pr-2010-008702.R1

Identification of CaMKII Phosphorylation Sites in Connexin43 by High-Resolution Mass Spectrometry

Richard Y-C. Huang, James G. Laing, Evelyn M. Kanter, Viviana M. Berthoud, Mingwei Bao, Henry W. Rohrs, R. Reid Townsend, Kathryn A. Yamada

Supporting Information

Figure S1. Number of casein phosphorylation sites identified after in vitro phosphorylation by CaMKII as a function of the amount of casein substrate used in the reaction. The higher the casein concentration, the more phosphorylated residues were identified.

Figure S2. MALDI spectra of autocamtide. (A) Positive control shows the phosphorylated peptide (KKALHRQEpTVDAL) of m/z 1588.6028. (B) Negative control shows the non-phosphorylated peptide (KKALHRQETVDAL) of m/z 1508.7915. (C) In vitro phosphorylation of autocamtide by CaMKII resulted in the phosphorylated peptide (KKALHRQEpTVDAL) of m/z 1588.8795 (arrow).

Figure S3. CaMKII phosphorylation of Cx43-CT at S325 and S328. (A) Extracted chromatogram of *m/z* 953.0603-953.0699. (B) MS spectrum of *m/z* 659.0708 represents triply charged peptide MGQAGSTISNSHAQPFDFPDDNQNAK (one phosphorylation site). (C) CID MS2 spectrum indicates peptide phosphorylated on S325. (D) ETD MS2 spectrum indicates peptide phosphorylated on S325. (E) ETD MS2 spectrum indicates peptide phosphorylated on S328. See Supplemental Table S3 for complete list of theoretical (ProteinProspector) and observed fragment ions.

Figure S4. CK1 phosphorylation of Cx43-CT at S306. (A) Extracted chromatogram of *m/z* 988.3947-988.4007. (B) MS spectrum of 988.3977 represents doubly charged peptide QASEQNWANYSAEQNR (one phosphorylation site). (C) CID MS2 spectrum indicates peptide phosphorylated on S306.

Figure S5. CaMKII phosphorylation of Cx43-CT at S255 and S257. (A) Extracted chromatogram of *m/z* 617.6179-617.6203. (B) MS spectrum of *m/z* 617.6193 represents triply charged peptide GRSDPYHATTGPLSPSK (one phosphorylation site). (C) CID MS2 spectrum indicates peptide phosphorylated on S255. (D) ETD MS2 spectrum indicates peptide phosphorylated on S255. (E) CID MS2 spectrum indicates peptide phosphorylated on S257. (F) ETD MS2 spectrum indicates peptide phosphorylated on S257. (F) ETD MS2 spectrum indicates peptide phosphorylated on S257. See Supplemental Table S4 for complete list of theoretical (ProteinProspector) and observed fragment ions.

Figure S6. CaMKII phosphorylation of Cx43-CT at S296 and S297. (A) Extracted
chromatogram of *m/z* 668.7571-668.7611. (B) MS spectrum of *m/z* 668.7591 represents doubly
charged peptide NNSSCRNYNK (one phosphorylation site, one carbamidomethylation site).
(C) CID MS2 spectrum indicates peptide phosphorylated on S296. (D) Extracted chromatogram
of *m/z* 659.9552-659.9692. (E) MS spectrum of *m/z* 659.9572 represents triply charged peptide
LVTGDRNNSSCRNYNK (one phosphorylation site, one carbamidomethylation site). (F) CID
MS2 spectrum indicates peptide phosphorylated on S297. (G) Extracted chromatogram of *m/z* 487.2102-487.2132. (H) MS spectrum of *m/z* 487.2094 represents triply charged peptide
LVTGDRNNSSCR (one phosphorylation site, one carbamidomethylation site). (I) ETD MS2

spectrum indicates peptide phosphorylated on S296. (J) Extracted chromatogram of *m/z* 730.8048-730.8092. (K) MS spectrum of *m/z* 730.8062 represents doubly charged peptide LVTGDRNNSSCR (one phosphorylation site, one deamidation site, one carbamidomethylation site). (L) ETD MS2 spectrum indicates peptide phosphorylated on S297. See Supplemental Table S6 for complete list of theoretical (ProteinProspector) and observed fragment ions.

Figure S7. CaMKII phosphorylation of Cx43-CT at S364 and S365. (A) Extracted chromatogram of *m/z* 742.0376-742.0420. (B) MS spectrum of *m/z* 742.0398 represents triply charged peptide VAAGHELQPLAIVDQRPSSR (one phosphorylation site). (C) CID MS2 spectrum indicates peptide phosphorylated on S364. (D) CID MS2 spectrum indicates peptide phosphorylated on S364. (D) CID MS2 spectrum indicates peptide phosphorylated on S364. See Supplemental Table S7 for complete list of theoretical (ProteinProspector) and observed fragment ions.

Figure S8. CaMKII phosphorylation of Cx43-CT at S369, S372 and S373. (A) Extracted chromatogram of *m/z* 718.3220-718.3292. (B) MS spectrum of *m/z* 718.3282 represents doubly charged peptide ASSRPRPDDLEI (one phosphorylation site). (C) CID MS2 spectrum indicates peptide phosphorylated on S372. (D) CID MS2 spectrum indicates peptide phosphorylated on S373. (E) Extracted chromatogram of *m/z* 612.9569-612.9631. (F) MS spectrum of *m/z* 612.9589 represents triply charged peptide ASSRASSRPRPDDLEI (one phosphorylated on S372. (G) ETD MS2 spectrum indicates peptide phosphorylation site).
(G) ETD MS2 spectrum indicates peptide phosphorylated on S372. (I) MS spectrum of *m/z* 639.6068-639.6132. (I) MS spectrum of *m/z* 639.6113 represents triply charged peptide ASSRASSRPRPDDLEI (two phosphorylation sites). (J) ETD MS2 spectrum indicates peptide

phosphorylated on S369 and S373. See Supplemental Table S8 for complete list of theoretical (ProteinProspector) and observed fragment ions.

Figure S9. Baseline phosphorylation of native ventricular Cx43 at S306. (A) Extracted chromatogram of *m/z* 988.4000-988.4020. (B) MS spectrum of *m/z* 988.4009 represents doubly charged peptide QASEQNWANYSAEQNR (one phosphorylation site). (C) CID MS2 spectrum indicates peptide phosphorylated on S306. See Supplemental Table S9 for complete list of theoretical (ProteinProspector) and observed fragment ions.

Figure S10. Baseline phosphorylation of native ventricular Cx43 at S372 and S373. (A) Extracted chromatogram of *m/z* 639.6127-639.6153. (B) MS spectrum of *m/z* 639.6140 represents triply charged peptide ASSRASSRPRPDDLEI (two phosphorylation sites). (C) ETD MS2 spectrum indicates peptide phosphorylated on S372 and S373. See Supplemental Table S10 for complete list of theoretical (ProteinProspector) and observed fragment ions.

m/z

7

z17+2

2000

Figure S4

S306 phosphorylation by CK1

S364, S365

m/z

Supplemental Table S1. Complete list of phosphorylated serine residues in each of four in vitro phosphorylation experiments.

Experiment	Condition						<u>Se</u>	rine resid	ues pho	sphoryla	ated					
		<u>S244</u>	<u>S255</u>	<u>S257</u>	<u>S296</u>	<u>S297</u>	<u>S306</u>	<u>S314</u>	<u>S325</u>	<u>S328</u>	<u>S330</u>	<u>S364</u>	<u>S365</u>	<u>S369</u>	<u>S372</u>	<u>S373</u>
		(novel)	(MAPK)	(no K)	(no K)	(no K)	(no K)	(no K)	(CK1)	(CK1)	(CK1)	(PKA)	(PKA?)	(PKA?)	(PKC)	(PKA,Akt)
					(*CAMKII?)								(*CAMKII?)	(*CAMKII?)		(*CAMKII?)
1 (CID only)	CAMKII	а	а	а	✓	✓	✓	b	а	а	а	×	×	а	а	а
	control	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
2 (CID only)	CAMKII	✓	✓	✓	×	×	✓	b	√ ***	b	b	✓	✓	×	✓	\checkmark
	control	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
3 (CID and	CARAKI	,	,	,	/++		,			/**	/*	/**		/**	/ * **	/**
ETD)	CAMKII	✓.	√	 ✓ 	√ **	b	✓	✓	✓	√ * *	v *	√ **	b	√ **	V ***	√ **
	control	n.a.	n.d.	n.d.	n.a.	n.d.	n.a.	n.d.	n.a.	n.a.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
4 (CID and																
ETD)	CAMKII	✓	√ **	✓	√ **	√ **	✓	✓	✓	√ **	✓	✓	b	√ **	√ **	√ **
	control	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
(novel)	Novel ph	nosphoryl	ation site	identifie	d											
(no K)	No kinas	e previou	sly repor	ted as be	ing responsi	ble for phos	phorylating	this residu	le							
(*CAMKII?)	CAMKII	consensu	s sequenc	e RXX S 47	-49											
а	MS spec	trum was	found, b	ut no MS	2 triggered											
b	MS spec	trum was	found, b	ut MS2 s	pectrum indi	cates other	phosphoryla	ated site								
\checkmark	Both MS	and MS2	spectra v	were con	firmed											
√ *	Unique t	o CID														
√ **	Unique t	o ETD														
√ ***	Not iden	tified by	MASCOT													
×	Neither	MS nor N	1S2 spectr	a were f	ound											
n.d.	Not don	e														

Supplemental Table S2. Fragmentation ions for peptide containing S306.

