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1 Approximate Bayesian Computation : ABC SMC

Here we outline the background behind approximate Bayesian computation (ABC) and describe the ABC SMC
algorithm [1], which is implemented in the software package ABC-SysBio [2]. ABC methods have been developed
to infer posterior distributions in cases where likelihood functions are computationally intractable or too costly
to evaluate. They replace the calculation of the likelihood with a comparison between observed and simulated
data.
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1.1 Background

Following the notation in [3], let θ ∈ Θ be a parameter vector with prior π(θ) and f(y|θ) be the likelihood of
the data y ∈ D. In Bayesian inference we are interested in the posterior density

π(θ|y) =
f(y|θ)π(θ)∫

Θ
f(y|θ)π(θ)dθ

.

Now imagine the case where we cannot write down the likelihood in closed form but we can simulate from the
data generating model. We can proceed by first sampling a parameter vector from the prior, θ∗ ∼ π(θ), and
then sampling a data vector, x∗, from the model conditional on θ∗, ie x∗ ∼ f(x|θ∗). This alone gives the joint
density π(θ, x). To obtain samples from the posterior distribution we must condition on the data y and this is
done via an indicator function, i.e.

π(θ, x|y) =
π(θ)f(x|θ)IAy (x)∫
Ay×Θ

π(θ)f(x|θ)dxdθ
,

where IB(z) denotes the indicator function and is equal to 1 for z ∈ B. Here Ay = {x ∈ D : x = y}, so the
indicator is equal to one when the simulated data and the observed data are identical. This forms a rejection
algorithm, and in this instance the accepted θ∗ are from the true posterior density π(θ|y).

For most models it is impossible to achieve simulations with outputs in the subsetAy and so an approximation
must be made. This is the basis for ABC. In the first instance we can replace Ay by Ay,ε = {x ∈ D : ρ(x, y) ≤ ε}
where ρ : D×D → R+ is a distance function comparing the simulated data to the observed data. We then have

πε(θ, x|y) =
π(θ)f(x|θ)IAy,ε(x)∫
Ay,ε×Θ

π(θ)f(x|θ)dxdθ
,

where πε is an approximation to the true posterior distribution. The rationale behind ABC is that if ε is
small then the resulting approximate posterior, πε, is close to the true posterior. Often, for complex models
or stochastic systems, the subset Ay,ε is still too restrictive. In these cases we can resort to comparisons of
summary statistics. We now specify the subset Ay,η,ε = {x ∈ D : ρS(x, y) ≤ ε} where η : D → S is a summary
statistic and the distance function now takes the form ρS : S ×S → R+. We often write the marginal posterior
distribution as π(θ|ρ(x∗, y) ≤ ε).

1.2 ABC SMC

The simplest ABC algorithm is known as the ABC rejection algorithm [4] and proceeds as follows

R1 Sample θ∗ from π(θ).
R2 Simulate a dataset x∗ from f(x|θ∗).
R3 If ρ(x∗, y) ≤ ε accept θ∗, otherwise reject.
R4 Return to R1.

This gives draws from πε but can be very inefficient in high dimensional models or when the overlap between
the prior and posterior distributions is small. One way to improve the efficiency of the rejection algorithm is
to perform sequential importance sampling (SIS) [5]. In SIS, instead of sampling directly from the posterior
distribution, sampling proceeds via a series of intermediate distributions. The importance distribution at each
stage is constructed from a perturbed version of the previous population. This approach can be used in ABC
and the resultant algorithm is known as ABC SMC [1]. Described here is a slightly modified version that
automatically calculates the ε schedule and as such, only the final value, εT , needs be specified. To obtain N
samples {θ1, θ2, θ3...., θN} (known as particles) from the posterior, defined as, π(θ|ρ(x∗, y) ≤ εT ), proceed as
follows
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S1 Initialize ε =∞
Set the population indicator t = 0

S2.0 Set the particle indicator i = 1
S2.1 If t = 0, sample θ∗∗ independently from π(θ)

If t > 0, sample θ∗ from the previous population {θit−1} with weights wt−1.
Perturb the particle, θ∗∗ ∼ Kt(θ|θ∗) where Kt is the perturbation kernel.
If π(θ∗∗) = 0, return to S2.1
Simulate a candidate dataset x∗ ∼ f(x|θ∗∗).
If ρ(x∗, y) > ε return to S2.1

S2.2 Set θit = θ∗∗ and dit = ρ(x∗, y), calculate the weight as

wit =

{
1 if t = 0

π(θit)PN
j=1 w

j
t−1Kt(θ

i
t|θ

j
t−1)

if t > 0

If i < N , set i = i+ 1, go to S2.1
S3 Normalize the weights.

