂₉H₃₁NO₃S [M⁺], 473.2025, found 473.2031.

Compound 6{23}

The product was obtained as a pale yellow oil (71% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.85 (m, 4H), 2.63-2.68 (m, 4H), 2.94 (t, *J* = 6.0 Hz, 2H), 3.62 (s, 3H), 3.78 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.76-6.87 (m, 2H), 6.90-7.05 (m, 3H), 6.97 (d, *J* = 8.7 Hz, 2H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 8.7 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.2, 55.3, 55.7, 67.3, 105.8, 114.0, 114.7, 114.8, 115.1 (×2), 122.1, 122.9, 128.1, 129.5, 131.2, 131.5 (×2), 133.0, 135.9, 140.4, 142.3, 157.9, 158.4, 159.4.

Compound 6{*24*}

The product was obtained as a pale yellow oil (82% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 6H), 2.76 (t, *J* = 5.7 Hz, 2H), 3.62 (s, 3H), 3.77 (s, 3H), 4.10 (t, *J* = 5.7 Hz, 2H), 6.75-6.83 (m, 1H), 6.83 (br s, 1H), 6.90-7.04 (m, 3H), 6.96 (d, *J* = 8.7 Hz, 2H), 7.15 (t, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 8.7 Hz, 2H), 7.71 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.2, 55.7, 58.5, 66.3, 105.9, 114.0, 114.7, 114.8, 115.1 (×2), 122.1, 122.9, 128.2, 129.5, 131.3, 131.5 (×2), 133.0, 135.9, 140.5, 142.3, 157.9, 158.4, 159.4; HRMS calcd for C₂₆H₂₈NO₃S [M+H⁺], 434.1790, found 434.1790. **Compound 6{25}**⁵

The product was obtained as a pale yellow oil (87% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.49 (m, 2H), 1.55-1.65 (m, 4H), 2.50-2.55 (m, 4H), 2.78 (t, *J* = 6.1 Hz, 2H), 3.56 (s, 3H), 3.80 (s, 3H), 4.10 (t, *J* = 6.1 Hz, 2H), 6.81-6.89 (m, 4H), 7.00 (dd, *J* = 2.5, 8.7 Hz, 1H), 7.15-7.27 (m, 5H), 7.72 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.1 (×2), 55.3 (×2), 55.5, 55.8, 58.2, 66.2, 105.8, 111.4, 114.4, 114.6 (×2), 120.5, 122.9, 123.6, 128.8, 129.7, 130.9 (×2), 132.3, 132.8, 134.6, 136.9, 141.1, 157.2, 157.8, 158.0; HRMS calcd for C₂₉H₃₂NO₃S [M+H⁺], 474.2103, found 474.2095. **Compound 6{27**}

The product was obtained as a pale yellow oil (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.80-1.85 (br s, 4H), 2.61-2.66 (m, 4H), 2.91 (t, *J* = 6.0 Hz, 2H), 3.56 (s, 3H), 3.80 (s, 3H), 4.10 (t, *J* = 6.0 Hz, 2H), 6.81-6.90 (m, 4H), 7.00 (dd, *J* = 2.5, 8.7 Hz, 1H), 7.15-7.27 (m, 5H), 7.72 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.4, 55.5, 55.8, 67.2, 105.7, 111.4, 114.4,

114.5 (×2), 115.5, 120.5, 122.9, 128.7, 129.7, 130.9 (×2), 132.3, 132.8, 134.6, 136.8, 141.1, 157.1, 157.7, 157.9; HRMS calcd for $C_{28}H_{30}NO_3S$ [M+H⁺], 460.1946, found 460.1946.