Cx43-36 #3118 @9	88 39 CID

S306 CID	b	[b-NH3]	[b-H3PO4]	У	y 2+	[y-H3PO4]2+	[y-NH3]	[y-NH3]2+	[y-H2O]2+
in figure as:	b	b-	b	У	y2+	y2+	у-	y-2+	
Q									
А	200.10	183.08		1847.73	924.37	875.38	1830.71	915.86	915.37
<u>s</u>	367.10	350.07	269.12	1776.70 (1776.43)	888.85 (888.67)	839.86 (839.86)	1759.67	880.34 (880.31)	879.85 (879.44)
Е	496.14	479.12	398.17	1609.70 (1609.47)	805.35		1592.67	796.84	796.35
Q	624.20	607.18 (607.12)	526.22	1480.66 (1480.52)	740.83 (740.77)		1463.63 (1463.62)	732.32	731.83
N	738.25	721.22 (721.19)	640.27	1352.60 (1352.47)	676.80		1335.57 (1335.54)	668.29	667.80
W	924.32 (924.11)	907.30 (907.09)	826.35 (826.26)	1238.55 (1238.44)	619.78		1221.53 (1221.29)	611.27	610.78
А	995.36	978.34	897.39 (897.40)	1052.48 (1052.42)	526.74		1035.45 (1035.37)	518.23	517.74
N	1109.40 (1109.40)	1092.38	1011.43	981.44	491.22		964.41 (964.33)	482.71	482.22
Y	1272.47 (1272.35)	1255.44 (1255.28)	1174.49 (1174.47)	867.40 (867.29)	434.20		850.37	425.69	425.20
S	1359.50 (1359.97)	1342.47	1261.52 (1261.35)	704.33 (704.31)	352.67		687.31 (687.49)	344.16	343.66
А	1430.54	1413.51	1332.56 (1332.21)	617.30 (617.37)	309.15		600.27 (600.35)	300.64	300.15
E	1559.58	1542.55	1461.60	546.26 (546.28)	273.64		529.24	265.12	264.63
Q	1687.64	1670.61	1589.66	417.22 (417.32)	209.11		400.19	200.60	
N	1801.68 (1801.61)	1784.65 (1784.32)	1703.70	289.16	145.08		272.14	136.57	
R				175.12	88.06		158.10	79.55	

Cx43-36 (1110	2009) #3941	@659.27 ET	D	MASCOT sco	ore: 33
S306 ETD	С	[c+1]	z	[z+1]	[z+2]
in figure as:	С	c+1	z	z+1	
Q					
٨	217.13	210 12	1831.72	1832.72	1833.73
A	(217.22)	210.15	(1831.79)	(1832.74)	(1833.57)
e	384.13	385 13	1760.68	1761.69	1762.69
2	(384.21)	303.13	(1760.55)	(1761.57)	(1762.48)
E	513.17	514.17	1593.68	1594.69	1595.69
L	(513.35)	(514.39)	(1593.57)	(1594.60)	(1595.73)
0	641.23	642.23	1464.64	1465.65	1466.65
Q	(641.17)	(642.31)	(1464.40)	(1465.57)	(1466.74)
N	755.27	756.28	1336.58	1337.59	1338.59
IN	(755.31)	(756.16)	(1336.38)	(1337.49)	(1338.65)
۱۸/	941.35	942.35	1222.54	1223.54	1224 55
vv	(941.40)	(942.40)	(1222.39)	(1223.80)	1224.55
٨	1012.39	1013.39	1036.46	1037.46	1038.47
~	(1012.32)	(1013.37)	(1036.37)	(1037.23)	1030.47
N	1126.43	1127.43	965.42	966.43	967.43
IN IN	(1126.33)	(1127.40)	905.42	(966.26)	907.43
V	1289.49	1290.5	851.38	852.38	853 30
	(1289.31)	(1290.39)	(851.29)	(852.33)	000.09
S	1376.53	1377.53	688.31	689.32	690.32
3	(1376.52)	(1377.44)	(688.29)	(689.35)	(690.42)
٨	1447.56	1448.57	601.28	602.20	603 20
~	(1447.41)	(1448.41)	(601.21)	002.29	003.29
F	1576.61	1577.61	530.24	531 25	532.26
L	(1576.45)	(1577.46)	(530.28)	001.20	552.20
0	1704.67	1705.67	401.2	402.21	403 21
	(1704.63)	(1705.53)	(401.17)	(402.36)	403.21
N	1818.71	1819.71	273 14	274 15	275 15
	(1818.56)	(1819.54)	275.14	2/4.13	275.15
R			159.1	160.11	161.11

[M+2H]2+	988.19
[M-H3PO4+2H]2+	939.36

Yellow:	Low&High mass cut off
Red:	Relative intensity >1.0
Theoretical r	n/z (Observed m/z)

[M+3H]3+ 659.5	[M+3H]3+
----------------	----------

Yellow:	Low&High mass cut off
Red:	Relative intensity >0.4
Theoretical m/2	z (Observed m/z)

Supplemental Table S3. Fragmentation ions for peptide containing S325, S328 and S330.

Cx43-36 (11102009) #4586 @953.07 ETD

 Yellow:
 Low&High mass cut off

 Red:
 Relative intensity >0.2

 Theoretical m/z (Observed m/z)

Cx43-36 #3600	@953.07 CID										
\$325 CID	b	b 2+	[b-H2O]2+	[b-H3PO4]	[b-H3PO4]2+	у	y 2+	[y-H3PO4]2+	[y-NH3]	[y-NH3]2+	[y-H2O]
м											
G	189.07					2726.15	1363.58	1314.59 (1314.79)	2709.12	1355.06	2708.14
Q	317.13					2669.13	1335.07	1286.08	2652.10	1326.55	2651.12
A	388.16					2541.07	1271.04	1222.05 (1222.20)	2524.04	1262.52	2523.06
G	445.19					2470.03	1235.52 (1235.39)	1186.53 (1186.45)	2453.00	1227.01	2452.02
<u>s</u>	612.18 (612.02)			514.21 (514.32)		2413.01	1207.01 (1207.05)	1158.02 (1158.29)	2395.98	1198.50	2395.00
т	713.23			615.26		2246.01	1123.51 (1123.58)		2228.98	1115.00	2228.00
1	826.32			728.34 (728.23)		2144.96	1072.99 (1072.74)		2127.94	1064.47	2126.95
s	913.35			815.37 (815.30)		2031.88	1016.44		2014.85	1007.93 (1007.89)	2013.87
N	1027.39			929.41		1944.85	972.93		1927.82	964.41	1926.84
S	1114.42 (1114.98)			1016.45 (1016.67)		1830.80	915.91 (915.96)		1813.78	907.39 (907.15)	1812.79
н	1251.48	626.24	617.24	1153.51	577.26	1743.77	872.39 (872.18)		1726.75	863.88	1725.76
A	1322.52	661.76	652.76	1224.54	612.77	1606.71	803.86		1589.69	795.35	1588.70
Q	1450.58 (1450.52)	725.79 (725.79)	716.79	1352.60 (1352.46)	676.80 (676.92)	1535.68	768.34		1518.65	759.83 (759.73)	1517.67
Р	1547.63	774.32	765.31	1449.65	725.33	1407.62 (1407.46)	704.31 (704.53)		1390.59	695.80	1389.61 (1389.45)
F	1694.70	847.85 (847.32)	838.85 (838.45)	1596.72	798.86	1310.56	655.79		1293.54	647.27	1292.55
D	1809.73	905.37 (905.21)	896.36 (896.25)	1711.75	856.38 (856.33)	1163.50 (1163.39)	582.25		1146.47	573.74	1145.49
F	1956.79	978.90 (978.71)	969.90	1858.82	929.91	1048.47 (1048.36)	524.74 (524.62)		1031.44 (1031.45)	516.23	1030.46
Р	2053.85	1027.43 (1027.05)	1018.42	1955.87	978.44	901.40 (901.29)	451.20		884.37 (884.52)	442.69	883.39 (883.42)
D	2168.87	1084.94 (1084.64)	1075.94	2070.90	1035.95	804.35 (804.18)	402.68		787.32	394.16	786.34
D	2283.90	1142.45	1133.45	2185.92	1093.47	689.32 (689.37)	345.16		672.29	336.65	671.31
N	2397.94	1199.48	1190.47	2299.97	1150.49	574.29	287.65		557.27	279.14	
Q	2526.00	1263.51	1254.50	2428.03	1214.52	460.25	230.63		443.22	222.12	
N	2640.05	1320.53 (1320.74)	1311.52	2542.07	1271.54 (1271.25)	332.19	166.60		315.17	158.09	
A	2711.08	1356.05 (1356.32)	1347.04	2613.11	1307.06 (1307.50)	218.15	109.58		201.12	101.07	
К						147.11	74.06		130.09	65.55	