Determine ε such that Pr(dt ≤ ε) = 0.9.
If ε > εT , set t = t+ 1, go to S2.0.

Here Kt(θ|θ∗) is the component-wise random walk perturbation kernel that, in this study, takes the form
Kt(θ∗|θ) = θ + U(−δ, δ) where δ = 1

2 range{θt−1}. The denominator in the weight calculation can be seen as
the probability of observing the current particle given the previous population.

1.3 Model selection

In Bayesian inference comparison of a discrete set of models can be be performed using the marginal posterior.
Consider the joint space defined by (M, θ) ∈M×ΘM; Bayes theorem can then be written

π(M |y) =
f(y|M)π(M)∫

M f(y|M ′)π(M ′)dM ′
=

f(y|M)π(M)∑
M f(y|M ′)π(M ′)

,

where f(y|M), the marginal likelihood, can be written

f(y|M) =
∫

ΘM

π(θ|M)f(y|θ,M)dθ.

Therefore the posterior probability of a model is given by the normalized marginal likelihood which may or
may not be weighted depending on whether the prior over models is informative or uniform respectively. It has
recently been noted that model selection using summary statistics can be problematic because the summary
statistic must be sufficient for the joint space, {M, θ}, rather than just θ [6]. This is not a concern here since in
all our examples we use the full data set with no summary or we define our posterior distributions through the
summary statistics.

Model selection can be incorporated into the ABC framework by introducing the model indicator M and
proceeding with inference on the joint space. For example, the ABC rejection algorithm with model selection
[7] proceeds as follows

MR1 Sample M∗ from π(M).
MR2 Sample θ∗ from π(θ|M∗).
MR3 Simulate a dataset x∗ from f(x|θ∗,M∗).
MR4 If ρ(x∗, y) ≤ ε accept (M∗, θ∗), otherwise reject.
MR5 Return to R1.

Once N samples have been accepted an approximation to the marginal posterior, π(M = m|y), is given by

π(M = m|y) =
#accepted m

N
.

Model selection can also be incorporated into the ABC SMC algorithm [8]. To obtain N samples
{(M, θ)1, (M, θ)2, (M, θ)3...., (M, θ)N} from the posterior, defined as, π(M, θ|ρ(x∗, y) ≤ εT ), proceed as follows
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MS1 Initialize ε =∞
Set the population indicator t = 0

MS2.0 Set the particle indicator i = 1
MS2.1 If t = 0, sample (M∗∗, θ∗∗) from the prior π(M, θ) = π(M)π(θ|M).

If t > 0, sample M∗ with probability Pt−1(M∗) and perturb M∗∗ ∼ KMt(M |M∗).
Sample θ∗ from the previous population {θ(M∗∗)t−1} with weights wt−1.
Perturb the particle, θ∗∗ ∼ Kt,M∗∗(θ|θ∗) where Kt,M is the perturbation kernel.
If π(M∗∗, θ∗∗) = 0, return to MS2.1
Simulate a candidate dataset x∗ ∼ f(x|M∗∗, θ∗∗).
If ρ(x∗, y) > ε return to MS2.1

MS2.2 Set (M, θ)it = (M∗∗, θ∗∗) and dit = ρ(x∗, y), calculate the weight as

wit(M
i
t , θ

i
t) =

{
1 if t = 0

π(Mi
t ,θ

i
t)

S1S2
if t > 0

where
S1 =

∑
j∈M Pt−1(M j

t−1)KMt(M i
t |M

j
t−1)

and

S2 =
∑
k∈Mi

t=Mt−1

wkt−1Kt,Mi (θ
i
t|θ

k
t−1)

Pt−1(Mi
t=Mt−1)

If i < N , set i = i+ 1, go to MS2.1
S3 Normalize the weights.

