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Web Appendix A

The steady state values of model M pgare given by:
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The steady state values of model Mgare given by:
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The steady state values of model M are given by:
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Web Appendix B

Algebraic conditions of parameters identifiability of the three dynamics mod-
els can not be found in a closed form. Thus, we decided to examine the identi-
fiability problem by simulation, i.e. by performing some sensitivity analysis.
We selected a set of parameter 04 = (624,05, ...,624) (some typical values
for a “responder”) and computed the predicted (log) viral load fya(t) and the
predicted CD4 cells count gga(t) obtained with this set of parameters. Then,
for k=1,2,... 11,

1. we modified the kth component of 84 by setting 6;* = 0.7 x 62,

2. we created a new set of parameters 64 by modifying 64 “as less as
possible” and such that f;. and gza are “as close as possible” to fya
and gga.
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The table displays 04 and 3 different set of parameters #4 that give the
same predicted viral loads and CD4 counts:

A 2.5 2.5 2.5 2.5
v | 0.00225 | 0.001575 | 0.00225 | 0.00225
s 0.46 0.46853 0.46 0.46
ar | 1.5e-005 | 1.5e-005 | 1.5e-005 | 1.5e-005
D 620 629.25 434 620

pnr | 0.008 0.008 0.008 0.008
r 0.008 0.008 0.008 0.008

L 0.3 | 0.30156 0.3 0.3
Ly 30 30 21.006 30
mer | 0.95 0.9081 0.95 | 0.665

Merr | 0.92 0.92 0.92 | 0.988

We repeated this analysis with another set of parameters 67 (some typical
values for a “non responder”). The table below displays 07 and 3 different set
of parameters 07 that give the same predicted viral loads and CD4 counts:

A 2.5 2.5 2.5 2.5
vy 0.00225 | 0.001575 | 0.00225 | 0.00225
77 0.46 0.46644 0.46 0.46
ar | 1.5e-005 | 1.5e-005 | 1.5e-005 | 1.5e-005
D 620 724.91 434 620

pnr | 0.008 0.008 0.008 0.008
. 0.008 0.008 0.008 0.008

L 0.3 | 0.34932 0.3 0.3
Ly 30 30 20.997 | 42.849
mer | 0.3 | 0.16081 0.3 0.2
Mrrr | 0.3 0.3 0.3 | 0.3798

In other words,

e v, T, p, ia and np; are not identifiable simultaneously,
e p and py are not identifiable simultaneously,
e 71p; and nryr are not identifiable simultaneously.

Figure 1 displays fya and gga in blue and f;4 and gza in green. Figure 2
displays fgs and gys in blue and fz5 and gz in green.
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Figure 1: Predicted viral load and CD4 cell count profiles obtained with
different set of parameters (responder profiles)
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This sensitivity analysis only considers the problem of fitting the struc-
tural model for a given subject. This method is not completely appropriate
for a population approach where the distribution of the individual parame-
ters is also part of the (statistical) model. In other word, if a parameter is not
algebraically (or structurally) identifiable, it can be statistically identifiable.
Consider the following “toy example™:

Yij = Aitij + Bitij + €4

This model is clearly not algebraically identifiable. Assuming now that A;
and B; are random variables, statistical identifiability of the population pa-
rameters depends on the population distribution of A; and B;. We see in
Figure 3 the convergence of the SAEM algorithm for different initializations
and different distributions. The population parameters A and B are not
identifiable when A; and B; are normally distributed. They are identifiable
when A; and B; are defined using a logit transformation.

In our viral kinetic model, even if only the product (1 —np;)(1 —ngrrr) is
structurally identifiable, both np; and ngy; are statistically identifiable.

In summary, identifiability of non linear mixed effects models does not
reduce to algebraic identifiability and pracival identifiability should also be
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Figure 2: Predicted viral load and CD4 cell count profiles obtained with
different set of parameters (non responder profiles)
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addressed. As a practical diagnostic tool, we propose to use the Fisher In-
formation Matrix for detecting some over-parametrization in the model. We
are aware that it is not completely satisfactory but from our experience, we
know for certain that very large s.e. (or NaN) indicate some issue in the
parametrization. Unfortunately, the reverse is not necessarily true.
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Figure 3: Convergence of SAEM with different initial values and different
population distributions. Left: normal distribution (A + B is identifiable) ,
Right: logit transformation (both A and B are identifiable).
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