Supporting Information

Significant Enhancement of Docking Sensitivity using Implicit Ligand Sampling

Markus A. Lill, Mengang Xu

Table S1.High-affinity ligands specific for human (hDHFR), Pneumocystis carinii (pcDHFR), and Candida albicans (caDHFR) dihydrofolate reductase. Ligand names and scaffold types are consistent with those in Bowman et al. ¹

рс	DHFR	h[OHFR	caD	DHFR
Scaffold	Name	Scaffold	Name	Scaffold	Name
D	Methotrexate	D	AMT	Ν	HH-133
D	029630	D	8	Ν	HH-136
D	098579	D	9	0	8a
D	098580	D	10	0	8b
D	107146	D	6	0	8d
D	136735	F	1	0	8f
D	136736	F	5	0	8g
D	144698	F	16	0	8h
D	152737	F	17	0	8k
D	169531	F	36	0	81
E	174121	F	105952	0	8m
F	122870, 19	F	13	0	8r
F	129516, 22	F	14	0	8s
F	132483	F	15	0	8t
F	184692	F	2	0	8u
F	15	К	5-Me-5-dAMT	0	8v
J	21	К	5-Me-5-dMTX	0	8x
К	21	К	5-Me-10-Et-5-	0	13d
			dAMT		
К	13n, 2	К	5-dAMT		Ro 17-3279
К	13q, 43	К	11		

	5		
Ligand: BMZ	$r^2 = 0.42$	c ₀ =-8.02	
Atom i	Atom j	$d_{ij}^{>} \text{ or } d_{ij}^{<}$	$c_{ij}^{>/<}$
His57, C_{γ}	Glu192, C_{δ}	>	0.16
Tyr60A, C_{α}	Trp60D, C_{α}	<	-2.12
Tyr60A, C_{α}	Ser195, C_{α}	<	0.65
Tyr60A, C_{ξ}	Asp189, C _y	<	-0.51
Trp60D, C _α	Ile174, $C_{\gamma 1}$	>	0.14
Trp60D, $C_{\delta 2}$	Glu192, C_{α}	>	0.10
Lys60F, C_{α}	Ser195, C_{α}	>	-0.29
Ile174, C_{α}	Glu192, C_{δ}	<	0.11
Ile174, $C_{\gamma 1}$	Cys191, C_{α}	>	-0.23
Ile174, $C_{\gamma 1}$	Val213, C_{β}	<	-0.50
Ile174, $C_{\gamma 1}$	Gly219, C_{α}	>	0.39
Asp189, C_{α}	Val213, C_{α}	<	1.79
Asp189, C _γ	Ser195, C_{α}	<	0.46
Asp189, C _γ	Trp215, C_{α}	>	0.42
Ala190, C_{α}	Trp215, $C_{\delta 2}$	>	-0.60
Ala190, C_{α}	Gly216, C_{α}	<	-0.82
Cys191, S _γ	Trp215, $C_{\delta 2}$	<	-0.68
Glu192, C_{δ}	Val213, C_{α}	<	-0.23
Glu192, C_{δ}	Gly216, C_{α}	>	-0.20
Glu192, C_{δ}	Gly219, C_{α}	>	0.25
Ser195, O_{γ}	Gly219, C_{α}	<	-0.62
Val213, C_{α}	Gly226, C_{α}	<	-0.57
Gly216, C _α	Gly219, C_{α}	<	-0.71

Table S2. Results of multi-linear regression analysis for ligands BMZ, DA2K, C24 and G3X correlating $d_{ij}^{<}$ and $d_{ij}^{>}$ with the RMSD deviation from the native ligand conformation.

Ligand: DA2K	$r^2 = 0.75$	c ₀ =-1.39	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	c _{ij} >/<
Tyr60A, C_{α}	Trp60D, $C_{\delta 2}$	<	0.92
Trp60D, C_{α}	Glu192, C_{δ}	<	-0.43

Trp60D, $C_{\delta 2}$	Val213, C_{α}	<	-1.05
Leu99, C_{α}	Gly216, C_{α}	>	-1.54
ILE174, C_{α}	Ala190, C_{α}	>	-1.14
Asp189, C _γ	Gly216, C_{α}	<	-2.08
Cys191, C_{α}	Glu192, C_{δ}	>	0.86
Glu192, C_{δ}	Ser195, C_{α}	<	-0.75
Glu192, C_{δ}	Ser195, C_{α}	>	0.85
Glu192, C_{δ}	Trp215, $C_{\delta 2}$	<	-1.18
Ser195, C_{α}	Gly226, C_{α}	>	0.75