Obtain the marginal model probabilities given by

Pt(Mt = m) =
∑
k∈Mi

t=Mt−1
wit(M

i
t , θ

i
t)

Determine ε such that Pr(dt ≤ ε) = 0.9.
If ε > εT , set t = t+ 1, go to MS2.0.

There are two obvious additions to the algorithm when compared to parameter inference. The model kernel,
KMt, perturbs the resampled models using a multinomial distribution, and the additional term in the weight
denominator accounts for the probability of observing the current model given the previous population.

2 Prior distribution

The prior distribution encodes our knowledge of the system and should be set according to known biochemical
properties. However, often the kinetic parameters are not well known and can be very difficult or even impos-
sible to measure in vivo. In these cases we make the prior distribution non informative by specifying a large
range over possible, biophysically and biochemically plausible values. As more information becomes available,
through experimental studies or otherwise, the prior can be updated to reflect our increased knowledge of the
system. Interestingly, for some systems, our design method could help to constrain kinematic parameters where
experimental data are unavailable.

3 The distance function and output tolerance

In system design we would rarely insist on achieving the true posterior distribution corresponding to ε = 0, but
would like to reach the objective within some tolerance. A theorem due to Wilkinson (2008) [9] states that if
we assume that the data can be considered as

y = η(θ̂) + e,

where η(θ̂) is a draw from the model at the ’best’ input and e is an additive, independent error, then the
approximate posterior distribution, π(θ|ρ(x∗, y) ≤ ε) can be interpreted as the ’true’ posterior π(θ̂|y). While
the independence assumption is not always true, this theorem provides some insight into the relationship between
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the final ε value and the tolerance on our specified behavior. For example when using uniform kernels, as in
this study, if our desired output behavior is a constant of 0.5 and we finish the inference at ε = 0.05 our final
trajectories will be distributed U(0.45, 0.55) giving a tolerance of ±10% on the output behavior. This can be
used when considering our desired output objectives. To achieve other error distributions, such as Gaussian
errors, we can always explicitly specify the error model in the design objectives.

4 Deterministic models

Inference for deterministic models such as ordinary differential equations can be problematic since there is a one
to one relationship between the parameter vector θ and the data set x. Therefore, in the absence of observational
error, the posterior distribution resembles a delta function, δ(θ − θ̂) where x̂ = f(θ̂) is data ’closest’ to y. An
additional problem for ABC methods is that the minimum distance, ρ(x̂, y), is greater than zero [10]. However,
in practice, observational data have associated experimental errors and when this is included explicitly in the
model, the problem is resolved. In the case of systems design, we omit the explicit error model for clarity, but
note that it could be included with assumptions on the form of the distribution.

5 Biochemical adaptation

5.1 Models

We used the same models as those used in [11], which are enzymatic reactions assuming Michaelis-Menten
kinetics. Below we give the full models including cooperativity but the more specific case of no cooperativity is
when the exponents, ni, are set to one. Here A,B,C denote the concentrations of the active form of the species
and (1 − A), (1 − B), (1 − C) the concentrations of the inactive form. Species Ei and Fi refer to background
activating and deactivating enzymes respectively and are assumed to have a constant concentration of 0.5. The
models were simulated in the range 0 ≤ t ≤ 200.
Design 1

