Supplementary Information

Contents:

- Supplementary Figure S1. Alignment of proteins homologous to I-AniI.
- Supplementary Table S1. Percent identity and similarity to I-AniI for each homologue previously identified in Figure S1.
- Supplementary Figure S2. Example putative target site identification for I-PnoIP, an I-AniI homologue.
- Supplementary Figure S3. Specificity profile of I-NfiIP and I-AniI-S111Y at 25nM and 250nM enzyme concentration.
- Supplementary Table S2. EC_{0.5max} (nM) cleavage efficiencies and cleavage plateaus (*f_{max}*, the maximal fraction of site cleavage) for homologue-based I-AniI variants tested on singly-substituted target sites.
- Supplementary Figure S4. Cleavage profiles for the C-terminal loop transfers and I-AniI-F13Y at positions +7 through +10.
- Supplementary Figure S5. Cleavage profiles for the K200 variants and I-AniI-F13Y at +3, +4, and +5.
- Supplementary Figure S6. Cleavage profiles of variants affecting the central four target site positions.
- Supplementary Figure S7. Cleavage profiles for I-AniI-S111Y at positions -6 and -5.
- Supplementary Figure S8. Cleavage profile for I-PnoIP N-terminal transfer at -5 position.
- Supplementary Table S3. Sequences of target sites near disease-causing genes that contain the novel +3C, +7A, and -6T specificities.

Supplementary Figure S1. Alignment of proteins homologous to I-AniI.

Multiple sequence alignment of proteins homologous to I-AniI found using NCBI BLAST's blastp and tblastn (1) that have putative (denoted by suffix P (2)) endonuclease activity as of March 2011. The repository of data from new protein sequences and their characterizations is continuously growing (e.g. the recently elucidated maturase activity of the I-AniI homologue 2AB5 (3)). The most distant homologue in this alignment, I-MfaIP, has 47% sequence identity and 70% similarity. Alignments with less than 40% identity were predicted to have significantly divergent putative target site sequences (data not shown) and were not chosen for examination.

Supplementary Table S1. Percent identity and similarity to I-AniI for each homologue previously identified and aligned in Figure S1.

Homologue Name	Accession Number	Percent Identity to I-AniI	Percent Similarity to I-AniI
I-AniI	pdb 2QOJ Z	100%	100%
I-NfiIP	gb AAX39426.1	93%	98%
I-AbrIP	dbj AB026120.1	92%	97%
I-AcaIP	gb EER36338.1	88%	95%
I-HjeIP	gb AF447590.1	86%	95%
I-GzeIP	gb ABC86634.1	84%	93%
I-MfrIP	gb GU952815.1	81%	90%
I-LmaIP	emb CBX89979.1	79%	89%
I-PnoIP	gb ABU49435.1	78%	91%
I-MlaIP	gb GU933642.1	72%	86%
I-AchIP	gb AAX34413.1	71%	86%
I-MfiIP	gb AF343070.1	69%	79%
I-VinIP	gb AAB95258.1	64%	79%
I-TinIP	dbj AB175764.1	59%	75%
I-GpuIP	dbj AB175779.1	59%	75%
I-TasIP	dbj AB175746.1	57%	74%
I-TbrIP	dbj AB175750.1	57%	76%
I-ApaIP	gb AF538047.1	52%	67%
I-SceIP	emb CAA32785.1	51%	70%
I-SdoIP	emb X59280.1	50%	72%
I-SpaIP	gb EU852811.1	50%	72%
2AB5 (maturase)	pdb 2AB5 A	49%	67%
I-YliIP	emb AJ307410.1	49%	66%
I-MfaIP	emb CAY39274.1	47%	70%

Supplementary Figure S2. Example putative target site identification for I-PnoIP, an I-AniI homologue. An intron (approximately spanning positions 8073 through 9092) within the cytochrome B gene of the complete annotated Phaeosphaeria nodorum SN15 mitochondrion genome (gb|EU053989.1) is observed to encode a LAGLIDADG endonuclease from position 8108 through 9037 (bold text), the homologue ORF. The flanking nucleotide sequences were examined and aligned as shown to each half of the native I-AniI target site. The resulting predicted sequence of the target site for I-PnoIP is colored yellow.