\$325 ETD	с	c 2+	[c+1]	[c+1]2+	[c+2]2+	z	[z+1]	[z+1]2+	[z+2]	[z+2]2+
M										
G	206.10		207.10			2710.13	2711.14	1356.07	2712.14	1356.57 (1356.79)
Q	334.15		335.16			2653.11	2654.12	1327.56 (1327.39)	2655.12	1328.06 (1328.65)
А	405.19		406.19			2525.05	2526.06	1263.53 (1263.58)	2527.06	1264.03 (1264.32)
G	462.21 (462.17)		463.22			2454.01	2455.02	1228.01	2456.02	1228.52
<u>s</u>	629.21 (629.15)		630.21 (630.07)			2396.99	2398.00	1199.50	2399.00	1200.00
т	730.26 (730.23)		731.26			2229.99	2231.00	1116.00	2232.00	1116.51
1	843.34 (843.05)		844.35			2128.94	2129.95	1065.48	2130.96	1065.98
s	930.38 (930.60)		931.38 (931.41)			2015.86	2016.87	1008.94	2017.87	1009.44
N	1044.42 (1044.39)		1045.42 (1045.54)			1928.83 (1928.85)	1929.84 (1929.89)	965.42	1930.84	965.92
s	1131.45 (1131.21)		1132.45 (1132.19)			1814.79 (1814.41)	1815.79 (1815.86)	908.40	1816.80 (1816.79)	908.90
н	1268.51	634.76	1269.51 (1269.34)	635.26	635.76	1727.75	1728.76 (1728.83)	864.88	1729.76 (1729.64)	865.39
A	1339.55 (1339.62)	670.28	1340.55 (1340.56)	670.78	671.28	1590.69 (1590.23)	1591.70 (1591.76)		1592.71	
Q						1519.66 (1519.17)	1520.67 (1520.21)		1521.67 (1521.97)	
Р	1564.66 (1564.27)	782.83	1565.66 (1565.73)	783.33	783.84					
F	1711.73 (1711.44)	856.37	1712.73 (1712.43)	856.87	857.37	1294.55	1295.55 (1295.71)		1296.56 (1296.53)	
D	1826.75 (1826.63)	913.88	1827.76 (1827.72)	914.38	914.88	1147.48 (1147.38)	1148.49 (1148.28)		1149.49 (1149.45)	
F						1032.45 (1032.32)	1033.46 (1033.61)		1034.46 (1034.48)	
Р	2070.87	1035.94	2071.88	1036.44	1036.94					
D	2185.90	1093.45	2186.90	1093.96	1094.46	788.33 (788.25)	789.34		790.34	
D	2300.93	1150.97	2301.93	1151.47	1151.97	673.30	674.31 (674.33)		675.31 (675.45)	
N	2414.97	1207.99	2415.97	1208.49	1208.99	558.28 (558.15)	559.28 (559.39)		560.29 (560.39)	
Q	2543.03	1272.02	2544.03	1272.52	1273.02	444.23	445.24 (445.19)		446.24	
N	2657.07	1329.04	2658.08	1329.54 (1329.55)	1330.04 (1330.43)	316.17 (316.12)	317.18		318.19	
A	2728.11	1364.56 (1364.27)	2729.11	1365.06 (1364.99)	1365.56 (1365.73)	202.13	203.14		204.14	
К						131.09	132.10		133.11	
	•									
[M+3H]3+		953.65	J							

Cx43-37 (11102009) #4585-4708 @953.73 ETD

206.10

c 2+ [c+1]

207.10

S330 ETD

MASCOT score: 55

Cx43-37 (111	02009) #464	3 @953.40 ETD		MASCOT sc	ore: 59					
S328 ETD	c	c 2+	[C+1]	[c+1]2+	z	z 2+	[z+1]	[z+1]2+	[z+2]	[z+2]2+
М										
G	206.10		207.10		2710.13	1355.57 (1355.68)	2711.14	1356.07	2712.14	1356.57 (1356.59)
Q	334.15		335.16		2653.11	1327.06 (1326.87)	2654.12	1327.56 (1327.77)	2655.12	1328.06 (1328.53)
А	405.19		406.19		2525.05	1263.03 (1263.23)	2526.06	1263.53 (1263.97)	2527.06	1264.03 (1264.60)
G	462.21 (462.08)		463.22 (463.37)		2454.01	1227.51	2455.02	1228.01	2456.02	1228.52 (1228.73)
s	549.25 (549.36)		550.25 (550.25)		2396.99	1199.00	2398.00	1199.50	2399.00	1200.00
т	650.29 (650.15)		651.30		2309.96	1155.48	2310.97	1155.99	2311.97	1156.49
1	763.38		764.38		2208.91	1104.96	2209.92	1105.46	2210.92	1105.96
<u>s</u>	930.38		931.38 (931.83)		2095.83	1048.42	2096.83	1048.92	2097.84	1049.42
N	1044.42		1045.42		1928.83	964.92	1929.84	965.42	1930.84	965.92
s	1131.45		1132.45		1814.79	907.90	1815.79	908.40	1816.80	908.90
н	1268.51	634.76	1269.51	635.26	1727.75	864.38	1728.76	864.88	1729.76	865.39
A	1339.55	670.28	1340.55	670.78	1590.69		1591.70		1592.71	
Q	(1339.41)		(1340.26)		1519.66		1520.67		1521.67	
Р	1564.66	782.83	1565.66	783.33	(1519.77)		(1520.00)		(1021.00)	
F	1711.73	856.37	1712.73	856.87	1294.55		1295.55		1296.56	
D	1826.75	913.88	1827.76	914.38	1147.48		1148.49		1149.49	
F	(1020.00)		(1027.04)		1032.45		1033.46		1034.46	
Р	2070.87	1035.94	2071.88	1036.44	(1032.91)		(1033.34)		(1034.30)	
D	2185.90	1093.45	2186.90	1093.96	788.33		789.34		790.34	
D	2300.93	1150.97	2301.93	1151.47	673.30		(769.35) 674.31		675.31	
N	2414.97	(1150.85) 1207.99	2415.97	1208.49	(673.48) 558.28		(674.46) 559.28		(6/5.32) 560.29	
0	2543.03	1272.02	2544.03	1272 52	444.23		(559.24) 445.24		(560.24) 446.24	
N	2657.07	1329.04	2658.08	1329.54	(444.36) 316.17		(445.30) 317.18		(446.39) 318.19	
	2729.11	1364.56	2720.11	(1329.22) 1365.06	(316.51)		(317.22)		(318.28)	
A	2720.11	(1364.43)	2129.11	(1365.28)	202.13		203.14		204.14	
к					131.09		132.10		133.11	

914.76
• 908.63

[M-H3PO4-	NH3-H2O+3H]3+	908.6
Yellow:	Low&High ma	iss cut off

[M-H3PO4-	NH3-H2U+3HJ3+	908.6
Yellow:	Low&High mass	s cut off
Red:	Relative intensit	y >1.5
Theoretical	m/z (Observed m/z)	,

101 041	ano ongo.	014.70
H3PO4-I	NH3-H2O+3H]3+	908.63
low:	Low&High mas	s cut off
d:	Relative intensi	ty >1.5

V:	Low&High mass cut off
	Relative intensity >1.5
etical m/z	(Observed m/z)

Cx43-37 #4342	-4832 @953.7	'3 CID												
\$330 CID	b	b 2+	[b-H2O]	[b-H2O]2+	[b-NH3]	[b-NH3]2+	[b-H3PO4]	[b-H3PO4]2+	у	y 2+	y-H3PO4]2	[y-NH3]	[y-NH3]2+	[y-H2O]
М													1256.05	
G	189.07								2728.12	1364.56	1315.57	2711.09	(1356.49)	2710.11
Q	317.13				300.10				2671.09	1336.05	1287.06	2654.07	1327.54	2653.08
A	388.16				371.14				2543.04	1272.02	1223.03 (1223.34)	2526.01	1263.51 (1263.85)	2525.03
G	445.19 (445.07)				428.16				2472.00	1236.50 (1236.65)	1187.51 (1187.70)	2454.97	1227.99	2453.99
S	532.22		514.21 (514.19)		515.19				2414.98	1207.99	1159.00 (1159.53)	2397.95	1199.48	2396.97
т	633.27		615.26		616.24 (616.09)				2327.95	1164.48	1115.49	2310.92	1155.96	2309.93
1.1	746.35		728.34 (728.35)		729.32 (729.14)				2226.90	1113.95 (1113.88)	1064.96 (1064.79)	2209.87	1105.44	2208.89
S	833.38		815.37		816.36				2113.81	1057.41 (1057.72)	1008.42 (1008.40)	2096.79	1048.90 (1048.30)	2095.80
N(Deamidated)	948.41		930.40		931.38				2026.78	1013.89 (1013.34)	964.91	2009.75	1005.38	2008.77
<u>s</u>	1115.41 (1115.29)		1097.40 (1097.47)		1098.38		1017.43 (1017.31)		1911.75	956.38 (956.58)	907.39 (907.26)	1894.73	947.87	1893.74
н	1252.47	626.74	1234.46	617.73	1235.44 (1235.41)	618.22	1154.49	577.75	1744.76	872.88 (872.54)		1727.73	864.37	1726.75
A	1323.50	662.26	1305.49	653.25	1306.48	653.74	1225.53	613.27	1607.70	804.35		1590.67	795.84	1589.69
Q(Deamidated)	1452.55 (1452.31)	726.78	1434.54 (1434.35)	717.77	1435.52	718.26	1354.57 (1354.14)	677.79 (677.92)	1536.66	768.83		1519.63 (1519.37)	760.32	1518.65 (1518.20)
Р	1549.60	775.30	1531.59	766.30	1532.57	766.79	1451.62 (1451.38)	726.31	1407.62 (1407.52)	704.31 (704.25)		1390.59 (1390.52)	695.80	1389.61
F	1696.67	848.84	1678.66	839.83	1679.64	840.32	1598.69	799.85	1310.56	655.79		1293.54	647.27	1292.55
D	1811.69	906.35 (906.33)	1793.68	897.35 (897.37)	1794.67	897.84	1713.72	857.36	1163.50 (1163.39)	582.25		1146.47	573.74	1145.49
F	1958.76	979.89 (979.44)	1940.75	970.88 (970.73)	1941.74	971.37 (971.58)	1860.79	930.90	1048.47 (1048.30)	524.74		1031.44	516.23	1030.46 (1030.42)
Р	2055.82	1028.41 (1028.31)	2037.80	1019.41	2038.79	1019.95	1957.84	979.42 (979.44)	901.40 (901.26)	451.20 (451.25)		884.37 (884.28)	442.69	883.39 (883.33)
D	2170.84	1085.92	2152.83	1076.92	2153.82	1077.41	2027.87	1036.94 (1036.43)	804.35 (804.26)	402.68		787.32	394.16	786.34
D	2285.87	1143.44 (1143.07)	2267.86	1134.43 (1134.27)	2268.84	1134.93	2187.89	1094.45	689.32 (689.25)	345.16		672.29	336.65	671.31 (671.75)
N	2399.91	1200.46 (1200.52)	2381.90	1191.45	2382.89	1191.95	2301.94	1151.47	574.29 (574.22)	287.65		557.27	279.14	
Q	2527.97	1264.49	2509.96	1255.48	2510.94	1255.98	2429.99	1215.50	460.25	230.63		443.22	222.12	
N	2642.01	1321.51	2624.00	1312.51 (1312.78)	2624.99	1313.00	2544.04	1272.52 (1272.33)	332.19	166.60		315.17	158.09	
А	2713.05	1357.03 (1357.01)	2695.04	1348.02	2696.02	1348.52	2615.07	1308.04	218.15	109.58		201.12	101.07	
K									147.11	74.06		130.09	65.55	