Compound 6{28}

The product was obtained as a pale yellow oil (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 6H), 2.72 (t, *J* = 5.7 Hz, 2H), 3.54 (s, 3H), 3.79 (s, 3H), 4.05 (t, *J* = 5.7 Hz, 2H), 6.80-6.89 (m, 4H), 6.99 (dd, *J* = 2.5, 8.7 Hz, 1H), 7.15-7.27 (m, 5H), 7.71 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.5, 55.8, 58.6, 66.1, 105.7, 111.4, 114.4, 114.5 (×2), 120.5, 122.9, 123.6, 128.8, 129.6, 130.8 (×2), 132.3, 132.7, 134.5, 136.8, 141.1, 157.1, 157.7, 157.9; HRMS calcd for C₂₆H₂₇NO₃S [M⁺], 433.1712, found 433.1720.

Compound 6{29}⁵

The product was obtained as a pale yellow oil (77% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.50 (m, 2H), 1.60-1.66 (m, 4H), 2.50-2.58 (m, 4H), 2.80 (t, *J* = 6.0 Hz, 2H), 3.62 (s, 6H), 3.78 (s, 3H), 4.14 (t, *J* = 6.0 Hz, 2H), 6.34 (t, *J* = 2.2 Hz, 1H), 6.47 (d, *J* = 2.2 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.98-7.04 (m, 2H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.2 (×2), 55.3 (×2), 55.4 (×2), 55.7, 58.2, 66.3, 100.5, 105.9, 107.7 (×2), 114.8, 115.1 (×2), 122.9, 128.2, 131.2, 131.5 (×2), 133.2, 136.4, 140.5, 142.3, 157.9, 158.4, 160.6 (×2); HRMS calcd for C₃₀H₃₃NO₄S [M⁺], 503.2130, found 503.2132.

Compound 6{*30*}

The product was obtained as a pale yellow oil (78% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.58-2.64 (m, 4H), 2.84 (t, *J* = 5.7 Hz, 2H), 3.63 (s, 6H), 3.76 (t, *J* = 4.6 Hz, 4H), 3.78 (s, 3H), 4.15 (t, *J* = 5.7 Hz, 2H), 6.34 (t, *J* = 2.2 Hz, 1H), 6.47 (d, *J* = 2.2 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.96-7.04 (m, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.4 (×2), 55.4 (×2), 55.8, 57.9, 66.1, 67.2 (×2), 100.5, 106.0, 107.7 (×2), 114.8, 115.1 (×2), 123.0, 128.4, 131.2, 131.6 (×2), 133.1, 136.4, 140.6, 142.3, 157.9, 158.3, 160.6 (×2).

Compound 6{31}

The product was obtained as a pale yellow oil (73% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.87 (m, 4H), 2.67-2.72 (m, 4H), 2.97 (t, *J* = 5.9 Hz, 2H), 3.62 (s, 6H), 3.78 (s, 3H), 4.17 (t, *J* = 5.9 Hz, 2H), 6.34 (t, *J* = 2.3 Hz, 1H), 6.47 (d, *J* = 2.3 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.98-7.04 (m, 2H), 7.26 (d, *J* = 8.7 Hz, 2H), 7.71 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 54.9 (×2), 55.2, 55.4 (×2), 55.8, 67.2, 100.5, 105.9, 107.7 (×2), 114.9, 115.1 (×2), 123.0, 128.3, 131.2, 131.6 (×2), 133.2, 136.4, 140.5, 142.3, 157.9, 158.4, 160.6 (×2).

Compound 6{32}

The product was obtained as a pale yellow oil (73% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 6H), 2.78 (t, *J* = 5.6 Hz, 2H), 3.62 (s, 6H), 3.78 (s, 3H), 4.11 (t, *J* = 5.6 Hz, 2H), 6.34 (t, *J* = 2.2 Hz, 1H), 6.47 (d, *J* = 2.2 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.96-7.04 (m, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.4 (×2), 55.8, 58.5, 66.3, 100.5, 105.9, 107.7 (×2), 114.8, 115.1 (×2), 122.9, 128.3, 131.2, 131.6 (×2), 133.2, 136.4, 140.5, 142.3, 157.9, 158.4, 160.6 (×2).