Pno	genome	8041	aggacaagatattgttgaatttatt <mark>tgaggtggttt</mark> aaacacagttggac	8090
			TGAGGAGGTTT	\leftarrow (-) half of I-AniI site
		8091	cacattacggtgacgta atgttaaaaattttgcttaatgctggaaaatcc	8140
		8141	cccaatttagtatttgcatacgatttattcttgattttaacaacaattat	8190
		8191	ttacgtaaaaattgcattgacatggggacaatcagcaggggtgagaagta	8240
		8241	tacacacttcagaagcctctcagagactacatgcagaagatctctcatat	8290
		8291	${\tt gcttatttagtaggtttatttgaaggtgacggtttttttactgttacaaa$	8340
		8341	aaaaggtaaatatctagcctatgaattaggtattgaattgtctattaaag	8390
		8391	acgttcaattgatatataaaattaaaatcttttagctgtaggtgtagta	8440
		8441	agttttagaacaagaaatgaaattgaaatggtatctttaagaattagaaa	8490
		8491	aaaagaccatttaaaagaatttattctacccatatttgataaatacccta	8540
		8541	tgttttctaataaacaacttgattacttaagatttaaagacgcactatta	8590
		8591	tctggtactatatatccagagaatttatctgaatatattagagatagtaa	8640
		8641	acctataaattcgatagaatctattacaagtgcttcttattttcccgctt	8690
		8691	gattagtaggatttatagaagctgaaggttgtttcagtatttacaaatta	8740
		8741	cacaaagaggaagattatttagtggctagtttcgatattgctcaaagaga	8790
		8791	tggagaggtattaatatctgctattcgtgagtatttatcttttactaatg	8840
		8841	ctatatacatagataaaactaattgttccagactgaaagttacaggtgta	8890
		8891	agatctatagaaaatgttattaattttttacaaaaggctcctgtaaaatt	8940
		8941	attgggtaataaaaaattacaatatttattatgaattaaacaattacgta	8990
		8991	ctatacctagatattcagagaaaattaagataccttcaaattactaaa ga	9040
		9041	gagatcaagatatagtccgatcaataaagaaatttattgagcgtaacgat	9090
		9091	agtttgtttcaaatgaagttaccaacacaaatg <mark>ctctgttaa</mark> caatgcta .	9140
			CTCTGTAAA	← (+) half of I-AniI site

Supplementary Table S2. $EC_{0.5max}$ (nM) cleavage efficiencies and cleavage plateaus (f_{max} , the maximal fraction of site cleavage) for homologue-based I-AniI variants tested on singlysubstituted target sites. Variants are grouped into categories (C-terminal loops, K200, Central 4 loops, Core Mutations) dependent on the location and theorized role of the mutations transferred to the I-AniI scaffold. All variants include the F80K and L233K mutations for solubility, with the exception of the K24N/T29K variant that only includes F80K. The base activity column indicates whether the variant was made with the activating F13Y or S111Y mutations. EC_{0.5max} values are the mean $(nM) \pm coefficient$ of variation (%CV) of two independently determined enzyme cleavage profiles chosen (via inspection for substrate degradation and experimental error) from at least two separate *in vitro* cleavage assays on plasmid DNA substrates containing single base-pair substitutions from the I-AniI wild-type target site. The CV is given as a percentage measure of variability estimated through dividing the standard error from the mean (SEM) by the mean. Values of $EC_{0.5max}$ >750nM are too high to allow accurate quantitative determination, and therefore no cleavage plateau is reported. $f_{max} \approx 1$ designates a cleavage plateau at its greatest allowable value, meaning the substrate can be completely cleaved with no remaining uncut fraction.