Q	334.15		335.16		2654.09	(1327.55	2655.10
A	405.19 (405.25)		406.19		2526.03	1263.52 (1263.24)	2527.04
G	462.21 (462.11)		463.22		2455.00	1228.00 (1228.09)	2456.00
s	549.25 (549.23)		550.25 (550.16)		2397.97	1199.49	2398.98
т	650.29 (650.54)		651.30		2310.94	1155.97	2311.95
1.1	763.38 (763.37)		764.38 (764.52)		2209.89	1105.45	2210.90
S	850.41 (850.31)		851.41		2096.81	1048.91 (1048.97)	2097.82
N	964.45 (964.47)		965.46		2009.78	1005.39	2010.79
<u>s</u>	1131.45 (1131.74)		1132.45 (1132.53)		1895.74 (1895.85)	948.37	1896.74 (1896.81)
н	1268.51 (1268.30)	634.76	1269.51 (1269.33)	635.26	1728.74 (1728.67)	864.87	1729.75 (1729.63)
A	1339.55 (1339.40)	670.28	1340.55 (1340.43)	670.78	1591.68 (1591.62)		1592.69 (1592.67)
Q					1520.64 (1520.75)		1521.65 (1521.66)
Р	1564.66 (1564.83)	782.83	1565.66 (1565.62)	783.33			
F	1711.73 (1711.56)	856.37	1712.73 (1712.60)	856.87	1295.53 (1295.47)		1296.54 (1296.71)
D	1826.75 (1826.65)	913.88	1827.76 (1827.64)	914.38	1148.46 (1148.40)		1149.47 (1149.48)
F					1033.43 (1033.48)		1034.44 (1034.44)
Р	2070.87	1035.94	2071.88	1036.44			
D	2185.90	1093.45	2186.90	1093.96	789.31 (789.30)		790.32 (790.44)
D	2300.93	1150.97 (1150.51)	2301.93	1151.47	674.29 (674.36)		675.29 (675.40)
N(Deamidated	2415.95	1208.48	2416.96	1208.98	559.26 (559.35)		560.27 (560.39)
Q	2544.01	1272.51	2545.02	1273.01	444.23 (444.34)		445.24 (445.38)
N	2658.06	1329.53 (1329.82)	2659.06	1330.03 (1330.53)	316.17		317.18 (317.28)
A	2729.09	1365.05 (1364.70)	2730.10	1365.55 (1365.61)	202.13		203.14
К					131.09		132.10

MASCOT score: 60

2711.11

z 2+

[z+1]2

 1127.97)

 1264.02

 (1264.01)

 1228.51

 1199.99

 1156.48

 1105.96

 1049.41

 (1049.53)

 1005.90

 948.88

 865.38

2712.12 56.7

[c+1]2+

[M-H3PO4+3H]3+ [M+3H]3+ 953.4 [M-H3PO4-NH3-H2O+3H13+ 909.44 Low&High mass cut off Relative intensity >0.03

Theoretical m/z (Observed m/z)

[M+3H]3+ 953.71

 Yellow:
 Low&High mass cut off

 Red:
 Relative intensity >0.1

 Theoretical m/z (Observed m/z)

Supplemental Table S4. Fragmentation ions for peptide containing S244, S255 and S257.

Cx43-37(11102	:009) #3484 (2617.62 CID										
S244 CID	b	b 2+	[b-H2O]	[b-H2O]2+	[b-NH3]2+	[b-H3PO4]	[b-H3PO4]2+	у	y 2+	[y-NH3]	[y-NH3]2+	[y-H2O]
G												
R	214.12 (214.30)	107.57			99.06			1793.82	897.41	1776.80	888.90 (888.50)	1775.81
<u>s</u>	381.12 (381.32)	191.07			182.55	283.15 (283.20)	142.08	1637.72	819.36	1620.69	810.85	1619.71
D	496.16 (496.14)	248.58	478.14	239.58	240.07	398.18 (398.25)	199.59	1470.72	735.86	1453.70	727.35	1452.71
Р	593.21	297.11	575.20	288.10	288.59	495.23	248.12	1355.70	678.35 (678.51)	1338.67	669.84 (669.61)	1337.68
Y	756.27 (756.26)	378.64	738.26 (738.32)	369.63	370.13	658.29 (658.28)	329.65	1258.64	629.83	1241.62	621.31	1240.63
н	893.33 (893.43)	447.17 (447.39)	875.32	438.16	438.66 (438.46)	795.35 (795.30)	398.18	1095.58 (1095.45)	548.29 (548.54)	1078.55	539.78 (539.53)	1077.57 (1077.72)
A	964.37	482.69 (482.90)	946.36	473.68	474.17	866.39 (866.57)	433.70 (433.66)	958.52 (958.43)	479.76	941.49 (941.40)	471.25	940.51 (940.51)
т	1065.41	533.21 (533.35)	1047.40	524.21 (524.19)	524.70	967.44	484.22 (484.45)	887.48 (887.46)	444.25	870.46	435.73	869.47 (869.56)
т	1166.46	583.74 (583.75)	1148.45	574.73 (574.87)	575.22	1068.49	534.75 (534.71)	786.44 (786.45)	393.72	769.41	385.21	768.42 (768.54)
G	1223.48	612.25	1205.47	603.24	603.73	1125.51	563.26 (563.32)	685.39 (685.37)	343.20	668.36	334.68	667.38
Р	1320.54	660.77 (660.97)	1302.53	651.77 (651.26)	652.26	1222.56	611.78	628.37 (628.38)	314.69	611.34	306.17	610.36
L	1433.62	717.31	1415.61	708.31 (708.52)	708.80	1335.64	668.33 (668.48)	531.31	266.16	514.29	257.65	513.30
S	1520.65	760.83 (760.63)	1502.64	751.82 (751.78)	752.32	1422.68	711.84	418.23 (418.26)	209.62	401.20	201.11	400.22
P	1617.71	809.36	1599.70	800.35	800.84	1519.73	760.37	331.20 (331.28)	166.10	314.17	157.59	313.19 (313.22)
s	1704.74	852.87 (852.87)	1686.73	843.87 (843.56)	844.36 (844.29)	1606.76	803.88 (803.81)	234.15	117.58	217.12	109.06	216.13 (216.33)
К								147.11	74.06	130.09	65.55	

Cx43-37(111	02009) #350	8 @617.62 E	TD	MASCOT so	ore: 37					
S244 ETD	с	c 2+	[c+1]	[c+1]2+	[c+2]2+	z	z 2+	[z+1]	[z+2]	[z+2]2+
G										
R	231.16 (231.23)	116.08	232.16	116.58	117.09	1777.8	889.41 (889.47)	1778.81 (1778.65)	1779.81 (1779.80)	890.41 (890.12)
<u>s</u>	398.15 (398.07)	199.58	399.16	200.08	200.58	1621.7 (1621.53)	811.35	1622.71 (1622.75)	1623.71	812.36
D						1454.7 (1454.64)	727.86	1455.71 (1455.56)	1456.71 (1456.75)	728.86
Р	610.23 (610.38)	305.62	611.24	306.12	306.62					
Y	773.3 (773.43)	387.15	774.3 (774.37)	387.65	388.16	1242.62 (1242.53)	621.82	1243.63	1244.64	622.82
н	910.36 (910.42)	455.68	911.36 (911.54)	456.18	456.69	1079.56 (1079.36)	540.28	1080.57 (1080.57)	1081.57 (1081.54)	541.29
A	981.39 (981.47)	491.2	982.4 (982.41)	491.7	492.2	942.5 (942.25)		943.51 (943.40)	944.51	
т	1082.44 (1082.51)	541.72	1083.44 (1083.46)	542.23	542.73	871.46		872.47	873.48	
т	1183.49 (1183.50)	592.25	1184.49 (1184.34)	592.75	593.25	770.42 (770.35)		771.42 (771.34)	772.43 (772.42)	
G						669.37		670.38	671.38	
Р	1337.56 (1337.29)	669.29 (669.28)	1338.57	669.79	670.29 (670.25)					
L	1450.65 (1450.59)	725.83	1451.65 (1451.63)	726.33	726.83	515.3 (515.22)		516.3	517.31	
S						402.21 (402.16)		403.22 (403.34)	404.22	
P	1634.73	817.87	1635.74	818.37	818.87					
S	1721.76 (1721.71)	861.39 (861.31)	1722.78 (1722.79)	861.89 (862.04)	862.39 (862.66)	218.13		219.13	220.14	
K						131.09		132.1	133.11	

Cx43-35 #2265 @617.61 CID 2255 CID b b 2+ [b-H2O] [b-H2O]2+ [b-H3PO4]2+ y 2+ [y-H3PO4] [y-H3PO4]2+ [y-H2O]2+ 214.13 1793.82 897.41 R 107.57 1695.84 (848.33) (888.50 301.16 151.08 1637.72 819.36 1539.74 142.08 770.38 283 1 (810.25) 726.85 726.75) D 208.60 199.59 1550.69 775.85 1452.71 766.84 98.33 Р 513.24 257.12 495.23 248.12 1435.66 718.33 (718.42) 1337.68 669.35 (669.50) 709.33 1338.61 1240.63 660.80 338.66 658.29 329.65 669.81 620.82 660 5 539.29 795.35 398.18 1175.55 588.28 1077.57 579.27 813.2 (539.17 884.40 866.39 519.75 470.76 510.74 (442.58 (433.33) (1038.58 (940.50) 967 44 985.45 493.23 484.23 869.47 435.24 475.22 967.42) (484.83) (967.42) 1086.50 543.75 1068.49 534.75 (534.75) 866.40 433.70 768.43 384.72 424.70 6 1143.52 1125.51 563.26 (563.08) 765.35 383.18 667.38 334.19 1240.57 620.79 1222.56 611.78 708.33 305.68 345.66 353.65 335.64 611.28 306.14 513.30 257.16 297.14 (677.67 (668.50 1520.65 760.83 1502.64 249.60 400.22 <u>s</u> 200.61 240.60 (751.83) 498.25) 1617.71 809.36 1599.70 800.35 760.37 166.10 157.10 331.20 1704.74 852.87 1686.73 843.87 234.14 (234.33) 117.57 108.57 147.11 74.06