Compound 6{33}⁵

The product was obtained as a pale yellow oil (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.50 (m, 2H), 1.58-1.66 (m, 4H), 2.52-2.57 (m, 4H), 2.81 (t, *J* = 6.0 Hz, 2H), 3.79 (s, 3H), 3.89 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.78 (d, *J* = 8.9 Hz, 2H), 6.90-6.97 (m, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 7.22 (d, *J* = 8.8 Hz, 4H), 7.32 (d, *J* = 2.3 Hz, 1H), 7.44 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.1 (×2), 55.3 (×2), 55.4, 55.9, 58.2, 66.1, 104.8, 114.0 (×2), 114.3, 114.9 (×2), 124.0, 127.2, 128.2, 130.7 (×2), 131.6 (×2), 131.7, 135.5, 136.4, 139.9, 157.5, 158.2, 159.0; HRMS calcd for C₂₉H₃₁NO₃S [M+H⁺], 473.2025, found 474.2105.

Compound 6{*34*}

The product was obtained as a pale yellow oil (78% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.58-2.64 (m, 4H), 2.84 (t, *J* = 5.7 Hz, 2H), 3.76 (t, *J* = 4.6 Hz, 4H), 3.78 (s, 3H), 3.88 (s, 3H), 4.15 (t, *J* = 5.7 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.91-6.96 (m, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.8 Hz, 2H), 7.23 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 2.2 Hz, 1H), 7.44 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3 (×2), 55.4, 55.9, 57.9, 66.0, 67.1 (×2), 104.9, 114.0 (×2), 114.4, 115.0 (×2), 124.0, 127.2, 128.5, 130.7 (×2), 131.6 (×2), 131.7, 135.5, 136.5, 140.0, 157.6, 158.1, 159.1.

Compound 6{35}

The product was obtained as a pale yellow oil (75% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.85 (m, 4H), 2.63-2.70 (m, 4H), 2.94 (t, *J* = 6.0 Hz, 2H), 3.77 (s, 3H), 3.87 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.90-6.96 (m, 1H), 6.94 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.22 (d, *J* = 8.6 Hz, 2H), 7.31 (d, *J* = 2.2 Hz, 1H), 7.44 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃)

δ 23.8 (×2), 54.9 (×2), 55.3, 55.4, 55.9, 67.2, 104.9, 114.0 (×2), 114.3, 115.0 (×2), 124.0, 127.2, 128.3, 130.7 (×2), 131.6 (×2), 131.8, 135.5, 136.5, 140.0, 157.6, 158.3, 159.1.

Compound 6{36}

The product was obtained as a pale yellow oil (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 6H), 2.77 (t, *J* = 5.7 Hz, 2H), 3.78 (s, 3H), 3.88 (s, 3H),4.10 (t, *J* = 5.7 Hz, 2H), 6.77 (d, *J* = 8.6 Hz, 2H), 6.91-6.96 (m, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.6 Hz, 2H), 7.23 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 2.3 Hz, 1H), 7.44 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.4, 55.9, 58.5, 66.2, 104.9, 114.0 (×2), 114.3, 114.9 (×2), 124.0, 127.2, 128.3, 130.7 (×2), 131.6 (×2), 131.7, 135.5, 136.5, 140.0, 157.6, 158.2, 159.1.

Compound 6{*37*}

The product was obtained as a pale yellow oil (78% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.50 (m, 2H), 1.56-1.65 (m, 4H), 2.50-2.56 (m, 4H), 2.78 (t, *J* = 6.0 Hz, 2H), 3.58 (s, 3H), 3.90 (s, 3H), 4.10 (t, *J* = 6.0 Hz, 2H), 6.82-6.88 (m, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.92-6.97 (m, 1H), 7.18 (d, *J* = 8.9 Hz, 2H), 7.18-7.27 (m, 2H), 7.32-7.34 (m, 1H), 7.58 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.1 (×2), 55.2 (×2), 55.5, 55.9, 58.2, 66.1, 104.8, 111.5, 114.2, 114.5 (×2), 120.6, 123.7, 124.1, 128.7, 129.5, 131.0 (×2), 132.7, 132.9, 134.3, 134.3, 141.3, 157.3, 157.5, 158.0; HRMS calcd for C₂₉H₃₁NO₃S [M⁺], 473.2025, found 473.2019.

