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Genotype  

(Nrarp) 

Cervical Thoracic Lumbar Sacral Lumbar +  

Sacral 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 6 4 10 

+/+ 7 13 5 5 10 

-/- 7 13 5 4 9 

-/- 7 13 5 4 9 

-/- 7 13 5 4 9 

-/- 7 13 5 4 9 

-/- 7 13 5 4 9 

-/- 7 13 5 4 9 

-/- 7 13 5 4 9 

-/- 7 13 5 5 10 

 

Table S1. The number of vertebrae in newborn mice.  

The numbers of vertebrae in the newborn mice were counted after the mice were 

stained.  



 

 

 
Gene 
Symbol 

Gene_Name 
Probe 
ID 

Cluster Ratio1 Ratio2 Ratio3 Avg. 

Nrarp 
Notch-regulated ankyrin repeat 
protein 

315756 0.04  0.10  0.05  0.06  

Hes5 
hairy and enhancer of split 5 
(Drosophila) 

562022 4.56  4.77  3.51  4.20  

Lfng 
lunatic fringe gene homolog 
(Drosophila) 

882835 1.37  1.43  1.10  1.28  

Hes7 
hairy and enhancer of split 7 
(Drosophila) 

558449 1.18  1.20  0.57  0.87  

Hes1 
hairy and enhancer of split 1 
(Drosophila) 

406680 1.20  0.91  0.53  0.79  

Hey1 
hairy/enhancer-of-split related with 
YRPW motif 1 

814590 1.55  1.13  1.32  1.31  

Nkd1 
naked cuticle 1 homolog 
(Drosophila) 

394939 

Notch 

1.04  1.20  1.10  1.11  

Axin2 axin2 357287 1.19  1.19  0.62  0.91  

Lef1 lymphoid enhancer binding factor 1 928212 1.18  1.20  1.05  1.14  

Msgn1 mesogenin 1 733438 1.00  0.88  1.53  1.08  

T  brachyury 661161 

Wnt 

0.89  0.77  1.03  0.88  

Dusp1 dual specificity phosphatase 1 303843 1.05  0.89  1.07  1.00  

Dusp4 dual specificity phosphatase 4 672437 0.99  0.84  1.11  0.97  

Dusp6 dual specificity phosphatase 6 932169 0.97  0.70  0.75  0.79  

Spry2 sprouty homolog 2 (Drosophila) 872375 0.90  0.68  1.12  0.87  

Spry4 sprouty homolog 4 (Drosophila) 529472 

FGF 

1.00  0.95  0.74  0.88  

Rhox5 
reproductive homeobox on X 
chromosome, 5 

535766 3.60  2.50  2.15  2.63  

Car4 carbonic anhydrase 4 349705 2.42  2.11  2.30  2.27  

Gpr133 G protein-coupled receptor 133 716011 

-* 

2.22  2.67  2.06  2.29  

 

Table S2. Summary of microarray analysis results.  

Several target genes of the Notch, Wnt, and FGF signaling pathways are displayed. The 

ratios of the expression levels (Nrarp-/- / wild type) were calculated using normalized 

signal intensities (n = 3). *, Genes that had a more than two-fold difference for all three 

analyses. The functions in the segmentation clock remain unclear. 



 

 

 

Individual no. Cervical Thoracic Lumbar Sacral Lumbar+Sacral 

1 7 13 5 5 10 

2 7 13 6 4 10 

3 7 13 6 5 11 

4 7 13 7 4 11 

5 7 13 6 4 10 

6 7 13 7 4 11 

7 7 13 7 4 11 

8 7 13 6 4 10 

9 7 13 7 4 11 

10 7 13 6 4 10 

11 7 13 6 4 10 

 7.0 ± 0.0 13.0 ±0.0 6.3 ± 0.18 4.2 ± 0.12 10.5 ± 0.15 

 

Table S3. Number of vertebrae in gamma-secretase inhibitor-treated mice.  

An inhibitor, 0.1 mg/kg of LY411,575, was administered three times from E 7.5 to E 

9.5, and the animals were then sacrificed on postnatal day 1 to prepare skeletal sample 

(mean ± s.e.m.). 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Generation of Nrarp-deficient mice.  

(A) Targeting strategy. The whole coding region of Nrarp was replaced by IRES-LacZ 

and PGK-neo (inverted orientation). (B) Southern blot analysis. The 3’-external probe 

was used to detect 6.6-kb (wild-type) and 4.5-kb (mutant) fragments in SpeI-digested 

genomic DNA. wt, wild-type; KO, knockout. (C) Whole-mount in situ hybridization for 

Nrarp at E 10.5. Expression was observed in the central nervous systems and the PSM 

(left, arrow) of wild-type embryos. In Nrarp-/- embryos, Nrarp expression was 

completely absent (right). (D) β-galactosidase activity was detected in the regions where 

Nrarp was expressed. Scale bar, 1mm. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. The shape and size of somites are not affected in Nrarp-/-.  