Variant	Mutations	Base	Position		FC (nM)	Cleavage
C-terminal loops	Mutations	Activity	TOSITION		EC _{0.5max} (IIIVI)	Tlateau
			wild-type		$4 \pm 3\%$	0.980
			С	$3 \pm 28\%$	0.987	
			+8A	G	$19 \pm 40\%$	0.938
				Т	$3 \pm 41\%$	0.975
	VICE NICTH DICOP DICOP INCOV	F1237		С	$70 \pm 23\%$	~1
I-PhoIP	v1531, N15/H, D159E, D160E, 1164v	FISY	+9A	G	$41 \pm 23\%$	~1
				Т	$15 \pm 31\%$	0.987
			$\begin{array}{c c} \hline & 1 \\ \hline \\ \hline & 1 \\ \hline \hline & 1 \\ \hline \hline \\ \hline & 1 \\ \hline \hline \\ \hline & 1 \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline$	6 ± 9%	0.981	
			$+10G$ C $8 \pm 27\%$			0.960
				Т	$5\pm42\%$	0.974
			wild-type		$8 \pm 6\%$	0.977
				А	$8 \pm 31\%$	0.995
			+7T	С	$74 \pm 5\%$	0.965
				G	$328\pm7\%$	~1
				С	$8 \pm 4\%$	0.985
	VIEN VIEN LIET MITTY DIGT		+8A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.948	
I-AchIP	inserted A after 160, D161T, I164A	F13Y			0.980	
				С	$10 \pm 8\%$	0.981
			+9A	G	$11 \pm 8\%$	0.986
				Т	$9\pm3\%$	0.981
			_	А	$8\pm20\%$	0.966
			+10G	С	8 ± 13%	0.957
				Т	$8\pm23\%$	0.974
			wild-type		$86 \pm 35\%$	0.941
				А	$20 \pm 32\%$	0.934
I-TasIP	K155T, L156R, N157T, K158 deletion,	F13Y	+7T	С	$588\pm26\%$	~1
	D160H, D161S, Y162S, L163K			G	$459\pm41\%$	0.752
			+8A	С	$48 \pm 18\%$	0.856
			1021	G	$6 \pm 13\%$	0.942