Compound 6{38}

The product was obtained as a pale yellow oil (77% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.56-2.63 (m, 4H), 2.81 (t, *J* = 5.6 Hz, 2H), 3.58 (s, 3H), 3.74 (t, *J* = 4.5 Hz, 4H), 3.88 (s, 3H), 4.10 (t, *J* = 5.6 Hz, 2H), 6.82-6.88 (m, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.96 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 2H), 7.21-7.27 (m, 2H), 7.33 (d, *J* = 2.1 Hz, 1H), 7.58 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3 (×2), 55.5, 55.9, 57.9, 65.9, 67.1 (×2), 104.8, 111.4, 114.2, 114.5 (×2), 120.6, 123.6, 124.0, 128.7, 129.5, 131.0 (×2), 132.7, 132.9, 134.20, 134.22, 141.2, 157.2, 157.5, 158.0.

Compound 6{39}

The product was obtained as a pale yellow oil (81% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.79-1.83 (m, 4H), 2.60-2.66 (m, 4H), 2.90 (t, *J* = 6.0 Hz, 2H), 3.58 (s, 3H), 3.89 (s, 3H), 4.10 (t, *J* = 6.0 Hz, 2H), 6.82-6.88 (m, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.96 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.19 (d, *J* = 8.9 Hz, 2H), 7.18-7.27 (m, 2H), 7.34 (d, *J* = 2.3 Hz, 1H), 7.58 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.4, 55.5, 55.9, 67.2, 104.7, 111.4, 114.2, 114.5 (×2), 120.6, 123.6, 124.1, 128.8, 129.5, 130.9 (×2), 132.6, 132.9, 134.2, 134.3, 141.2, 157.2, 157.5, 158.0.

Compound 6{40}

The product was obtained as a pale yellow oil (82% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 6H), 2.75 (t, *J* = 5.6 Hz, 2H), 3.57 (s, 3H), 3.89 (s, 3H), 4.07 (t, *J* = 5.6 Hz, 2H), 6.82-6.88 (m, 2H), 6.86 (d, *J* = 8.9 Hz, 2H), 6.96 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.19 (d, *J* = 8.9 Hz, 2H), 7.17-7.27 (m, 2H), 7.32-7.35 (m, 1H), 7.57 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.5, 55.9, 58.5, 66.1, 104.8, 111.5, 114.2, 114.5 (×2), 120.6, 123.7, 124.1, 128.9, 129.5, 131.0 (×2), 132.7, 132.9, 134.25, 134.30, 141.3, 157.3, 157.6, 157.9.

Compound $6{41}^{5}$

The product was obtained as a pale yellow oil (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.50 (m, 2H), 1.59-1.66 (m, 4H), 2.55-2.60 (m, 4H), 2.84 (t, *J* = 6.0 Hz, 2H), 3.78 (s, 3H), 3.83 (s, 3H), 3.97 (s, 3H), 4.16 (t, *J* = 6.0 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.98 (s, 1H), 7.20 (d, *J* = 8.8 Hz, 2H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7, 26.2 (×2), 55.0, 55.41, 55.43 (×2), 56.3, 56.4, 67.3, 104.0, 104.8, 114.0 (×2), 115.1 (×2), 127.3, 128.4, 130.7 (×2), 131.2, 131.5 (×2), 131.9, 134.9, 137.3, 148.40, 148.43, 158.3, 159.0; HRMS calcd for C₃₀H₃₄NO₄S [M+H⁺], 504.2209, found 504.2146.