Whole-mount in situ hybridization for Uncx4.1 at the indicated stages. Dorsal views of 

caudal part of embryos are presented. There were no significant differences in shape, 

symmetry, and polarity of somites between the wild-type embryos and the Nrarp-/- 

embryos. The top side is the anterior region. Scale bars, 500 μm. 



 

 

 

 

 

 

 

 

Figure S3. Notch signaling inhibition disrupts somitegenesis. Whole-mount in situ 

hybridization for Uncx4.1 of embryos that were treated with 0.3 mg/kg LY411,575 (A) 

or 1.0 mg/kg LY411,575 (B). Defects were observed in somite segmentation and somite 

patterning (A) and in general development under high dose of inhibitor (B). Scale bars, 

1 mm. 

 

 

 

 

 

 



 

 

 

 

Figure S4. Pace of general development is identical between Nrarp mutant embryos 

and wild-type littermates. (A) whole-mount in situ hybridization of Uncx4.1 in E10.5 

emryos. White asterisks indicate non-specific staining. (B,C) in situ hybridization of 

Fgf8 in E11.5 embryos. (B) Lateral views of limb buds. Fgf8 mRNA expression domain 

revealed the apical ectoderm ridge (AER). Anterior is towards the left. Black arrows 

and white arrows indicate anterior end and posterior end of Fgf8 expression domain in 

the AER, respectively. Narrow bands of AER are detected identically in Nrarp-/- and 

their wild-type littermates. We detected no differences in morphology of limb buds and 

their size. (C) Frontal views of the anterior half. Fgf8 mRNA was detected at op and mx. 



 

 

Differentiation levels of these organs are observed identically between mutant and their 

wild-type littermates. Anterior is towards the top. FLB, forelimb bud; HLB, hind limb 

bud; op, olfactory pits; mx, maxillary process; md, mandibular process. Scale bars, 500 

μm. 



 

 

Supplementary Note 1 

 

Mathematical analysis of the Notch activity-dependent periodicity 

 

Basic formulation of the model 

To examine the dependence of the Hes7 expression period on the Notch activity, we studied the 

original model developed by Lewis (1) by following the mathematical analysis in ref (1). 

Consider a model of two variables, protein p(t) and mRNA m(t), formulated as, 
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where a and k represent protein production rates per mRNA molecule and maximum rate of 

mRNA, respectively, b and c are degradation rates, p0 is a gain parameter, and Tp and Tm are 

time delays for protein and mRNA generation. 

If we introduce a new variable ( ) ( )adv pp t p t T= + , we have 
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where T = Tm + Tp. To discuss the qualitative characteristics of the system, we introduce 

dimensionless variables and parameters as follows: 

t Tτ = ,  bTβ = ,  cTγ = ,  0ak bcpκ = , 

( ) ( )advP bcp t akτ = ,  ( ) ( )M cm t kτ = , 

where the parameters, k and p0, which regulate mRNA production rate, are aggregated into a 

single parameter κ, by which we can incorporate a Notch activity level into the model. Using 

these notations, the ODEs are transformed as 

 
( ) ( ) ( ){ }d1

d
P

P M
τ

τ τ
β τ

= − −  (S5) 

 
( ) ( ) ( )( ){ }d1 1

d
M

M f P
τ

τ τ
γ τ

= − − −  (S6) 



 

 

 ( )
( )2
1

1
f x

xκ
=

+
. (S7) 

Note that β and γ are Notch-independent constants and that the variables, P(τ) and M(τ), are the 

protein and mRNA levels normalized by the production rates a and k, respectively. These 

normalizations, in which both of the P(τ) and M(τ) have a range of (0,1), allow us to evaluate 

the protein and mRNA levels as the production rate scale. Equations (S5) and (S6) indicate that 

P(τ) converges to M(τ) exponentially with the β time scale, and that M(τ) approaches to the 

function of P(τ−1), f(x), exponentially with the γ  time scale. 

 

 

Notch activity-dependent oscillation amplitude 

Taking an analysis similar to that in ref (1), if the reactions are very fast due to large β and γ (so 

the right sides of Eqs. (S5) and (S6) can be approximated as zero), they have two quasi-steady 

states, (Pmax, Mmax) and (Pmin, Mmin), which satisfy 

 max max min min, ,P M P M= =  

 
( ) ( )max min2 2

min max

1 1,
1 1

M M
P Pκ κ

= =
+ +

. 