				-		
				Т	$35 \pm 13\%$	0.910
				С	$6 \pm 1\%$	0.857
			+9A	G	81 ± 13%	0.864
				Т	$79 \pm 11\%$	0.925
				А	$139 \pm 25\%$	~1
			+10G	С	$15 \pm 22\%$	0.928
				Т	$80 \pm 5\%$	~1
K200		<u> </u>	1	1	00 - 570	
11200			wild-type		$6 \pm 5\%$	0.981
			with type	Δ	$146 \pm 4\%$	0.854
			+3T	C	$140 \pm 4\%$ 14 + 39%	0.025
I-NfiIP	1164V K200N	F13Y		G	$14 \pm 39\%$	0.525
		1101		•	$155 \pm 3\%$	0.070
			+4C	A	$260 \pm 7\%$	0.565
			140	С т	$205 \pm 14\%$	~1
				1	$155 \pm 32\%$	0.012
			wild-type	Ι.	/ ± 15%	0.977
			127	A	$140 \pm 7\%$	~1
			+31	С	$358 \pm 27\%$	0.929
				G	$42 \pm 9\%$	0.996
I-PnoIP	K200R	F13Y	. 10	Α	$118 \pm 4\%$	~1
			+4C	G	$116 \pm 8\%$	~1
				Т	$18 \pm 17\%$	0.962
				Α	$5 \pm 28\%$	0.951
			+5T	С	$17 \pm 31\%$	0.950
				G	$9 \pm 24\%$	0.933
Central 4 loons						
Central 4 100ps		1				
			wild-type	_	7 ± 28%	0.919
			wild-type	Α	$7 \pm 28\%$ $100 \pm 7\%$	0.919 ~1
			wild-type +2C	A G	$7 \pm 28\%$ 100 ± 7% 348 ± 7%	0.919 ~1 0.717
I-GzeIP*	R172K, T196Y, N197D	S111Y	wild-type +2C	A G T	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$	0.919 ~1 0.717 0.954
I-GzeIP*	R172K, T196Y, N197D	S111Y	+2C	A G T A	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$	0.919 ~1 0.717 0.954 ~1
I-GzeIP*	R172K, T196Y, N197D	S111Y	wild-type +2C +3T	A G T A C	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$	0.919 ~1 0.717 0.954 ~1 0.860
I-GzeIP*	R172K, T196Y, N197D	SIIIY	wild-type +2C +3T	A G T A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1
I-GzeIP*	R172K, T196Y, N197D	SIIIY	wild-type +2C +3T wild-type	A G T A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after	S111Y	wild-type +2C +3T wild-type	A G T A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L	S111Y S111Y	wild-type +2C +3T wild-type -2T	A G T A C G A C	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L	S111Y S111Y	wild-type +2C +3T wild-type -2T	A G T C G A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$	$\begin{array}{c} 0.919 \\ \sim 1 \\ 0.717 \\ 0.954 \\ \sim 1 \\ 0.860 \\ \sim 1 \\ 0.956 \\ 0.953 \\ 0.987 \\ 0.979 \end{array}$
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L	S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type	A G T A C G A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$	$\begin{array}{c} 0.919 \\ \sim 1 \\ 0.717 \\ 0.954 \\ \sim 1 \\ 0.860 \\ \sim 1 \\ 0.956 \\ 0.953 \\ 0.987 \\ 0.979 \\ 0.962 \end{array}$
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T, E63L, I64V, SGVVS	S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type	A G T A C G G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.953 0.987 0.979 0.962 0.927
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T, E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V	S111Y S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T	A G T A C G G A C	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.953 0.987 0.979 0.962 0.927 0.929
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T , E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V	S111Y S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T	A G T A C G G A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T, E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V	S111Y S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T	A G T A C G G A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932
I-GzeIP* I-AchIP I-VinIP Loop Core mutations	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T, E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V	S111Y S111Y S111Y S111Y	wild-type+2C+3Twild-type-2Twild-type-2Twild-type	A G T A C G G A C G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932
I-GzeIP* I-AchIP I-VinIP Loop Core mutations	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L S57G, K60D, N62T , E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V	S111Y S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T wild-type	A G T A C G G A C G G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$ >750 >750	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932 N/A N/A
I-GzeIP*	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T , E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V	S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T wild-type -2T wild-type -2G -2G wild-type -2G	A G T A C G G A C G G A C G G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$ >750 >750 >750	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.962 0.927 0.929 0.929 0.932 N/A N/A N/A
I-GzeIP* I-AchIP I-VinIP Loop Core mutations I-VinIP w/o core	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T , E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V A68Y, R70K	S111Y S111Y S111Y	wild-type+2C+3Twild-type-2Twild-type-2Twild-type-2G	A G T A C G G A C G G A C G G	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$ >750 >750 >750 >750	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932 N/A N/A N/A N/A
I-GzeIP* I-AchIP I-VinIP Loop Core mutations I-VinIP w/o core	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L S57G, K60D, N62T, E63L, 164V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V A68Y, R70K	S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T wild-type -2G wild-type -2G wild-type -2G	A G T A C G G A C G G A C G G	$\begin{array}{c} 7 \pm 28\% \\ 100 \pm 7\% \\ 348 \pm 7\% \\ 27 \pm 25\% \\ 212 \pm 6\% \\ 315 \pm 6\% \\ 156 \pm 6\% \\ 156 \pm 6\% \\ 18 \pm 4\% \\ 6 \pm 2\% \\ 40 \pm 6\% \\ 10 \pm 16\% \\ 32 \pm 9\% \\ 26 \pm 5\% \\ 21 \pm 24\% \\ 23 \pm 28\% \\ \hline \\ >750$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932 N/A N/A N/A N/A N/A N/A
I-GzeIP* I-AchIP I-VinIP Loop Core mutations I-VinIP w/o core	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, I64T, E65K, M66L S57G, K60D, N62T, E63L, I64V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V A68Y, R70K	S111Y S111Y S111Y	wild-type +2C +3T wild-type -2T wild-type -2T wild-type -2G wild-type -2T -2T wild-type -2T	A G T A C G G A C G G A C C G C T T C C G	$\begin{array}{c} 7 \pm 28\% \\ 100 \pm 7\% \\ 348 \pm 7\% \\ 27 \pm 25\% \\ 212 \pm 6\% \\ 315 \pm 6\% \\ 156 \pm 6\% \\ 156 \pm 6\% \\ 18 \pm 4\% \\ 6 \pm 2\% \\ 40 \pm 6\% \\ 10 \pm 16\% \\ 32 \pm 9\% \\ 26 \pm 5\% \\ 21 \pm 24\% \\ 23 \pm 28\% \\ \hline \\ \begin{array}{c} >750 \\$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.932 N/A N/A N/A N/A N/A N/A
I-GzeIP* I-AchIP I-VinIP Loop Core mutations I-VinIP w/o core	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L S57G, K60D, N62T, E63L, 164V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V A68Y, R70K	S111Y S111Y S111Y	wild-type+2C+3Twild-type-2Twild-type-2Twild-type-2T	A G T A C G G A C G G A C C G T T C G G T	$\begin{array}{c} 7 \pm 28\% \\ 100 \pm 7\% \\ 348 \pm 7\% \\ 27 \pm 25\% \\ 212 \pm 6\% \\ 315 \pm 6\% \\ 156 \pm 6\% \\ 18 \pm 4\% \\ 6 \pm 2\% \\ 40 \pm 6\% \\ 10 \pm 16\% \\ 32 \pm 9\% \\ 26 \pm 5\% \\ 21 \pm 24\% \\ 23 \pm 28\% \\ \hline \\ \hline \\ >750$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.953 0.987 0.979 0.962 0.927 0.929 0.922 N/A N/A N/A N/A N/A N/A
I-GzeIP* I-AchIP I-VinIP Loop Core mutations I-VinIP w/o core	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L S57G, K60D, N62T , E63L, 164V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V A68Y, R70K	S111Y S111Y S111Y	wild-type+2C+3Twild-type-2Twild-type-2Twild-type-6G-5Awild-type	A G T A C G G A C G G C G G T T C C G T	$7 \pm 28\%$ $100 \pm 7\%$ $348 \pm 7\%$ $27 \pm 25\%$ $212 \pm 6\%$ $315 \pm 6\%$ $156 \pm 6\%$ $18 \pm 4\%$ $6 \pm 2\%$ $40 \pm 6\%$ $10 \pm 16\%$ $32 \pm 9\%$ $26 \pm 5\%$ $21 \pm 24\%$ $23 \pm 28\%$ >750 >70	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.929 0.932 N/A N/A N/A N/A N/A N/A N/A N/A
I-GzeIP* I-AchIP I-VinIP Loop Core mutations I-VinIP w/o core I-VinIP w/ core	R172K, T196Y, N197D K60T, R61K, N62K, E63D, inserted G after 63, 164T, E65K, M66L S57G, K60D, N62T , E63L, 164V, SGVVS insert after 64, E65K, A68Y, L69F, R70K, I71V A68Y, R70K	S111Y S111Y S111Y	wild-type+2C+3Twild-type-2Twild-type-2Twild-type-6G-5Awild-type-6G	A G T A C G G A C G G A C G G T T C C G G	$\begin{array}{c} 7 \pm 28\% \\ 100 \pm 7\% \\ 348 \pm 7\% \\ 27 \pm 25\% \\ 212 \pm 6\% \\ 315 \pm 6\% \\ 156 \pm 6\% \\ 18 \pm 4\% \\ 6 \pm 2\% \\ 40 \pm 6\% \\ 10 \pm 16\% \\ 32 \pm 9\% \\ 26 \pm 5\% \\ 21 \pm 24\% \\ 23 \pm 28\% \\ \hline \\ \end{array}$	0.919 ~1 0.717 0.954 ~1 0.860 ~1 0.956 0.953 0.987 0.979 0.962 0.927 0.929 0.922 N/A N/A N/A N/A N/A N/A N/A N/A