Compound 6{43}

The product was obtained as a pale yellow oil (79% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.76-1.86 (m, 4H), 2.65-2.71 (m, 4H), 2.96 (t, *J* = 6.0 Hz, 2H), 3.78 (s, 3H), 3.83 (s, 3H), 3.97 (s, 3H), 4.16 (t, *J* = 6.0 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.98 (s, 1H), 7.20 (d, *J* = 8.8 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.3, 55.4, 56.3, 56.4, 67.3, 104.0, 104.8, 114.0 (×2), 115.1 (×2), 127.3, 128.4, 130.7 (×2), 131.2, 131.5 (×2), 131.9, 134.9, 137.3, 148.40, 148.43, 158.3, 159.0; HRMS calcd for C₂₉H₃₁NO₄S [M⁺], 489.1974, found 489.1981.

Compound 6{44}

The product was obtained as a pale yellow oil (69% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 6H), 2.79 (t, *J* = 5.7 Hz, 2H), 3.78 (s, 3H), 3.83 (s, 3H), 3.97 (s, 3H), 4.12 (t, *J* = 5.7 Hz, 2H), 6.77 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.98 (s, 1H), 7.20 (d, *J* = 8.6 Hz, 2H), 7.24 (d, *J* = 8.6 Hz, 2H),

7.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.4, 56.2, 56.4, 58.6, 66.1, 104.0, 104.8, 114.0 (×2), 115.0 (×2), 127.3, 128.5, 130.7 (×2), 131.2, 131.5 (×2), 131.9, 134.9, 137.4, 148.40, 148.43, 158.2, 159.0.

Compound 6{45}

The product was obtained as a pale yellow oil (79% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.46 (br s, 2H), 1.59-1.66 (m, 4H), 2.52-2.58 (m, 4H), 2.82 (t, *J* = 5.9 Hz, 2H), 3.62 (s, 3H), 3.84 (s, 3H), 3.97 (s, 3H), 4.16 (t, *J* = 5.9 Hz, 2H), 6.73-6.83 (m, 2H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.98 (s, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.6 Hz, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.3, 26.1 (×2), 55.2, 55.3 (×2), 56.3, 56.4, 58.2, 66.2, 103.9, 104.9, 113.6, 114.6, 115.1 (×2), 122.0, 128.4, 129.5, 131.5 (×2), 133.0, 134.8, 136.1, 137.2, 148.5, 148.7, 158.4, 159.5; HRMS calcd for C₃₀H₃₃NO₄S [M⁺], 503.2130, found 503.2134.

Compound 6{47}

The product was obtained as a pale yellow oil (73% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.88-1.92 (m, 4H), 2.81-2.86 (m, 4H), 3.08 (t, *J* = 5.8 Hz, 2H), 3.63 (s, 3H), 3.84 (s, 3H), 3.98 (s, 3H), 4.22 (t, *J* = 5.8 Hz, 2H), 6.73-6.83 (m, 2H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.98 (s, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.2, 55.3, 56.3, 56.5, 68.7, 104.0, 104.9, 113.6, 114.7, 115.1 (×2), 122.0, 128.6, 129.5, 131.6 (×2), 131.8, 132.9, 134.8, 136.1, 137.2, 148.6, 148.7, 158.2, 159.5; HRMS calcd for C₂₉H₃₁NO₄S [M⁺], 489.1974, found 489.1982.

Compound 6{49}

The product was obtained as a pale yellow oil (77% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.49 (m, 2H), 1.55-1.65 (m, 4H), 2.48-2.54 (m, 4H), 2.78 (t, *J* = 6.1 Hz, 2H), 3.57 (s, 3H), 3.86 (s, 3H), 3.97 (s, 3H), 4.10 (t, *J* = 6.1 Hz, 2H), 6.81-6.89 (m, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 7.12 (s, 1H), 7.21 (d, *J* = 8.7 Hz, 2H), 7.22-7.27 (m, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.1 (×2), 55.3 (×2), 55.5, 56.3, 56.4, 58.2, 66.1, 103.8, 104.7, 111.3, 114.6 (×2), 120.5, 123.6, 128.9, 129.4, 130.8 (×2), 132.4, 132.8, 133.4, 133.5, 134.4, 148.2, 148.3, 157.2, 157.9; HRMS calcd for C₃₀H₃₄NO₄S [M+H⁺], 504.2209, found 504.2209.