In the case of oscillation, where the maximum is larger than the minimum, the pair of (Pmax, 

Pmin) and (Mmax, Mmin) are the solutions to the quadratic equation x2 – x + 1/κ2 = 0. Therefore,  
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where 2 > κ for the oscillation case (Fig. S-I). 

 

 

 

 

 

 

 

 

 

Figure S-I: Dependence of oscillation amplitude on κ 
corresponding to Notch activity. The maximum and 
minimum values of quasi-steady states described by 
Eq. (S8) and (S9) are shown. 



 

 

Notch activity-dependent oscillation period 

As analyzed in ref (1), the oscillation period of the model expressed as Eqs. (S5)-(S7) can be 

approximated as 2(T+1/β+1/γ) when κ changes little. If κ has a different value from a control 

because of experimental manipulation (Nrarp KO in this work), it is important to take a 

computational approach to examine the κ-dependent oscillation period.  

The numerical simulation using Eqs. (S5)-(S7) with various κ values shows that the 

oscillation period has a positive correlation with κ, as shown in the left column of Fig. S-II. The 

figures in the right column show changes in the distribution of P(τ) values (blue points in the 

left column figures), suggesting that the term during which P(τ) is very small (bottom bars in 

the histograms) accounts for prolongation of the period by the increase in κ. Note that the period 

increases despite the decrease in most P(τ) values except for the bottom in the left column of 

Figure S-II: Comparison of the time courses of P(τ) and the histograms of the difference 
between the two distributions of P(τ) (blue points on the left) obtained by two κ values for 
an identical calculation time (right). The values of κ and the period are shown in each 
figure. 



 

 

Fig. S-II. Because the parameters, T, β, and γ, are constant in the numerical calculation, only κ 

can contribute to prolonging of the term with small P(τ). 

To discuss an approximate dependency of the period 

on κ, we focus on the characteristics of the function f(x) 

defined by Eq. (S7). Figure S-III, illustrating f(x), 

suggests that f(x) becomes small if x takes on a large 

value, and vice versa (see Eqs. (S6) and (S7)), and it 

indicates that f(x) is a monotonically decreasing function 

of x and its slope is steeper with larger κ. If we here 

define the threshold, S, at which the variable f(x) shifts to 

the increasing phase when x decreases (see Fig. S-III), the 

very small P(τ) in the Fig. S-II is equivalent to f(x) under 

S. Then the threshold of x in terms of S is given by 

1 1 1thx
Sκ

= − . (S10) 

When P(τ) increases by following M(τ), P(τ−1) decreases from nearly one to xth according to 

Eqs. (S6) and (S7). Since these equations have a form of the ODE, dx/dt = -x, thus, the amount 

of the P(τ−1) decrease can be approximated by an exponential function, 
1 21 1 1De

S
α

κ
− ⎛ ⎞≈ −⎜ ⎟

⎝ ⎠
, (S11) 

where D is a time interval necessary for P(τ−1) to 

decrease from nearly one to xth with a time constant α. By 

transforming this equation, we get 

1ln ln 1
2

D
S

αα κ ⎛ ⎞≈ − −⎜ ⎟
⎝ ⎠

, (S12) 

suggesting that the κ-dependent prolongation of the 

period has a logarithmic form of κ. This approximation 

shows good agreement with the numerical simulation 

with large κ, as shown in Fig. S-IV, where the amplitude 

of the oscillation is given by 

( ) 2
max min 1 4A P Pκ κ= − = − ,           (S13) 

Figure S-III: Comparison of shapes 
of f(x) with three values of the 
parameter κ. The horizontal dashed 
line indicates the threshold f(x) = S at 
which of f(x) shifts to the increasing 
phase when x decreases. The model 
oscillates when κ is larger than 2. 

Figure S-IV: Amplitude (upper) and 
period (lower) for various κ values 
Circles are given by numerical 
simulations and solid lines are Eq. 
(S13) and the least square fitting by 
using a logarithmic function of κ 
(Eq. (S12)). 



 

 

suggesting that the amplitude increases as κ (>2) increases and has an upper limit as shown in 

Fig. S-IV. 
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 Representative simulation parameter values. Oscillation is robust to changes in 

parameter values. 