				С	>750	N/A
				Т	>750	N/A
				C	>750	N/A
			-5A	G	721 + 5%	
				т	>750	N/A
			wild-type	1	68 + 16%	- 1N/A
			what type		$182 \pm 45\%$	0.220
			-6G	A	162 ± 4370	0.229 N/A
I VinID S111V w/o core	468V P70K	\$111V	-00	T	245 + 159/	1N/A
	A001, K/0K	51111			$243 \pm 13\%$	~1
			-54	C	$525 \pm 5\%$	~1
			-511	т	$111 \pm 23\%$	~1
			wild_type	1	$424 \pm 4\%$	0.955
			wnu-type		$31 \pm 34\%$	~1
			66	A	$1/6 \pm 24\%$	0.310
L VinID S111V w/ core	468V 169E P70K 171V	\$111V	-00	C T	>/50	N/A
	A001, L091, K/0K, 1/1V	51111			$135 \pm 13\%$	0.983
			5.4	<u> </u>	$362 \pm 0\%$	~1
			-3A	G	$89 \pm 10\%$	0.996
			wild type	1	$404 \pm 1\%$	~1
			whu-type		$32 \pm 9\%$	0.962
			60	A	$208 \pm 22\%$	0.995
	S57G, K60D, N62T, E63L, I64V, SGVVS	C111X	-00	C	$112 \pm 19\%$	0.996
I-VINIP Loop	Insert alter 64, E65K, A68 I, L69F, K/0K, I71V	SIIIY		T	$28 \pm 13\%$	0.994
			5.4	С	67 ± 1%	0.989
			-3A	G	31 ± 8%	0.957
			11.1	Т	38 ± 15%	0.969
			wild-type		>750	N/A
K24N/L28V/T29K	K24N, L28V, T29K		0.4	С	>750	N/A
			-8A	G	$23 \pm 15\%$	0.939
				Т	$750 \pm 9\%$	~1
			-8A		>750	N/A
K24N/T29K	K24N, T29K, lacking L233K			С	>750	N/A
				G	$23 \pm 8\%$	0.873
				Т	>750	N/A
I-Anil Base Activity Com	parison		1			
			wild-type		$10 \pm 31\%$	0.996
				Α	$194 \pm 35\%$	0.982
			+2C	G	$608 \pm 11\%$	0.310
				Т	$17 \pm 23\%$	0.900
				Α	$343 \pm 26\%$	0.950
			+3T	С	$503 \pm 20\%$	0.869
				G	$214 \pm 7\%$	~1
I-AniI-F13Y	F13Y	F13Y	+4C	Α	$393\pm13\%$	0.921
				G	$437\pm25\%$	0.898
			+5T +7T	Т	$236\pm19\%$	0.943
				Α	11 ± 24%	0.934
				С	$60 \pm 35\%$	0.967
				G	$27 \pm 40\%$	0.987
				Α	$119\pm28\%$	0.949
				С	$140\pm21\%$	~1
				G	$189\pm26\%$	~1