Compound 6{*50*}

The product was obtained as a pale yellow oil (72% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.55-2.60 (m, 4H), 2.80 (t, *J* = 5.7 Hz, 2H), 3.56 (s, 3H), 3.73 (t, *J* = 4.5 Hz, 4H), 3.85 (s, 3H), 3.96 (s, 3H), 4.10 (t, *J* = 5.7 Hz, 2H), 6.81-6.89 (m, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.11 (s, 1H), 7.20 (d, *J* = 8.8 Hz, 2H), 7.23-7.27 (m, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3 (×2), 55.5, 56.3, 56.4, 57.9, 66.0, 67.1 (×2), 104.0, 104.8, 111.4, 114.6 (×2), 120.5, 123.7, 129.1, 129.4, 130.8 (×2), 132.5, 132.8, 133.52, 133.53, 134.3, 148.3, 148.4, 157.2, 157.8.

Compound 6{51}

The product was obtained as a pale yellow oil (68% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.80-1.84 (m, 4H), 2.61-2.66 (m, 4H), 2.92 (t, *J* = 5.9 Hz, 2H), 3.57 (s, 3H), 3.86 (s, 3H), 3.97 (s, 3H), 4.11 (t, *J*

= 5.9 Hz, 2H), 6.81-6.90 (m, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.12 (s, 1H), 7.21 (d, J = 8.7 Hz, 2H),
7.22-7.27 (m, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.4, 55.5, 56.3,
56.5, 67.3, 104.0, 104.9, 111.4, 114.6 (×2), 120.6, 123.7, 129.0, 129.5, 130.9 (×2), 132.5, 132.9,
133.5, 133.7, 134.5, 148.3, 148.4, 157.3, 158.0.

Compound 6{*52*}

The product was obtained as a pale yellow oil (71% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 6H), 2.73 (t, *J* = 5.7 Hz, 2H), 3.56 (s, 3H), 3.85 (s, 3H), 3.96 (s, 3H), 4.06 (t, *J* = 5.7 Hz, 2H), 6.81-6.90 (m, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 7.12 (s, 1H), 7.21 (d, *J* = 8.7 Hz, 2H), 7.22-7.27 (m, 2H), 7.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.1 (×2), 55.5, 56.3, 56.4, 58.6, 66.2, 104.0, 104.9, 111.4, 114.6 (×2), 120.5, 123.7, 129.0, 129.4, 130.8 (×2), 132.5, 132.8, 133.5, 133.6, 134.4, 148.3, 148.4, 157.2, 157.9.

Compound 6{53}

The product was obtained as a pale yellow oil (81% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.41-1.50 (m, 2H), 1.58-1.66 (m, 4H), 2.50-2.56 (m, 4H), 2.84 (t, *J* = 6.0 Hz, 2H), 3.79 (s, 3H), 4.16 (t, *J* = 6.0 Hz, 2H), 5.98 (s, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.95 (s, 1H), 7.19 (d, *J* = 8.9 Hz, 2H), 7.20 (d, *J* = 8.7 Hz, 2H), 7.22 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.8, 26.2 (×2), 55.3 (×2), 55.4, 58.3, 67.2, 101.4, 101.5, 102.3, 114.0 (×2), 114.9, 115.0 (×2), 127.1, 128.2, 130.6 (×2), 131.6 (×2), 132.0, 136.0, 137.5, 146.6, 146.9, 158.3, 159.0; HRMS calcd for C₂₉H₂₉NO₄S [M⁺], 487.1817, found 487.1817.

Compound 6{55}

The product was obtained as a pale yellow oil (69% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.85 (m, 4H), 2.63-2.68 (m, 4H), 2.94 (t, *J* = 6.0 Hz, 2H), 3.78 (s, 3H), 4.15 (t, *J* = 6.0 Hz, 2H), 5.98 (s, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.95 (s, 1H), 7.19 (d, *J* = 8.9 Hz, 2H), 7.20 (d, *J* = 8.7 Hz, 2H), 7.22 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (×2), 55.0 (×2), 55.36, 55.42, 67.2, 101.4, 101.5, 102.3, 114.0 (×2), 114.9, 115.0 (×2), 127.1, 128.2, 130.6 (×2), 131.6 (×2), 132.0, 136.0, 137.5, 146.6, 146.9, 158.3, 159.0; HRMS calcd for C₂₈H₂₈NO₄S [M+H⁺], 474.1739, found 474.1754.