Ligand: C24	$r^2 = 0.72$	$c_0 = -9.51$	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	c _{ij} >/<
Lys60F, C_{α}	Glu192, C_{δ}	>	0.19
Leu99, C_{α}	Gly219, C_{α}	<	-0.31
Asp189, C _γ	Ser195, C_{α}	>	0.46
Ala190, C_{β}	Val213, C_{α}	>	-0.92
Cys191, S _γ	Ser195, C_{α}	>	0.44
Glu192, C_{δ}	Ser195, C_{α}	<	-0.48
Glu192, C_{δ}	Gly219, C_{α}	>	0.50
Ser195, O_{γ}	Trp215, $C_{\delta 2}$	<	-0.29
Val213, C_{α}	Gly219, C_{α}	<	-0.80

Ligand: G3X	$r^2 = 0.50$	c ₀ =-10.11	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	c _{ij} >/<
Asp72, C_{α}	Phe331, C_{α}	<	0.44
Asp72, C _γ	Phe331, C_{α}	<	-0.91
Asp72, C _γ	Tyr334, C_{ξ}	>	0.17
Trp84, C _α	Tyr121, C_{ξ}	<	-0.31
Trp84, C_{α}	Phe331, C_{α}	<	-1.14
Trp84, $C_{\delta 2}$	Gly441, C_{α}	>	0.89
Gly119, C _α	Tyr130, C_{α}	>	1.25
Gly119, C _α	Tyr130, C_{ξ}	>	-0.69
Gly119, C _α	Phe288, C_{α}	>	0.84

Tyr121, C_{α}	Glu199, C_{α}	<	-0.92
Tyr121, C_{α}	Glu199, C_{α}	>	-0.56
Tyr121, C_{α}	Phe290, C_{γ}	<	-1.45
Tyr121, C_{α}	Phe330, C_{α}	<	0.62
Tyr121, C_{ξ}	Phe288, C_{α}	<	0.85
Tyr121, C_{ξ}	Phe330, C_{γ}	<	-0.53
Ser122, C _α	Phe331, C_{α}	<	1.05
Ser122, O_{γ}	Glu199, C_{α}	<	1.12
Tyr130, C_{α}	Glu199, C_{α}	<	-0.80
Tyr130, C_{α}	Glu199, C_{δ}	>	-0.46
Tyr130, C _ξ	Ser200, O _y	>	-0.21
Ser200, O _γ	His440, C _γ	>	0.34
Phe288, C _α	Phe290, C_{α}	>	-1.54
Phe288, C _α	Phe331, C_{γ}	<	-2.47
Phe290, C_{γ}	Tyr334, C_{ξ}	<	-0.11
Phe330, C_{γ}	Tyr334, C_{α}	<	-0.27
Tyr334, C _ξ	His440, C_{γ}	<	-0.23

ij ij		01	
Ligand: BMZ	r ² =0.65	c ₀ =8.03	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	$c_{ij}^{>/<}$
His57, C_{α}	Tyr60A, C_{ξ}	>	0.43
His57, C_{α}	Trp215, C _{δ2}	<	-0.88
His57, C_{γ}	Trp60D, $C_{\delta 2}$	>	-0.20
His57, C_{γ}	Glu192, C_{δ}	<	-1.94
Tyr60A, C _ξ	Ala190, C_{β}	>	-0.53
Tyr60A, C _ξ	Cys191, C _α	>	0.38
Tyr60A, C _ξ	Val213, C_{α}	<	-0.37
Trp60D, C _{δ2}	Ser195, C_{α}	>	0.19
Lys60F, C_{α}	Asp189, C _γ	>	0.21
Lys60F, C_{α}	Glu192, C_{δ}	>	0.10
Lys60F, C_{α}	Gly226, C_{α}	>	-0.22
Leu99, C _a	Asp189, C _α	>	0.52
ILE174, C_{α}	Glu192, C_{δ}	<	0.26
ILE174, C _{γ1}	Val213, C_{β}	<	-0.49
Asp189, C_{α}	Ala190, C_{β}	<	1.07
Asp189, C _γ	Val213, C_{β}	<	1.25
Ala190, C_{α}	Ser195, C_{α}	<	-0.83
Ala190, C_{α}	Gly216, C_{α}	<	-1.00
Ala190, C_{β}	Cys191, C _α	>	1.53
Ala190, C_{β}	Cys191, S_{γ}	>	2.99
Cys191, C _α	Val213, C_{β}	<	-1.63
Cys191, S _γ	Glu192, C_{α}	<	-1.25
Cys191, S _γ	Ser195, O_{γ}	<	0.56
Cys191, S _γ	Trp215, C_{α}	>	-0.74
Glu192, C_{α}	Gly219, C_{α}	>	0.34
Glu192, C_{δ}	Ser195, O_{γ}	<	0.62
Ser195, O _γ	Gly219, C_{α}	<	-0.96
Ser195, O _γ	Gly226, C_{α}	<	-0.65