1	1	1	i	i -	1	1
				С	$9\pm28\%$	0.964
			+8A	G	$36 \pm 11\%$	0.983
				Т	$9\pm26\%$	0.956
				С	$101 \pm 1\%$	~1
			+9A	G	$25 \pm 10\%$	0.971
				Т	$23 \pm 44\%$	0.981
				А	$5 \pm 9\%$	0.959
			+10G	С	$12 \pm 35\%$	0.950
				Т	$9\pm36\%$	0.944
			wild type		$9 \pm 21\%$	0.969
				Α	>750	N/A
	I-AniI-S111Y S111Y	S111Y	-6G	С	$379 \pm 21\%$	~1
				Т	173 ± 5%	~1
I Apil S111V			-5A	С	55 ± 2%	~1
1-AIII-51111				G	21 ± 21%	0.989
				Т	$27 \pm 25\%$	0.985
			-2T	А	$7 \pm 20\%$	0.959
				С	$12 \pm 1\%$	0.967
				G	11±3%	0.975

* This variant contains an additional I248V mutation that does not affect cleavage efficiency, as it is at the end of the C-terminal domain far from the interface.

Supplementary Figure S3. Specificity profile of I-NfiIP and I-AniI-S111Y at 25nM and 250nM enzyme concentration. Cleavage fractions of wild-type (denoted by asterisk) and singly-substituted target sites for all 20 positions are shown. Assays were performed in triplicate, with error bars representing the SEM. A fraction of 1 indicates complete cleavage of the substrate with no remaining uncut fraction. Since the sequence of homologue I-NfiIP contains the activating mutation S111Y, its profile is compared to that of I-AniI-S111Y. Though the specificity pattern is similar overall, the observed novel +3C specificity was later confirmed in a variant containing the I-NfiIP-derived K200N transfer (Figure 2b).

Supplementary Figure S4. Cleavage profiles for the C-terminal loop transfers and I-AniI-F13Y at positions +7 through +10.

Supplementary Figure S5. Cleavage profiles for the K200 variants and I-AniI-F13Y at +3, +4, and +5.

Supplementary Figure S6. Cleavage profiles of variants affecting the central four target site positions. Results for I-AniI-F13Y at position +2 and I-AniI-S111Y at -2 are provided here for comparison; the plot for I-AniI-F13Y at +3 can be seen in Supplementary Figure S5.