Compound 6{56}

The product was obtained as a pale yellow oil (79% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 6H), 2.77 (t, *J* = 5.6 Hz, 2H), 3.77 (s, 3H), 4.10 (t, *J* = 5.6 Hz, 2H), 5.98 (s, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.95 (s, 1H), 7.19 (d, *J* = 8.8 Hz, 2H), 7.20 (d, *J* = 8.6 Hz, 2H), 7.22 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 46.2 (×2), 55.4, 58.6, 66.2, 101.4, 101.5, 102.4, 114.0 (×2), 114.9, 115.0 (×2), 127.2, 128.3, 130.6 (×2), 131.6 (×2), 132.1, 136.1, 137.6, 146.6, 146.9, 158.3, 159.1.

General Procedure for Demethylation to Prepare Compounds 7

To a solution of **6** (0.10 mmol) in anhydrous CH_2Cl_2 (2 mL) cooled in an ice water bath under N_2 was added BBr₃ (1.0 M sol'n in CH_2Cl_2 ; 2.0 or 4.0 or 6.0 equiv) was added while stirring. The solution turned orange in color. This solution was stirred for 3 h after slowly warming to room

temperature. The reaction was quenched with satd aq NaHCO₃ (2 × 2 mL) and the product was extracted with 5% CH₃OH/CHCl₃ (3 × 5 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated under a vacuum to yield the crude product, which was purified by column chromatography using 5-10% CH₃OH/CHCl₃ as the eluent to provide desketoraloxifene analogues **7**.

Compound 7{4}

The product was obtained as a white solid (56% yield): ¹H NMR (400 MHz, DMSO- d_6) δ 2.25 (s, 6H), 2.67 (t, J = 5.7 Hz, 2H), 4.09 (t, J = 5.8 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H), 7.32-7.38 (m, 2H), 7.42-7.45 (m, 1H), 7.95-7.99 (m, 1H), 9.71 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 45.4 (×2), 57.6, 65.6, 114.7 (×2), 115.4 (×2), 122.2, 122.5, 124.2, 124.3, 124.6, 127.0, 130.3 (×2), 131.1, 131.2 (×2), 137.4, 138.8, 140.6, 157.3, 157.7; HRMS calcd for C₂₄H₂₄NO₂S [M+H⁺], 390.1528, found 390.1528.

The product was obtained as a white solid (52% yield): ¹H NMR (400 MHz, DMSO- d_6) δ 1.33-1.42 (m, 2H), 1.45-1.55 (m, 4H), 2.48-2.52 (m, 4H), 2.68-2.74 (m, 2H), 4.07 (t, *J* = 5.6 Hz, 2H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 6.88 (dd, *J* = 2.3, 8.6 Hz, 1H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 2.1 Hz, 1H), 7.01 (dd, *J* = 1.5, 7.6 Hz, 1H), 7.07-7.14 (m, 1H), 7.17 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 1H), 9.36 (s, 1H), 9.61 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 23.6, 25.2 (×2), 54.2 (×2), 57.2, 65.1, 107.3, 114.3 (×2), 114.6, 115.7, 118.6, 120.7, 122.7, 127.6, 129.4, 129.5, 130.6 (×2), 132.0, 133.2, 136.5, 140.7, 154.9, 155.4, 157.3; HRMS calcd for C₂₇H₂₈NO₃S [M+H⁺], 446.1790, found 446.1787.

