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Fig. S1. The f, [ and Ryor were analyzed with various levels of CO; breathing in WT and mutant
Prp57 mice with GFP expression in LC neurons. The MecpZ_/Y mice failed to respond to low
dose (< 3%) CO; in all three measures (*, P<0.05, n= 4 pairs of mice), although all of these

respiratory parameters appeared normal with 6 and 9% CO; in MecpZ_/Y mice.
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Fig. S2. Effects of Ba*" on neuronal response to 8% CO,in WT neurons. 4,B. Responses of Rm

to CO, (8%) without (4) and with Ba*" (B). The Rm was measured with injection of -0.02nA

current pulses. The distance between two dash-lines indicates Rm with 5% CO, (41, control)

that was raised with the application of 8% CO; (A42). Such a CO; response was abolished in the

presence of 200uM Ba”" (B), which was summarized in C and expressed in percentage change.

The hypercapnia-induced increase in firing frequency (D) and depolarization (E) were also

suppressed when cells were exposed to Ba®". *, P<0.05; **, P<0.01 by paired t-test.
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Fig. S3. A. Ionic currents were recorded in the inside-out patch from a WT neuron. The currents
had inward rectification and showed a reversal potential at ~0 mV with symmetric K"
concentration (150mM/150mM K") on both sides of patch membranes. When K was replaced
with 100mM Na' on the intracellular side (50mM/150mM K), the reversal potential right-
shifted by 20mV (indicated with arrows), indicating that the channels are K selective. B,C. Ba*"
sensitivity of Kir currents in LC neurons (B) and HEK cells expressing Kir4.1/Kir5.1 channels
(C). Application of 200uM Ba®’ to intracellular membranes of inside-out patches inhibited
neuronal Kir currents to the same degree as Ba®" inhibition to Kir4.1/Kir5.1 currents expressed in
HEK cells. D,E. Single channel conductance of homomeric Kir4.1 channels (D) and heteromeric
Kir4.1/Kir5.1 channels (E) was measured in inside-out patches from HEK cells with a ramp
voltage from —100 to 100 mV. The straight lines indicate slope conductance of 32pS (D) and

60pS (E), respectively.
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Fig. S4. Acidic pH; induced dose-dependent inhibitions of Kir4.1 or/and Kir5.1 channels in HEK
cells. In-side out patches were obtained from HEK cells expressing the Kir4.1 channel alone (A4),
Kird.1 and Kir5.1 in a ratio of 1:1 (B), 1.5:1 (C) and 2:1 (D), respectively. With different
Kir4.1/Kir5.1 ratios, the currents showed clearly different pH sensitivity. Note that 8

superimposed traces are shown in each panel.