Supplementary Figure S7. Cleavage profiles for I-AniI-S111Y at positions -6 and -5. The corresponding $EC_{0.5max}$ (nM) were shown previously (Figure 3b) along with the cleavage plots for the I-VinIP derived variants (Figure 3a) evidencing the important role of core mutations.

Supplementary Figure S8. Cleavage profile for I-PnoIP N-terminal transfer at the -5 position. The -5T substitution is preferred over the wild-type -5A. This result is in accordance with the -5T of the predicted I-PnoIP target site given in Figure 1c.

Supplementary Table S3. Sequences of target sites near disease-causing genes that contain the novel +3C, +7A, and -6T specificities.

Feasibly targetable cleavage sites in DNA sequences of disease-causing genes were identified computationally according to previously validated methods (4). For the site sequences given below, bases in lower case lettering differ from the native I-AniI target site. Colored bases indicate the substitutions that could not be cleaved prior to this study: -6T (yellow), +3C (blue), and +7A (green).

Human CCR5, a coreceptor for HIV-1, has been successfully targeted and modified by zincfinger nucleases (5) and is now undergoing clinical trials (6), but there is potential for further modification with homing endonucleases. Nine target site positions differ from that of I-AniI, and we found homologue-derived mutations that can be grafted onto the I-AniI scaffold to target the thymine substitution at position -6 and the adenine at +7. Two target sites found in the murine fumaryl acetoacetate hydrolase gene (FAH, mutations can lead to tyrosinemia (7)) are also shown to have sets of substitutions relative to I-AniI that contain +3C, +7A, and -6T. Lastly, recent work has addressed gene delivery in large animal models that shows great potential in preclinical studies, especially canine models. Pyruvate kinase (PK) deficiency in dogs is associated with severe hemolytic anemia that can be treated via allogeneic transplantation, and *in vivo* gene delivery through transduced cells can sufficiently correct the XSCID disease phenotype (8). Both genes contain targetable sites that can benefit from our novel specificities.

Gene	Target Site
CCR5	ccAG <mark>t</mark> AtGTTgCcCac <mark>a</mark> AAA
FAH (Target Site 1)	TGAGccctTTcC <mark>c</mark> CccTAgc
FAH (Target Site 2)	TGAG <mark>t</mark> AGcTTTCTCat <mark>a</mark> Agt
РК	cGtGGccaTTgC <mark>c</mark> CTGgAcA
XSCID	gctGctGcTTctTCTG <mark>a</mark> ccA

^{1.} Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) J. Mol. Biol. 215, 403-410

7. Aponte, J.L., Sega, G.A., Hauser, L.J., Dhar, M.S., Withrow, C.M., Carpenter, D.A., Rinchik, E.M., Culiat, C.T., and Johnson, D.K. (2001) *Proc. Natl. Acad. Sci. U.S.A.* **98**, 641-645

8. Trobridge, G.D., and Kiem, H-P. (2010) Gene Ther. 17, 939-948

^{2.} Roberts, R.J., Belfort, M., Bestor, T., Bhagwat, A.S., Bickle, T.A., Bitinaite, J., Blumenthal, R.M., Degtyarev, S.Kh., Dryden, D.T., Dybvig, K., et al. (2003) *Nucleic Acids Res.* **31**, 1805-1812

^{3.} Longo, A., Leonard, C.W., Bassi, G.S., Berndt, D., Krahn J., Hall, T.M., and Weeks, K.M. (2005) *Nat. Struct. Mol. Biol.* **12**, 779-787

^{4.} Ashworth, J., Taylor, G. K., Havranek, J.J., Quadri, S.A., Stoddard, B.L., and Baker, D. (2010) *Nucleic Acids Res.* **38**, 5601-5608

^{5.} Guo, H., Karberg, M., Long, M., Jones, J.P. 3rd., Sullenger, B., and Lambowitz, A.M. (2000) *Science* 289, 452-457

^{6.} University of Pennsylvania; Sangamo Biosciences. Autologous T-Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728 for HIV (Zinc-Finger). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2011 Apr 19]. Available from: <u>http://clinicaltrials.gov/show/NCT00842634</u> NLM Identifier: NCT00842634