Parameter Value (unit) Meaning 
a 0.5 (molecules/min) Production rate for mRNA 
b, c 0.11 (1/min) Degradation rate for NICD, mRNA, and protein 
p0 13 (min) Gain value of Hes7 for inhibition of protein production 
Tp 15 (min) 

Time delay for mRNA nuclear export and protein 
production 

Tm 20 (min) Time delay for Hes7 nuclear imports 

 
 



 

 

Supplementary Note 2 

 

Statistical analysis of somite number 

1 Outline 

To statistically evaluate the difference in the average somite number between two 

genotypes Nrarp-/- and Nrarp+/+, a paired t-test was first performed; the difference was 

not significant for E 8.5, while it was statistically significant for E 10.5 (p<0.02) and E 

11.5 (p<0.01). Next, to evaluate the statistical difference in terms of inference, such as 

the confidence interval (CI), we developed a generative model that simulates the 

statistical generation process of somite number of each embryo. This model includes a 

parameter mt that represents the mean genetic effect of a somite number decrease in 

genotype t=Nrarp-/- relative to the number of somites in t=Nrarp+/+. A 95% CI of the 

extension in the segmentation clock period was estimated after obtaining a 95% CI of 

the parameter mt by applying statistical inference to the generative model. 

Note that overall statistical significance was evaluated with the simple paired t-test, and 

the parameters were then estimated to further examine the physical meaning of the 

significance, if any. In the following, we define the generative model to evaluate the 

parameters and describe the inference technique we used. 

2 Generative model 

It is assumed that the somite number of each litter obeys the following generative 

model: 

xi = μl(i)+mt(i)+εi                     (1) 

where xi , μl(i), mt(i), and εi denote somite number of the i-th litter, mean somite number 
of wild-type littermates in the l(i)-th pregnant female, mean increase in the somite 

number of the t(i)-th genotype, and noise effect (variation) of an individual litter i, 

respectively. l=l(i) signifies the pregnant female that conceived the i-th litter, and t=t(i) 

signifies the genotype which the i-th litter belongs to; t=0 and t=1 denote wild type 

(+/+) and homo type (-/-), respectively. Since the mean increase mt is a relative one 

from the wild type’s somite number, m0=0 holds. 

It is natural to assume there are two factors leading to the statistical variation in the 

somite number: a pregnant female-dependent one and an individual litter-dependent one. 

To dissociate these factors, μl and εi are assumed to be generated by the following 
hierarchical model: 



 

 

μl  ~  N(μE(l),σμ
2),       (2)  

εi   ~  N(0,σ2),          (3) 

where μE(l), σμ
2, and σ2 are unknown parameters to be estimated. a ~N(b,c2) denotes 

that a obeys Gaussian distribution of mean b and variance c2. E=E(l) denotes the epoch 

of the l-th processed pregnant female, either E 8.5, E 10.5, or E 11.5. 

The parameters of the model should be estimated somehow on the basis of 

observation; somite number xi is observed for each litter. The parameters are divided 

into three categories: (a) parameters μE(l), σμ
2 and σ2 are point estimated by using the 

maximum likelihood method; (b) parameter μl is not estimated, because it is integrated 
out; and (c) parameter m1 is estimated as a 95% confidence interval (CI). 

Since equations (1), (2), and (3) define the likelihood function of the parameters, after 

integrating (marginalized) the likelihood function with respect to μl ((b)-type), the 
(a)-type parameters are estimated so as to maximize the marginalized likelihood, and CI 

of m1 ((c)-type) is also obtained. 

 

3 Parameter estimation results 

The observed data are summarized in Table S5, and the parameters estimated from 

them are shown in Table S6. 

 

Table S5. Statistics of somite number data. 
Processing epoch num. of pregnants num. of Nrarp+/+ litters num. of Nrarp-/- litters 

E8.5 6 19 19 

E10.5 18 49 69 

E11.5 8 25 25 

 

 

Table S6. Model estimation results. 
Processing epoch 95% CI of m1 μE σμ σ 

E8.5 (-1.02, 0.51) 12.37 2.21 1.17 

E10.5 (-0.92, -0.12) 39.67 3.38 1.09 

E11.5 (-2.65, -1.10) 52.77 2.02 1.33 

 



 

 

 

The 95% CI of m1 in table S6 is consistent with the result of the paired t-test, since the 

CI for E 8.5 includes zero while those for E 10.5 and E 11.5 do not. The estimate of μE, 
the average of mean somite number in the pregnant females, was slightly different from 

the average somite numbers of wild type litters, though the difference was negligible. 

The smaller estimated standard deviation σμ than σ implies that a high genetic relevance 
can be found even though there is a large variation in somite number between different 

pregnant females. 

We transformed the 95% CI (-2.6, -1.1) of m1 into that of the mean segmentation clock 

period. The average increase in somite number in 72 hours between E 8.5 and E 11.5 is 

μE11.5-μE8.5=40.4 in the wild type litter. The 95% CI of the increase in somites in the 
homo-Nrarp-loss type within the same 72 hours is (37.7, 39.3). Assuming a uniform 

somite generation process during the 72 hours between E 8.5 and E 11.5, the 95% CI of 

the segmentation clock period extension during the 72 hours is estimated to be (3.0, 7.5) 

minutes. 

 