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= CkCB

(1−B)nCB

(1−B)nCB +KnCB
CB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= AkAC

(1− C)nAC

(1− C)nAC +KnAC
AC

−BkBC
CnBC

CnBC +KnBC
BC

Design 2

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= EBkEB

(1−B)nEB

(1−B)nEB +KnEB
EB

− CkCB
BnCB

BnCB +KnCB
CB

dC

dt
= AkAC

(1− C)nAC

(1− C)nAC +KnAC
AC

−BkBC
CnBC

CnBC +KnBC
BC

− FCkFC
CnFC

CnFC +KnFC
FC

Design 3

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= EBkEB

(1−B)nEB

(1−B)nEB +KnEB
EB

− CkCB
BnCB

BnCB +KnCB
CB

dC

dt
= BkBC

(1− C)nBC

(1− C)nBC +KnBC
BC

−AkAC
CnAC

CnAC +KnAC
AC
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Design 4

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

−BkBA
AnBA

AnBA +KnBA
BA

dB

dt
= AkAB

(1−B)nAB

(1−B)nAB +KnAB
AB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= AkAC

(1− C)nAC

(1− C)nAC +KnAC
AC

− FCkFC
CnFC

CnFC +KnFC
FC

Design 5

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

−BkBA
AnBA

AnBA +KnBA
BA

dB

dt
= AkAB

(1−B)nAB

(1−B)nAB +KnAB
AB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= ECkEC

(1− C)nEC

(1− C)nEC +KnEC
EC

−AkAC
CnAC

CnAC +KnAC
AC

Design 6

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

−BkBA
AnBA

AnBA +KnBA
BA

dB

dt
= CkCB

(1−B)nCB

(1−B)nCB +KnCB
CB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= AkAC

(1− C)nAC

(1− C)nAC +KnAC
AC

− FCkFC
CnFC

CnFC +KnFC
FC

Design 7

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

−BkBA
AnBA

AnBA +KnBA
BA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= EBkEB

(1−B)nEB

(1−B)nEB +KnEB
EB

− CkCB
BnCB

BnCB +KnCB
CB

dC

dt
= AkAC

(1− C)nAC

(1− C)nAC +KnAC
AC

− FCkFC
CnFC

CnFC +KnFC
FC

Design 8

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

−BkBA
AnBA

AnBA +KnBA
BA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= CkCB

(1−B)nCB

(1−B)nCB +KnCB
CB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= ECkEC

(1− C)nEC

(1− C)nEC +KnEC
EC

−AkAC
CnAC

CnAC +KnAC
AC

Design 9

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

−BkBA
AnBA

AnBA +KnBA
BA

dB

dt
= EBkEB

(1−B)nEB

(1−B)nEB +KnEB
EB

− CkCB
BnCB

BnCB +KnCB
CB

dC

dt
= ECkEC

(1− C)nEC

(1− C)nEC +KnEC
EC

−AkAC
CnAC

CnAC +KnAC
AC
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Design 10

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= AkAB

(1−B)nAB

(1−B)nAB +KnAB
AB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= BkBC

(1− C)nBC

(1− C)nBC +KnBC
BC

−AkAC
CnAC

CnAC +KnAC
AC

Design 11

dA

dt
= IkIA

(1−A)nIA

(1−A)nIA +KnIA
IA

− FAkFA
AnFA

AnFA +KnFA
FA

dB

dt
= AkAB

(1−B)nAB

(1−B)nAB +KnAB
AB

− FBkFB
BnFB

BnFB +KnFB
FB

dC

dt
= AkAC

(1− C)nAC

(1− C)nAC +KnAC
AC

−BkBC
CnBC

CnBC +KnBC
BC

5.2 Distance

The two component distance metric was defined to be ρ(x,O) = {E,S−1}, where E and S are the adaptation
efficiency and sensitivity defined by

E =

∣∣∣∣∣ (O2 −O1)/O1

(I2 − I1)/I1

∣∣∣∣∣
S =

∣∣∣∣∣ (Opeak −O1)/O1

(I2 − I1)/I1

∣∣∣∣∣,
where I1, I2 are the input values (here fixed at 0.5 and 0.6 respectively), O1, O2 are the output steady state levels
before and after the input change and and Opeak is the maximal transient output level. The final population
was defined to be ε = {0.1, 1.0}.

5.3 Priors

The priors on the Michaelis-Menten rates were chosen to correspond to the parameter ranges used in the original
study; log k ∼ U(−1, 1) and logK ∼ U(−3, 2) [11].

6 Bacterial two component systems

6.1 Models

The models we used were based on the ones found in [12]. All simulations were performed in the range 0 ≤ t ≤ 10.
Orthodox system
We modeled the following reactions

HK + S
k1−→ HKp+ S

HKp+RR
k2−→ HK +RRp

HKp
k3−→ HK

HK +RRp
k4−→ HKp+RR

RRp
k5−→ RR.
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Additionally we assumed that the total concentration of HKtot = HK + HKp and RRtot = RR + RRp were
equal to one. This resulted in the following ordinary differential equations

d[HK]
dt

= k2[HKp][RR] + k3[HKp]− k4[HK][RRp]− k1[HK][S]

d[RRp]
dt

= k2[HKp][RR]− k4[HK][RRp]− k5[RRp].

