Online Figure 1 Zhang et al.

Fig. S1. The f, I and R_{TOT} were analyzed with various levels of CO₂ breathing in WT and mutant Prp57 mice with GFP expression in LC neurons. The $Mecp2^{-/Y}$ mice failed to respond to low dose ($\leq 3\%$) CO₂ in all three measures (*, P<0.05, n= 4 pairs of mice), although all of these respiratory parameters appeared normal with 6 and 9% CO₂ in $Mecp2^{-/Y}$ mice.

Online Figure 2 Zhang et al.

Fig. S2. Effects of Ba^{2+} on neuronal response to 8% CO₂ in WT neurons. *A*,*B*. Responses of Rm to CO₂ (8%) without (*A*) and with Ba^{2+} (*B*). The Rm was measured with injection of -0.02nA current pulses. The distance between two dash-lines indicates Rm with 5% CO₂ (*A1*, control) that was raised with the application of 8% CO₂ (*A2*). Such a CO₂ response was abolished in the presence of 200µM Ba^{2+} (*B*), which was summarized in *C* and expressed in percentage change. The hypercapnia-induced increase in firing frequency (*D*) and depolarization (*E*) were also suppressed when cells were exposed to Ba^{2+} . *, P<0.05; **, P<0.01 by paired *t*-test.

Online Figure 3 Zhang et al.

Fig. S3. *A*. Ionic currents were recorded in the inside-out patch from a WT neuron. The currents had inward rectification and showed a reversal potential at ~0 mV with symmetric K⁺ concentration (150mM/150mM K⁺) on both sides of patch membranes. When K⁺ was replaced with 100mM Na⁺ on the intracellular side (50mM/150mM K⁺), the reversal potential right-shifted by 20mV (indicated with arrows), indicating that the channels are K⁺ selective. *B,C.* Ba²⁺ sensitivity of Kir currents in LC neurons (*B*) and HEK cells expressing Kir4.1/Kir5.1 channels (*C*). Application of 200µM Ba²⁺ to intracellular membranes of inside-out patches inhibited neuronal Kir currents to the same degree as Ba²⁺ inhibition to Kir4.1/Kir5.1 currents expressed in HEK cells. *D,E.* Single channel conductance of homomeric Kir4.1 channels (*D*) and heteromeric Kir4.1/Kir5.1 channels (*E*) was measured in inside-out patches from HEK cells with a ramp voltage from -100 to 100 mV. The straight lines indicate slope conductance of 32pS (*D*) and 60pS (*E*), respectively.

Online Figure 4 Zhang et al.

Fig. S4. Acidic pH_i induced dose-dependent inhibitions of Kir4.1 or/and Kir5.1 channels in HEK cells. In-side out patches were obtained from HEK cells expressing the Kir4.1 channel alone (*A*), Kir4.1 and Kir5.1 in a ratio of 1:1 (*B*), 1.5:1 (*C*) and 2:1 (*D*), respectively. With different Kir4.1/Kir5.1 ratios, the currents showed clearly different pH sensitivity. Note that 8 superimposed traces are shown in each panel.