[M-H3PO4+3H]3+ 1-H3PO4-H2O+3H]3+ [M-H3PO4-NH3-H2O+3HI3+ 573.06

Yellow: Low&High mass cut off

Red:	Relative intensity	>1.0	
Theoretical m/z	(Observed m/z)		
Cy43-37(1110)	000) #3445-3487	@617.62	FTD

S255 ETD	с	c 2+	[c+1]	[c+1]2+	[c+2]	[c+2]2+	z	z 2+	[z+1]	[z+1]2+	[z+2]	[z+2]2+
G												
R	231.16	116.08	232.16	116.58	233.16	117.09	1777.8 (1777.96)	889.41 (889.47)	1778.81 (1778.72)	889.91 (890.13)	1779.81 (1779.72)	890.41
s	318.19 (318.24)	159.6	319.2 (319.33)	160.1	320.2	160.6	1621.7 (1621.47)	811.35	1622.71 (1622.64)	811.86	1623.71 (1623.63)	812.36
D							1534.67 (1534.83)	767.84	1535.68 (1535.52)	768.34	1536.68 (1536.54)	768.84
Р	530.27 (530.41)	265.64	531.27	266.14	532.27	266.64						
Y	693.33 (693.31)	347.17	694.33 (694.40)	347.67	695.34	348.17	1322.59 (1322.37)	661.8	1323.6 (1323.52)	662.3	1324.6	662.8
н	830.39 (830.39)	415.7	831.39 (831.45)	416.2	832.4 (832.44)	416.7	1159.53 (1159.41)	580.27	1160.53 (1160.43)	580.77	1161.54 (1161.43)	581.27
A	901.43 (901.46)	451.22	902.43 (902.55)	451.72	903.43 (903.54)	452.22	1022.47 (1022.27)		1023.48 (1023.35)		1024.48 (1024.36)	
т	1002.48 (1002.48)	501.74	1003.48 (1003.59)	502.24	1004.48	502.74	951.43 (951.36)		952.44 (952.38)		953.44 (953.49)	
т	1103.52 (1103.52)	552.27	1104.53 (1104.56)	552.77	1105.53	553.27	850.38 (850.25)		851.39 (851.38)		852.39 (852.53)	
G							749.33 (749.22)		750.34 (750.36)		751.35 (751.40)	
P	1257.6 (1257.53)	629.3	1258.6 (1258.64)	629.8	1259.6	630.31						
L	1370.68 (1370.70)	685.84	1371.68 (1371.76)	686.35	1372.69 (1372.69)	686.85	595.26 (595.22)		596.27 (596.24)		597.27	
<u>s</u>							482.18 (482.22)		483.19 (483.28)		484.19 (484.20)	
Р	1634.73 (1634.72)	817.87	1635.74	818.37	1636.74	818.87						
S	1721.76 (1721.84)	861.39 (861.27)	1722.77 (1722.74)	861.89 (862.09)	1723.77 (1723.67)	862.39 (862.66)	218.13		219.13		220.14	
к							131.09		132.1		133.11	

MASCOT score: 42

[M+3H]3+ 617.94

Low&High mass cut off Relative intensity >1.0 Theoretical m/z (Observed m/z)

Cx43-37(11102009) #3442 @617.62 CID

S257 CID	b	b 2+	[b-H2O]	[b-H2O]2+	[b-NH3]	[b-H3PO4]2+	y y	y 2+	[y-H3PO4]	y-H3PO4]2+	Jy-H2C
G											
R	214.13	107.57			197.10		1793.82	897.41	1695.84	848.43	1775.8
S	301.16 (301.39)	151.08	283.15	142.08	284.14		1637.72	819.36	1539.74	770.38 (770.42)	1619.7
D	416.19 (416.24)	208.60	398.18 (398.27)	199.59	399.16		1550.69	775.85	1452.71	726.86	1532.6
Р	513.24	257.12	495.23	248.11	496.22		1435.66	718.33 (718.34)	1337.68	669.35 (669.40)	1417.6
Y	676.30 (676.30)	338.66	658.29	329.65	659.28		1338.61	669.81	1240.63	620.82	1320.6
н	813.36 (813.35)	407.19 (407.36)	795.35 (795.44)	398.18	796.34		1175.55	588.28 (588.48)	1077.57 (1077.56)	539.29 (539.52)	1157.5
A	884.4 (884.51)	442.70 (442.97)	866.39 (866.43)	433.70	867.37 (867.66)		1038.49 (1038.45)	519.75	940.51 (940.43)	470.76 (470.94)	1020.4 (1020.2
т	985.45 (985.49)	493.23 (493.47)	967.44 (967.43)	484.22 (484.23)	968.42 (968.36)		967.45	484.23	869.47 (869.40)	435.24	949.44
т	1086.50	543.75 (543.78)	1068.49	534.75	1069.47		866.40	433.70	768.43 (768.41)	384.72 (384.88)	848.39
G	1143.52	572.26 (572.98)	1125.51	563.26 (563.49)	1126.49		765.35 (765.34)	383.18	667.38	334.19	747.34
Р	1240.57	620.79 (620.58)	1222.56	611.78	1223.54		708.33	354.67	610.36	305.68	690.32
L	1353.65	677.33 (677.44)	1335.64	668.33	1336.63		611.28	306.14	513.30	257.16	593.2
S	1440.69	720.85 (720.89)	1422.68	711.84 (711.93)	1423.66		498.2 (498.11)	249.60	400.22 (400.32)	200.61	480.19
Р	1537.74	769.37 (769.34)	1519.73	760.37	1520.71		411.16	206.09	313.19 (313.29)	157.10	
<u>s</u>	1704.74	852.87 (852.62)	1686.73	843.87	1687.71	803.88 (804.14)	314.11	157.56	216.13	108.57	
к							147.11	74.06			

[M-H3PO4+3H]3+ 585 [M-H3PO4-H2O+3H]3+ 578.92

Cx43-37(1)	1102009)#	3424 @61	7.62 ETD	MASCOT so	ore: 45				
5257 ETD	С	c 2+	[c+1]	[c+1]2+	[c+2]	[c+2]2+	z	[z+1]	[z+2]
G									
R	231.16	116.08	232.16	116.58	233.16	117.09	1777.8	1778.81	1779.81
S	318.19 (318.27)	159.6	319.2 (319.22)	160.1	320.2	160.6	1621.7 (1621.45)	1622.71 (1622.55)	1623.71
D							1534.67 (1534.37)	1535.68 (1535.45)	1536.6I (1536.5
Р	530.27 (530.28)	265.64	531.27	266.14	532.27	266.64			
Y	693.33 (693.31)	347.17	694.33 (694.48)	347.67	695.34	348.17	1322.59 (1322.52)	1323.6 (1323.51)	1324.6
н	830.39 (830.42)	415.7	831.39 (831.44)	416.2 (416.26)	832.4	416.7	1159.53 (1159.39)	1160.53 (1160.40)	1161.5
Α	901.43 (901.54)	451.22	902.43	451.72	903.43	452.22	1022.47 (1022.39)	1023.48 (1023.31)	1024.4
т	1002.48 (1002.37)	501.74	1003.48 (1003.45)	502.24	1004.48 (1004.56)	502.74	951.43 (951.52)	952.44 (952.45)	953.44
т	1103.52 (1103.46)	552.27	1104.53 (1104.48)	552.77	1105.53	553.27	850.38 (850.30)	851.39 (851.29)	852.39 (852.37
G							749.34 (749.20)	750.34 (750.26)	751.35 (751.46
Р	1257.6 (1257.65)	629.3	1258.6 (1258.53)	629.8	1259.6	630.31			
L	1370.68 (1370.61)	685.84	1371.68 (1371.60)	686.35	1372.69	686.85	595.26	596.27	597.27
S							482.18 (482.27)	483.19 (483.35)	484.19
Р	1554.77 (1554.72)	777.89	1555.77 (1555.71)	778.39	1556.77	778.89			
<u>s</u>	1721.76 (1721.72)	861.39 (861.34)	1722.77 (1722.53)	861.89	1723.77 (1723.49)	862.39 (862.14)	298.09	299.1 (299.26)	300.1
К							131.09	132.1	133 11

[M+3H]3+ 617.95

Yellow: Low&High mass cut off					
Red:	Relative intensity >0.2				
Theoretical m/z (Observed m/z)					

[M-H3PO4+3H]3+ [M-H3PO4-H2O+3H]3+

[M+3H]3+ 617.91 ellow: Low&High mass cut off

Relative intensity >0.5

eoretical m/z (Observed m/z)

Supplemental Table S5. Fragmentation ions for peptide containing S314.