Table S3. Results of multi-linear regression analysis for ligands BMZ, DA2K, C24 and G3X correlating $d_{ij}^{<}$ and $d_{ij}^{>}$ with scores of binding poses.

Val213, C _α	Trp215, $C_{\delta 2}$	<	-0.76
Val213, C_{β}	Gly216, C_{α}	<	-0.69
Trp215, C _{δ2}	Gly216, C_{α}	>	0.52
Gly219, C_{α}	Gly226, C_{α}	<	-0.40

Ligand: DA2K	r ² =0.75	c ₀ =9.16	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	c _{ij} >/<
His57, C _α	Glu192, C_{α}	>	0.61
Trp60D, $C_{\delta 2}$	Asp189, C_{α}	>	0.26
Lys60F, C_{α}	Val213, C_{β}	<	-0.83
Asp189, C _γ	Val213, C_{α}	<	-2.53
Glu192, C_{α}	Gly219, C_{α}	>	0.83

Ligand: C24	$r^2 = 0.77$	c ₀ =-9.67	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	$c_{ij}^{>/<}$
His57, C_{α}	Lys60F, C_{ϵ}	>	0.18
Trp60D, C_{α}	Leu99, C_{α}	<	-1.76
Trp60D, C_{α}	Leu99, C_{γ}	>	-0.57
Trp60D, C_{α}	Ile174, $C_{\gamma 1}$	>	0.39
Trp60D, C_{α}	Gly219, C_{α}	>	0.36
Leu99, C_{α}	Asp189, C _y	>	1.07
Ala190, C_{α}	Glu192, C_{δ}	<	-1.55
Ala190, C_{β}	Gly219, C_{α}	>	1.08
Cys191, C_{α}	Glu192, C_{δ}	<	1.23

Ligand: G3X	$r^2 = 0.76$	c ₀ =-10.63	
Atom i	Atom j	$d_{ij}^{>}$ or $d_{ij}^{<}$	c _{ij} >/<
Asp72, C_{α}	Asp72, C_{γ}	<	5.79
Asp72, C_{α}	Ser122, C_{α}	<	0.43
Asp72, C _γ	Gly119, C_{α}	>	0.27
Asp72, C_{γ}	Tyr121, C_{ξ}	<	-0.55
Trp84, C _α	Trp84, $C_{\delta 2}$	<	1.64
Trp84, C_{α}	Gly119, C_{α}	>	0.34

Trp84, C _α	Tyr121, C_{ξ}	>	-1.10
Trp84, C _α	Tyr130, C_{ξ}	>	0.49
Trp84, C _α	Phe290, C_{α}	>	1.15
Trp84, C _α	Phe331, C_{α}	<	-0.98
Trp84, C _{δ2}	Glu199, C_{δ}	>	-0.75
Gly119, C _α	Glu199, C_{δ}	<	-0.48
Tyr121, C_{α}	Phe288, C_{α}	<	0.88
Tyr121, C_{α}	Phe330, C_{γ}	<	-0.50
Tyr121, C_{α}	Trp334, C_{α}	<	-0.34
Tyr121, C_{α}	His440, C _α	<	0.50
Tyr121, C _ξ	Ser200, O _γ	<	-0.45
Tyr121, C _ξ	His440, C _γ	<	-0.47
Tyr121, C _ξ	Gly441, C_{α}	>	-0.74
Ser122, C _α	Tyr130, C_{α}	>	0.30
Ser122, O_{γ}	Phe331, C_{α}	>	0.47
Tyr130, C_{α}	Phe290, C_{γ}	>	-0.65
Glu199, C _α	Phe290, C_{α}	<	-0.60
Glu199, C _α	Tyr334, C_{α}	<	-0.40
Ser200, Ο _γ	Phe330, C_{α}	<	-1.82
Phe288, C_{γ}	Phe331, C_{α}	<	0.66
Phe290, C _α	Phe290, C_{γ}	>	7.31
Phe330, C_{α}	Tyr334, C_{α}	<	-1.39
Phe330, C_{γ}	Tyr334, C_{ξ}	>	0.52
Phe330, C_{γ}	Gly441, C_{α}	>	0.37