Compound $7{24}^{5}$

The product was obtained as a white solid (78% yield): ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.34-1.43 (m, 2H), 1.48-1.57 (m, 4H), 2.50-2.53 (m, 4H), 2.70-2.76 (m, 2H), 4.10 (t, *J* = 5.7 Hz, 2H), 6.67 (d, *J* = 8.7 Hz, 2H), 6.84 (dd, *J* = 2.2, 8.7 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 2H), 7.05 (d, *J* = 8.7 Hz, 2H), 7.17 (d, *J* = 8.7 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 1H), 7.28 (d, *J* = 2.2 Hz, 1H), 9.62 (s, 1H), 9.65 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 23.7, 25.3 (×2), 54.3 (×2), 57.2, 65.3, 107.0, 114.6, 114.7 (×2), 115.3 (×2), 123.2, 124.6, 127.4, 130.1 (×2), 130.7, 131.0 (×2), 133.5, 134.8, 138.8, 155.1, 156.9, 157.6; HRMS calcd for C₂₇H₂₇NO₃S [M+H⁺], 446.1790, found 446.1793.

Compound 7{27}

The product was obtained as a white solid (47% yield): ¹H NMR (400 MHz, DMSO- d_6) δ 2.22 (s, 6H), 2.62 (t, J = 5.7 Hz, 2H), 4.07 (t, J = 5.8 Hz, 2H), 6.67 (d, J = 8.7 Hz, 2H), 6.84 (dd, J = 2.2, 8.7 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.7 Hz, 1H), 7.28 (d, J = 2.2 Hz, 1H), 9.67 (br s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 45.7 (×2), 57.3, 65.7, 107.0, 114.7 (1 peak overlap), 114.7 (×2), 115.4 (×2), 123.3, 124.6, 127.3, 130.1 (×2), 130.8, 131.1 (×2), 133.5, 134.8, 138.9, 155.1, 156.1, 157.6; HRMS calcd for C₂₄H₂₃NO₃S [M+H⁺], 406.1477, found 406.1471.

References

1. Fürstner, A.; Kennedy, J. W. J. Total Syntheses of the Tylophora Alkaloids Cryptopleurine, (-)-Antofine, (-)-Tylophorine, and (-)-Ficuseptine C. *Chem. Eur. J.* **2006**, *12*, 7398-7410.

2. Muraki, T.; H. Togo, H.; Yokoyama, M. Reactivity and Synthetic Utility of 1-(Arenesulfonyloxy)benziodoxolones. *J. Org. Chem.* **1999**, *64*, 2883-2889.

3. Cho, C.-H.; Neuenswander, B.; Lushington, G. H.; Larock, R. C., Solution-Phase Parallel Synthesis of a Multi-substituted Benzo[*b*]thiophene Library. *J. Comb. Chem.* **2009**, *11*, 900-906.

4. Cho, C.-H.; Neuenswander, B.; Larock, R. C., Diverse Methyl Sulfone-Containing Benzo[*b*]thiophene Library via Iodocyclization and Palladium-Catalyzed Coupling. *J. Comb. Chem.* **2010**, *12*, 278-285.

5. Cho, C.-H.; Larock, R. C. A Convenient Synthetic Route to Furan Esters and Lactones by Palladium-Catalyzed Carboalkoxylation or Cyclocarbonylation of Hydroxyl-Substituted 3-Iodofurans. *Tetrahedron Lett.* **2010**, *51*, 3417-3421.

6. Yue, D.; Larock, R. C. Synthesis of 2,3-Disubstituted Benzo[*b*]thiophenes via Palladium-Catalyzed Coupling and Electrophilic Cyclization of Terminal Acetylenes. *J. Org. Chem.* **2002**, *67*, 1905-1909.

S

-MeO

- S42 -

- S43 -

-MeO

- 350 -

ОМе

cho542c

~7.717

7.7

7.2

7.1

- S54 -

OMe

OMe

S

0

S

-MeO

- S62 -

- S63 -

S

- S68 -

- S72 -

- S74 -

- S78 -

S

OMe

-MeO

- S80 -

- S81 -

- S83 -

- S90 -

- S91 -

OMe

S

MeO

- S94 -

- S97 -