Cx43-36 #3004 @659.26 CID									
S314 CID	b	[b-H2O]	[b-NH3]	У	y 2+	[y-H3PO4]	[y-H3PO4]2+	[y-NH3]	[y-NH3]2+
in figure as:	b	b*	b-	У	y ²⁺	у	y ²⁺	у-	
Q									
А	200.10		183.08	1847.73	924.37	1749.76	875.38	1830.71	915.86
S	287.14	269.12	270.11	1776.70	888.85 (888.91)	1678.72	839.86	1759.67	880.34
E	416.18	398.17	399.15	1689.67	845.34 (845.35)	1591.69	796.35	1672.64	836.82
Q	544.24 (544.19)	526.23	527.21 (527.08)	1560.62	780.82	1462.65	731.83	1543.60	772.30
N	658.28 (658.07)	640.27	641.25	1432.56	716.79 (716.85)	1334.59	667.80 (667.98)	1415.54	708.27 (708.42)
W	844.36 (844.27)	826.35 (826.18)	827.33 (827.30)	1318.52	659.76	1220.54	610.78 (610.79)	1301.49	651.25
А	915.40 (915.32)	897.39 (897.55)	898.37 (898.29)	1132.44 (1132.22)	566.72 (566.79)	1034.47	517.74 (517.80)	1115.42 (1115.26)	558.21
N	1029.45 (1029.24)	1011.43	1012.41 (1012.12)	1061.40 (1061.20)	531.21 (531.18)	963.43 (963.49)	482.22 (482.30)	1044.38 (1044.32)	522.69
Y	1192.50 (1192.60)	1174.49 (1174.28)	1175.48	947.36 (947.26)	474.18 (474.17)	849.39	425.20 (425.72)	930.34 (930.12)	465.67 (465.53)
<u>s</u>	1359.50	1341.49	1342.47	784.30 (784.20)	392.65	686.32 (686.45)	343.66	767.27	384.14
А	1430.54	1412.53	1413.51	617.30 (617.28)	309.15			600.27 (600.48)	300.64
E	1559.58	1541.57	1542.55	546.26 (546.29)	273.64			529.24 (529.29)	265.12
Q	1687.64	1669.63	1670.61	417.22 (417.17)	209.11			400.19	200.60
N	1801.68	1783.67	1784.65	289.16 (289.20)	145.08			272.14	136.57
R				175.12	88.06			158.09	79.55

Cx43-36 (11102009) #3787 @659.27 ETD MASCOT score:								
S314 ETD	с	[c+1]	z	[z+1]				
in figure as:	с	c+1	z	z+1				
Q								
А	217.13 (217.22)	218.13	1831.72	1832.72 (1832.45)				
S	304.16	305.16	1760.69 (1760.44)	1761.69 (1761.49)				
E	433.2 (433.45)	434.21 (434.28)	1673.64 (1673.48)	1674.65 (1674.59)				
Q	561.26 (561.49)	562.27 (562.15)	1544.6 (1544.52)	1545.61 (1545.52)				
N	675.31 (675.31)	676.31 (676.60)	1416.55 (1416.34)	1417.55 (1417.47)				
W	861.39 (861.50)	862.39 (862.36)	1302.5 (1302.33)	1303.51				
А	932.42 (932.52)	933.43 (933.43)	1116.42 (1116.25)	1117.43 (1117.31)				
N	1046.47 (1046.56)	1047.47 (1047.47)	1045.39 (1045.05)	1046.39				
Y	1209.53 (1209.36)	1210.53 (1210.26)	931.34 (931.63)	932.35				
<u>s</u>	1376.53 (1376.40)	1377.53 (1377.56)	768.28	769.29				
А	1447.56	1448.57 (1448.51)	601.28 (601.45)	602.29				
E	1576.61 (1576.56)	1577.61 (1577.51)	530.24 (530.55)	531.25				
Q	1704.67 (1704.66)	1705.67 (1705.67)	401.2	402.21				
N	1818.71 (1818.74)	1819.71 (1819.63)	273.14	274.15				
R			159.1	160.11				

[M-H3PO4+3H]3+	626.66
[M-H3PO4-NH3+3H]3+	620.9
[M-H3PO4-NH3-H2O+3H	615.18

Yellow:	Low&High mass cut off				
Red:	Relative intensity >2.0				
Theoretical m/z (Observed m/z)					

[M+3H]3+	659.42	

Yellow:	Low&High mass cut off				
Red:	Relative intensity >1.0				
Theoretical m	/z (Observed m/z)				

Supplemental Table S6. Fragmentation ions for peptides containing S296 and S297.

S296 CID	b	[b-H3PO4]	У	y 2+	[y-H3PO4]	y-H3PO4]2+	[y-H2O]	y-H2O-H3PO4
Ν								
Ν	229.09 (229.00)		1222.47	611.74	1124.49	562.75 (562.64)	1204.46	1106.48
<u>s</u>	396.09	298.11 (298.18)	1108.42 (1108.36)	554.72 (554.64)	1010.45 (1010.45)	505.73 (505.82)	1090.41	992.44 (992.45)
S	483.12	385.15 (385.00)	941.43 (941.00)	471.22 (471.18)			923.42 (923.45)	
C (Carbamidomethyl)	643.15	545.18 (545.27)	854.39 (854.27)	427.70 (427.91)				
R	799.26 (799.18)	701.28 (701.18)	694.36 (694.36)	347.69				
N	913.30 (913.36)	815.32	538.26 (538.45)	269.63 (269.82)				
Y	1076.36 (1076.18)	978.38 (978.18)	424.22 (424.18)	212.61 (212.00)				
N	1190.40	1092.43 (1092.27)	261.16 (261.18)	131.08				
к			147.11	74.06				

Ŧ	331.23	332.24	1230.44	1231.45
1	(331.33)	(332.26)	(1230.03)	(1231.41)
0	388.26	389.26	1129.40	1130.40
9	(388.10)	(389.30)	(1129.02)	(1130.31)
D	503.28	504.29	1072.38	1073.38
D	(503.27)	(504.21)	(1072.24)	(1073.37)
P	659.38	660.39	957.35	958.36
IX.	(659.45)	(660.56)	(957.23)	(958.22)
N	773.43	774.43	801.25	802.25
IN .	(773.34)	(774.48)	(801.27)	(802.14)
N	887.47	888.47	687.20	688.21
IN IS	(887.49)	(888.56)	(687.09)	(688.16)
c	1054.47	1055.47	573.16	574.17
<u> </u>	(1054.53)	(1055.50)	(572.98)	(574.10)
c	1141.50	1142.50	406.16	407.17
3	(1141.22)	(1142.41)	(406.08)	(407.28)
C (Carbamidomethyl)	1301.53	1302.53	319.13	220.14
C (Carbanidometry)	(1301.45)	(1302.53)	(319.64)	320.14
R			159.10	160.11

487.19

Low&High mass cut off

Relative intensity >0.5

MASCOT score: 61

[z+1] 1330.52

(1330.51)

z

1329.51

[M-H3PO4-NH3+2H]2+	611.27
[M-H3PO4-NH3-H2O+2H]2+	602.27

Yellow:	Low&High mass cut off
Red:	Relative intensity >0.5
Theoretical m/z (Obser	ved m/z)

Cx43-29(CAMKII) #863 @659.96 CID

S297 CID	b	b 2+	[b-H3PO4]	У	y 2+	[y- H3PO4]2+	[y-H2O-H3PO4]2+
L							
v	213.16 (213.09)			1864.78	932.89	883.90 (883.27)	874.90 (874.82)
т	314.21 (314.27)			1765.71	883.36	834.37 (834.82)	825.36 (825.82)
G	371.23			1664.66	832.83	783.84 (783.91)	774.84
D	486.26 (486.27)			1607.64	804.32	755.33	746.33 (746.64)
R	642.36	321.68		1492.61	746.81	697.82 (697.82)	688.82 (688.82)
N	756.40	378.70		1336.51	668.76	619.77	610.76
N	870.45	435.73		1222.47	611.74	562.75	553.74
S	957.47	479.24 (479.27)		1108.42	554.72	505.73 (505.82)	496.72
<u>s</u>	1124.47	562.74	1026.5 (1026.55)	1021.39	511.20	462.21 (462.27)	
C (Carbamidomethryl)	1284.50	642.76	1186.53	854.39	427.70 (427.73)		
R	1440.61	720.81	1342.63	694.36	347.69		
N	1554.65	777.83	1456.67	538.26 (538.36)	269.63		
Y	1717.71	859.36	1619.73	424.22 (424.18)	212.61		
N	1831.75	916.38	1733.78	261.16	131.08		
К				147.11	74.06		

[M-H3PO4+3H]3+		627.45
[M-H3PO4-NH3+3H]3+		621.55
[M-H3PO4-NH3-H2O+3H]3+		615.64

Yellow:	Low&High mass cut off	
Red:	Relative intensity >0.2	
Theoretical m/z (Observed m/z)		

Cx43-37(11102009) #2502 @730.81 ETD

Theoretical m/z (Observed m/z)

Cx43-37(11102009) #2444 @487.21 ETD

С

230.19

[c+1]

231.19

S296 ETD

[M+3H]3+

Yellow:

ed:

V

MASCOT score: 30

S297 ETD	с	[c+1]	z	[z+1]
L				
v	230.19	231.19	1330.50 (1330.98)	1331.50 (1331.71)
т	331.23	332.24	1231.43 (1231.46)	1232.44 (1232.63)
G	388.26	389.26	1130.38 (1130.49)	1131.39 (1131.55)
D	503.28	504.29	1073.36 (1073.10)	1074.37 (1074.25)
R	659.38 (659.37)	660.39 (660.20)	958.33 (958.41)	959.34 (959.36)
N	773.43 (773.52)	774.43	802.23	803.24
N (Deamidated)	888.45 (888.51)	889.46	688.19	689.20
S	975.49 (975.35)	976.49 (976.36)	573.16	574.17
<u>s</u>	1142.48	1143.49	486.13	487.14
C (Carbamidomethyl)	1302.51 (1302.56)	1303.52 (1303.51)	319.13	320.14
R			159.10	160.11

[M+2H]2+	730.63

Yellow:	Low&High m	nass cut off
Red:	Relative inte	nsity >0.5
Theoretical m/z (Observed m/z)		

Supplemental Table S7. Fragmentation ions for peptide containing S364 and S365.