Ligand name	Experimental ΔG	Predicted ΔG	Deviation	Predicted ΔG	Deviation
or PDB code	[kcal/mol]	Ligand model	[kcal/mol]	Long apo	[kcal/mol]
		[kcal/mol]		[kcal/mol]	
1ypg	-10.90	-12.46	1.56	-12.75	1.86
1ype	-11.04	-10.18	0.86	-8.71	2.33
1урј	-9.58	-9.94	0.35	-8.40	1.18
1oyt	-9.87	-8.34	1.53	-9.31	0.55
2cf8	-11.04	-11.35	0.31	-14.05	3.01
2cn0	-10.44	-11.41	0.97	-11.07	0.63
1vzq	-10.16	-10.25	0.09	-7.79	2.37
rac-8 from ²	-7.10	-6.19	0.91	-5.20	1.90
rac-13a from ³	-7.77	-9.32	1.56	-9.24	1.48
rac-16 from ⁴	-6.86	-5.82	1.04	-7.87	1.01
rac-5 from ⁵	-6.31	-7.85	1.54	-7.26	0.95
rac-8 from ⁵	-8.25	-6.31	1.93	-6.57	1.67
rac-9 from ⁵	-11.33	-10.74	0.59	-11.38	0.05
(+)-7 from ⁶	-8.65	-9.14	0.49	-9.70	1.05

Table S4. Predicted versus experimental binding affinity for 14 compounds binding to thrombin.

Reference List

- 1. Bowman, A. L.; Lerner, M. G.; Carlson, H. A. Protein flexibility and species specificity in structure-based drug discovery: dihydrofolate reductase as a test system. *J. Am. Chem. Soc.* **2007**, *129*, 3634-3640.
- Obst, U.; Banner, D. W.; Weber, L.; Diederich, F. Molecular recognition at the thrombin active site: Structure-based design and synthesis of potent and selective thrombin inhibitors and the x-ray crystal structures of two thrombin-inhibitor complexes. *Chemistry & Biology* 1997, 4, 287-295.
- Obst, U.; Banner, D. W.; Weber, L.; Diederich, F. Molecular recognition at the thrombin active site: Structure-based design and synthesis of potent and selective thrombin inhibitors and the x-ray crystal structures of two thrombin-inhibitor complexes. *Chemistry & Biology* 1997, 4, 287-295.

- 4. Obst, U.; Banner, D. W.; Weber, L.; Diederich, F. Molecular recognition at the thrombin active site: Structure-based design and synthesis of potent and selective thrombin inhibitors and the x-ray crystal structures of two thrombin-inhibitor complexes. *Chemistry & Biology* **1997**, *4*, 287-295.
- Schweizer, E.; Hoffmann-Roder, A.; Olsen, J. A.; Seiler, P.; Obst-Sander, U.; Wagner, B.; Kansy, M.; Banner, D. W.; Diederich, F. Multipolar interactions in the D pocket of thrombin: large differences between tricyclic imide and lactam inhibitors. *Organic* & *Biomolecular Chemistry* 2006, *4*, 2364-2375.
- Schweizer, E.; Hoffmann-Roder, A.; Scharer, K.; Olsen, J. A.; Fah, C.; Seiler, P.; Obst-Sander, U.; Wagner, B.; Kansy, M.; Diederich, F. A fluorine scan at the catalytic center of thrombin: C-F, C-OH, and C-OMe bioisosterism and fluorine effects on pK(a) and log(D) values. *Chemmedchem* 2006, *1*, 611-621.