Cx43-35 #37	763 @742.04 C	ID							
S364 CID	b	b 2+	[b-H2O]	[b-NH3]	[b-NH3]2+	[b-H3PO4]2+	у	[y-H3PO4]	[y-H3PO4]2+
V									
A	171.11						2125.06	2027.08	1014.04
А	242.15						2054.02	1956.04	978.52 (978.75)
G	299.17						1982.98	1885.00	943.01
н	436.23 (436.08)	218.62					1925.96	1827.98	914.49 (914.33)
E	565.27 (565.42)	283.14	547.26 (547.25)				1788.90	1690.92	845.97
L	678.36 (678.42)	339.68 (339.75)	660.35				1659.86	1561.88	781.44 (781.33)
Q	807.40 (807.33)	404.20	789.39	790.37	395.69		1546.77	1448.80	724.90 (724.75)
Р	904.45	452.73	886.44 (886.33)	887.43 (887.08)	444.22		1417.73	1319.75	660.38
L	1017.54 (1017.67)	509.27	999.53	1000.51	500.76		1320.68	1222.70	611.85
А	1088.57	544.79 (544.75)	1070.56	1071.55	536.28 (536.83)		1207.59	1109.62	555.31
1	1201.66 (1201.50)	601.33	1183.65	1184.63	592.82		1136.56	1038.58	519.79 (519.50)
v	1300.73 (1300.25)	650.87	1282.72	1283.70	642.35 (642.50)		1023.47	925.50 (925.00)	463.25 (463.92)
D	1414.77 (1414.50)	707.89	1396.76	1397.74	699.37 (699.33)		924.40	826.43	413.72
Q	1542.83	771.92	1524.82	1525.80	763.40		810.36	712.38 (712.08)	356.70 (356.75)
R	1698.93	849.97	1680.92	1681.90	841.45		682.30 (682.42)	584.33	292.67
Р	1795.98	898.49	1777.97	1778.95	889.98		526.20 (526.08)	428.23 (428.33)	214.62
<u>s</u>	1962.98	981.99	1944.97	1945.95	973.48	933.01 (933.08)	429.15	331.17	166.09
S	2050.01	1025.51 (1025.25)	2032.00	2032.99	1017.00	976.52 (976.58)	262.15 (262.08)		
R							175.12		1

Cx43-35 #37	57 @742.04 C	ID					
S365 CID	b	b 2+	[b-H2O]2+	[b-NH3]2+	у	y 2+	[y-H3PO4]2+
V							
A	171.11				2125.06	1063.03	1014.04
А	242.15				2054.02	1027.51	978.52
G	299.17				1982.98	991.99 (991.83)	943.01 (943.00)
н	436.23 (436.00)	218.62			1925.96	963.48 (963.58)	914.49 (914.50)
Е	565.27 (565.33)	283.14	274.13		1788.90	894.95 (894.92)	845.97 (845.92)
L	678.36 (678.00)	339.68	330.68		1659.86	830.43 (830.17)	781.44 (781.42)
Q	806.42 (806.17)	403.71	394.71	395.20	1546.77	773.89 (774.08)	724.90
Р	903.47	452.24	443.23	443.72	1418.72	709.86	660.87
L	1016.55	508.78	499.77	500.27	1321.66	661.33 (661.33)	612.35
А	1087.59 (1087.33)	544.30 (544.25)	535.29	535.79	1208.58	604.79	555.80
l.	1200.67 (1200.42)	600.84 (600.92)	591.84	592.33 (592.42)	1137.54 (1137.33)	569.27 (569.08)	520.29 (520.17)
v	1299.74 (1299.58)	650.37 (650.58)	641.37	641.86	1024.46 (1024.58)	512.73 (512.67)	463.74
D	1414.77 (1414.67)	707.89	698.88 (698.67)	699.37 (699.50)	925.39 (925.17)	463.20 (463.42)	414.21
Q	1542.83	771.92	762.91	763.40	810.36 (810.58)	405.68 (405.75)	356.70 (356.67)
R	1698.93	849.97 (849.83)	840.96	841.45 (841.33)	682.30	341.66 (341.67)	292.67
Р	1795.98	898.49 (898.42)	889.49	889.98	526.20 (526.33)	263.60	214.62
S	1883.01	942.01	933.01	933.50	429.15 (429.25)	215.08	166.09
<u>s</u>	2050.01	1025.51 (1025.42)	1016.50	1017.00	342.12	171.56	122.57
R					175.12	88.06	

43-30(1110	2009) #4619 0	€142.30 E I L	, _	[7+1]
	U U	[0+1]	2	[2+1]
v	400.47	400.44	0400.01	0440.01
A	188.14	189.14	2109.04	2110.04
А	259.18	260.18	2038.00	2039.01
G	316.20 (316.29)	317.20	1966.96 (1966.80)	1967.97 (1967.90)
н	453.26	454.26	1909.94	1910.95
	(453.28)	(454.35)	(1910.09)	(1910.82)
E	(582.44)	(583.42)	(1772.57)	(1773.72)
L	695.38	696.39	1643.84	1644.85
Q	(095.43)	(090.30)	1530.76	1531.76
	920.49	921.50	(1530.53)	(1531.67)
P	(920.48)	(921.70)		
L	1033.58 (1033.51)	1034.58 (1034.49)	1305.64 (1305.39)	1306.65 (1306.36)
۵	1104.62	1105.62	1192.56	1193.57
~	(1104.83)	(1105.67)	(1192.25)	(1193.53)
I.	(!217.75)	(1218.66)	1121.52	(1122.38)
V	1316.77	1317.77	1008.44	1009.45
D	1431.80	1432.80	909.37	910.38
Q	1559.85	1560.86	794.34	795.35
R	(1559.88)	(100.02)	(794.34) 666.28	667.29
		1814.01	(666.18)	(667.37)
Р	1813.01	(1814.22)		
<u>s</u>	1980.01 (1980.14)	1981.01 (1980.95)	413.13	414.14 (414.28)
S	2067.04	2068.04	246.13	247.14 (247.26)
R			159.10	160.11

[M-H3PO4+3H]3+	709.33
[M-H3PO4-H2O+3H]3+	703.58
[M-H3PO4-NH3-H2O+3H]3	697.67

Yellow:	Low&High mass cut off		
Red:	Relative intensity >0.4		
Theoretical m/z (Observed m/z)			

 [M-H3PO4+3H]3+
 709.42

 [M-H3PO4-H2O+3H]3+
 703.75

 [M-H3PO4-NH3-H2O+3H]3+
 697.67

 Yellow:
 Low&High mass cut off

 Red:
 Relative intensity >0.3

 Theoretical m/z (Observed m/z)

[M+3H]3+ 742.48

Yellow:	Low&High mass cut off			
Red:	Relative intensity >0.4			
Theoretical m/z (Observed m/z)				

Supplemental Table S8. Fragmentation ions for peptides containing S369, S372 and S373.

Cx43-35 #329	4 @718.33 CI	D											
S372 CID	b	b 2+	[b-H2O]2+	[b-NH3]	[b-NH3]2+	[b-H3PO4]	[b-H3PO4]2+	у	y 2+	[y-H3PO4]2+	[y-NH3]2+	[y-H2O]	[y-H2O]2+
A													
<u>s</u>	239.04					141.07		1364.62	682.81 (682.83)	633.83 (634.00)	674.30	1346.61	673.81 (673.67)
s	326.07 (326.25)					228.10		1197.62	599.31 (599.25)		590.80 (590.67)	1179.61	590.31 (590.25)
R	482.18 (482.25)	241.59	232.59	465.15	233.08	384.20 (384.08)	192.60	1110.59	555.80 (555.83)		547.29	1092.58	546.79
Р	579.23 (579.17)	290.12	281.11	562.20	281.60	481.25	241.13	954.49 (954.42)	477.75		469.23	936.48 (936.67)	468.74
R	735.33 (735.33)	368.17	359.16	718.30	359.66	637.35	319.18	857.44	429.22		420.71	839.43	420.22
Р	832.38	416.69	407.69	815.36	408.18	734.41	367.71	701.34 (701.67)				683.32 (683.25)	
D	947.41 (947.42)	474.21 (474.33)	465.20	930.38 (930.75)	465.70	849.43 (849.75)	425.22 (425.50)	604.28 (604.42)				586.27	
D	1062.44 (1062.58)	531.72 (531.83)	522.72	1045.41	523.21	964.46	482.73 (482.67)	489.26				471.24	
L	1175.52	588.26 (588.33)	579.26	1158.49	579.75 (579.75)	1077.54	539.28 (539.25)	374.23				356.22	
E	1304.56	652.79 (652.75)	643.78 (643.67)	1287.54	644.27	1206.59	603.80 (603.83)	261.14				243.13 (243.17)	
		1						132 10		1			1

Cx43-35 #3198	@718.33 CID												
S373 CID	b	b 2+	[b-H2O]	[b-H2O]2+	[b-NH3]	[b-NH3]2+	[b-H3PO4]	[b-H3PO4]2+	у	y 2+	[y-H3PO4]2+	[y-NH3]2+	[y-H2O]
А													
S	158.08		141.07						1364.62	682.81 (682.92)	633.83 (633.75)	674.30	1346.61
<u>s</u>	326.07		308.06				228.10		1277.59 (1277.33)	639.30 (639.42)	590.31 (590.33)	630.78	1259.58
R	482.18	241.59	464.17	232.59	465.15 (465.08)	233.08	384.20 (384.33)	192.60	1110.59 (1110.58)	555.80 (555.75)		547.29 (547.08)	1092.58
Р	579.23	290.12	561.22	281.11	562.20	281.60 (281.75)	481.25	241.13	954.49 (954.42)	477.75		469.23	936.48 (936.42)
R	735.33 (735.17)	368.17	717.32	359.16	718.30	359.66	637.35 (637.50)	319.18	857.44 (857.33)	429.22		420.71	839.43
Р	832.38	416.69	814.37	407.69	815.36	408.18	734.41	367.71 (367.58)	701.34 (701.42)				683.32 (683.25)
D	947.41 (947.25)	474.21 (474.33)	929.40	465.20	930.38	465.70 (465.83)	849.43 (849.33)	425.22 (425.25)	604.28 (604.33)				586.27 (586.25)
D	1062.44 (1062.42)	531.72 (531.75)	1044.43 (1044.50)	522.72	1045.41 (1045.67)	523.21	964.46	482.73 (482.75)	489.26				471.24
L	1175.52 (1175.42)	588.26 (588.33)	1157.51	579.26	1158.49	579.75	1077.54	539.28 (539.33)	374.23 (374.17)				356.22
E	1304.56	652.79 (652.83)	1286.55	643.78 (643.83)	1287.54	644.27	1206.59	603.80 (603.83)	261.14				243.13 (243.25)
1							1		132.10				

[N	1-H3PO4+2H]2+	669.42
[N	1-H3PO4-H2O+2H]2+	660.33
[N	1-H3PO4-NH3-H2O+2H]2+	651.42
_		

Yellow:	Low&High mass cut off	
Red:	Relative intensity >0.3	
Theoretical m/z	(Observed m/z)	

Cx43-37 (1110)	2009) #3921-:	3965 @612	.96 ETD		MASCOT	score: 36		
S372 ETD	С	c 2+	[c+1]	[c+1]2+	z	z 2+	[z+1]	[z+1]2+
А								
0	176 10		177 11		1749.80	875.41	1750.81	875.91
Ŭ	170.10				(1749.78)	(875.13)	(1750.72)	(875.64)
s	263.14		264 14		1662.77	831.89	1663.78	832.39
-					(1662.39)	(831.89)	(1663.71)	(832.67)
R	419.24	210.12	420.24	210.62	1575.74	788.37	1576.75	788.88
	(419.19)				(15/5.88)	(788.65)	(1576.82)	(789.65)
А	490.27	245.64	491.28	246.14	1419.64	710.32	1420.65	710.83
	(490.40)		850.07		(1419.45)	674.00	(1420.55)	675.04
<u>S</u>	(057.27)	329.14	(050.27	329.64	1340.00	(074.00	(1349.01	(075.51)
_	(057.32)		(000.29)		(1346.29)	(6/4./4)	(1349.30)	(075.53)
S	(744.30)	372.66	(745.34)	373.16	(1181.40)	591.31	(1182.52)	591.81
	(144.00)		(145.54)		1094 57		1095 58	
R					(1094.31)	547.79	(1095.54)	548.29
	997.46	499.23	998.46		/			
Р	(997.33)	(499.24)	(998.48)	499.73				
0					841.42		842.43	
ĸ					(841.16)		(842.40)	
в	1250.61	625.81	1251.61	626.31				
	(1250.63)	(625.54)	(1251.64)	(626.24)				
D	1365.64	683.32	1366.64	683.82				
5	(1365.62)	(683.10)	(1366.64)	(684.03)				
D	1480.67	740.84	1481.67	741.34				
5	(1480.63)	(740.53)	(1481.60)	(741.11)				
	1593.75	797.38	1594.75	797.88				
	(1593.73)	(797.46)	(1594.64)	(798.17)				
E	1722.79	861.90	1723.80	862.40			1	
	(1722.87)		(1723.75)	(862.10)				

Cx43-37 (11102009) #4145-4196	@639.61 ET	D	MASCOT	score: 30		
S369,S373 ETD	с	c 2+	[c+1]	[c+1]2+	z	z 2+	[z+1]
А							
S	176.10		177.11		1829.77	915.39	1830.78
<u>s</u>	343.10		344.10		1742.74 (1742.79)	871.87 (871.86)	1743.75 (1743.74)
R	499.20 (499.33)	250.10	500.21 (500.35)	250.61	1575.74	788.37	1576.75
А	570.24 (570.29)	285.62	571.24 (571.57)	286.13	1419.64 (1419.46)	710.32	1420.65
S	657.27 (657.35)	329.14	658.27 (658.31)	329.64	1348.60	674.80	1349.61 (1349.45)
<u>s</u>	824.27 (824.29)	412.64	825.27 (825.29)	413.14	1261.57	631.29	1262.58 (1262.49)
R					1094.57 (1094.42)	547.79	1095.58 (1095.49)
Р	1077.42 (1077.42)	539.22	1078.43 (1078.45)	539.72			
R					841.42 (841.34)		842.43 (842.45)
Р	1330.58 (1330.52)	665.79 (665.57)	1331.58 (1331.52)	666.29 (666.40)			
D	1445.60 (1445.68)	723.31 (723.10)	1446.61 (1446.72)	723.81 (723.87)			
D	1560.63 (1560.52)	780.82 (780.67)	1561.63 (1561.63)	781.32 (781.39)			
L	1673.72 (1673.77)	837.36 (837.52)	1674.72 (1674.82)	837.86			
E	1802.76 (1802.95)	901.88	1803.76 (1803.78)	902.38			
1							

[M+3H]3+ 613.22

Yellow:	Low&High mass cut off	
Red:	Relative intensity >0.1	
Theoretical m/z	(Observed m/z)	

Yellow:	Low&High mass cut off
Red:	Relative intensity >0.2
Theoretical m/z (Observed m/z)

639.91

[M+3H]3+

[M-H3PO4+2H]2+ 669.33 [M-H3PO4-H2O+2H]2+ 660.33 [M-H3PO4-NH3-H2O+2H]2+ 651.50

Supplemental Table S9. Fragmentation ions for native Cx43 peptide containing S306.

Cx43-IP #3093 @988.39 CID

S306 CID	b	[b-H2O]	[b-NH3]	[b-H3PO4]	У	y 2+	[y-H3PO4]2+	[y-H2O]
Q								
А	200.10		183.08		1847.73	924.37	875.38	1829.72
<u>s</u>	367.10		350.07	269.12	1776.70 (1776.46)	888.85 (888.50)	839.86 (839.81)	1758.69
E	496.14	478.13	479.12	398.17	1609.70 (1609.69)	805.35 (804.95)		1591.69
Q	624.20	606.19 (606.08)	607.18	526.23 (526.16)	1480.66 (1480.45)	740.83		1462.65
N	738.24	720.23	721.27 (720.99)	640.27 (640.22)	1352.60 (1352.46)	676.80		1334.59
W	924.32	906.31	907.30 (907.20)	826.35 (826.40)	1238.55 (1238.51)	619.78		1220.54
А	995.36	977.35	978.34	897.39 (897.42)	1052.48 (1052.42)	526.74		1034.46
N	1109.40 (1108.81)	1091.39 (1091.28)	1092.38 (1092.20)	1011.43	981.44	491.22 (491.11)		963.43
Y	1272.47 (1272.33)	1254.46	1255.44 (1255.29)	1174.49 (1174.32)	867.40 (867.42)	434.20		849.39 (849.49)
S	1359.50	1341.49 (1341.32)	1342.47 (1342.08)	1261.52 (1261.46)	704.33 (704.26)	352.67		686.32 (686.36)
А	1430.54	1412.53	1413.51	1332.56	617.30 (617.32)	309.15		599.29
Е	1559.58	1541.57 (1541.45)	1542.55	1461.60 (1461.47)	546.26 (546.21)	273.64		528.25 (528.41)
Q	1687.64	1669.63	1670.61 (1670.13)	1589.66 (1589.23)	417.22 (417.17)	209.11		
N	1801.68	1783.67	1784.65 (1784.51)	1703.70	289.16	145.08		
R					175.12	88.06		

[M-H3PO4+2H]2+	939.25
[M-H3PO4-H2O+2H]2+	930.53
[M-H3PO4-NH3-H2O+2H]2+	922.16

Yellow:	Low&High mass cut off
Red:	Relative intensity >2
Theoretical	m/z (Observed m/z)

Supplemental Table S10. Fragmentation ions for native Cx43 peptide containing S372 and S373.

Cx43-IP #3307-3419	@639.61 ETC)	MASCOT sc	ore: 14			
S372,S373 ETD	С	c 2+	[c+1]	[c+1]2+	z	z 2+	[z+1]
А							
S	176.10		177.11		1829.77	915.39 (915.20)	1830.78 (1830.56)
S	263.14		264.14		1742.74 (1742.64)	871.87 (871.61)	1743.75 (1743.74)
R	419.24	210.12	420.24	210.62	1655.71	828.36 (828.04)	1656.71
А	490.27	245.64	491.28	246.14	1499.61	750.31	1500.61
<u>s</u>	657.27 (657.41)	329.14	658.27 (658.31)	329.64	1428.57 (1428.28)	714.79 (714.66)	1429.58
<u>s</u>	824.27 (824.26)	412.64	825.27 (825.31)	413.14	1261.57 (1261.26)	631.29	1262.58 (1262.58)
R					1094.57 (1094.29)	547.79	1095.58 (1095.32)
Р	1077.42 (1077.34)	539.22	1078.43 (107837)	539.72			
R					841.42 (841.29)	421.21	842.43 (842.45)
Р	1330.58 (1330.35)	665.79 (665.45)	1331.58 (1331.15)	666.29 (666.07)			
D	1445.60 (1445.55)	723.31 (723.09)	1446.61 (1446.75)	723.81 (723.88)	588.26		589.27
D	1560.63 (1560.66)	780.82 (780.56)	1561.63 (1561.73)	781.32 (781.41)	473.24		474.24
L	1673.72	837.36 (837.36)	1674.72	837.86	358.21		359.22
E	1802.76	901.88 (901.89)	1803.76	902.38 (902.63)	245.13		246.13
I					116.08		117.09

[M+3H]3+ 639.89

Yellow:	Low&High mass cut off			
Red:	Relative intensity >0.1			
Theoretical m/z (Obse	erved m/z)			

Sequence	Start-end	Charge	Theoretical mass	Observed mass	Phosphorylation site localized	MASCOT score (CID)	MASCOT score (ETD)	Diagnostic ions (CID)	s Diagnostic ions (ETD)
QASEQNWANYSAEQNR	304-319	2	1974.786	1974.787	S306	52	N/A	y ₁₃ , y ₁₄	N/A
ASSRASSRPRPDDLEI	367-382	3	1915.819	1915.809	S372, S373	N/A	14	N/A	z ₉ , z ₁₀ , z ₁₁

Supplemental Table S11. Phosphoserine-containing peptides from native (in vivo) Cx43.