Orthodox system
We labelled the occupied states of the phosphorelay as

H1 D1 H2
HK1 x x x
HK2 o x x
HK3 x o x
HK4 x x o
HK5 o o x
HK6 o x o
HK7 x o o
HK8 o o o

where H1, D1 and H2 are the binding domains on the Histidine Kinase and x, o represent an empty, occupied
domain respectively. We modeled the following reactions

HK + S
k1−→ HKp+ S

Again we assumed that the total concentration of HKtot =
∑
HKi and RRtot = RR+RRp were equal to one.

This resulted in the following ordinary differential equations
dHK1

dt
= k4[HK4][RR] + k6[HK3]− k7[HK1][RRp] + k8[HK2]− k1[HK1][S]

dHK2

dt
= k4[HK6][RR] + k6[HK5]− k7[HK2][RRp]− k8[HK2] + k1[HK1][S]− k2[HK2]

dHK3

dt
= −k3[HK3] + k4[HK7][RR] + k5[HK4]− k6[HK3]− k7[HK3][RRp] + k8[HK5]− k1[HK3][S] + k2[HK2]

dHK4

dt
= k3[HK3]− k4[HK4][RR]− k5[HK4] + k6[HK7] + k7[HK1][RRp] + k8[HK6]− k1[HK4][S]

dHK5

dt
= −k3[HK3] + k4[HK8][RR] + k5[HK6]− k6[HK5]− k7[HK5][RRp]− k8[HK5] + k1[HK3][S]

dHK6

dt
= k3[HK5]− k2[HK6]− k4[HK6][RR]− k5[HK6] + k6[HK8] + k7[HK2][RRp]− k8[HK6] + k1[HK4][S]

dHK7

dt
= k2[HK6]− k4[HK7][RR]− k6[HK7] + k7[HK3][RRp] + k8[HK8]− k1[HK7][S]

dRRp

dt
= k4[RR]([HK4] + [HK6] + [HK7] + [HK8])− k7[RRp]([HK1] + [HK2] + [HK3] + [HK5])− k9[RRp]

6.2 Distance

The distance functions for input-output behaviors ρ(x,O)1−4 were defined to be

ρ(x,O)1 =
{

H(0)(argmaxt xt − 2.0),H(0)(argmint xt − 4.0)
}

ρ(x,O)2 =
√∑

t

(xt − 1.0)2

ρ(x,O)3 =
√∑

t

(xt − 0.5)2

ρ(x,O)4 =
{
ρ(x,O)1,H(0)(1−maxxt − 0.2),H(0)(minxt − 0.2)

}
where H(0) is the Heaviside function ensuring the distance is positive.
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6.3 Priors

The priors on all variables were distributed as U(0, 1000).

7 Stochastic genetic toggle switch

7.1 Models

We modeled each toggle switch using a continuous time Markov jump process which obeys the chemical master
equation. We neglected processes at the RNA level and just modeled at the protein level. This makes the models
simpler while retaining all the relevant behavior. In all the following gA, gB represent the gene promotor for
protein A,B respectively and are fixed at one copy. A− gB,B − gA represent the bound transcription factors
and S,R represent the switch and reset signals. Because the concentration of these are fixed they have the effect
of removing A and B from the system respectively. The models were simulated in the range 0 ≤ t ≤ 200
Design 1

gA
k1−→ gA+A

A
k2−→ Ø

gB
k3−→ gB +B

B
k4−→ Ø

A+ gB
k5−→ A− gB

B + gA
k6−→ B − gA

A− gB k7−→ A+ gB

B − gA k8−→ B + gA

S +A
k9−→ S −A

R+B
k10−−→ R−B

Design 2
Here, in addition to the species in design 1, we have introduced the P species, fixed to be one copy, which
ensures only A or B can be bound at any one time

gA
k1−→ gA+A

A
k2−→ Ø

gB
k3−→ gB +B

B
k4−→ Ø

A+ gB + P
k5−→ A− gB

B + gA+ P
k6−→ B − gA

A− gB k7−→ A+ gB + P

B − gA k8−→ B + gA+ P

S +A
k9−→ S −A

R+B
k10−−→ R−B.
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Design 3
Here we have the same reactions in design 1 but include two extra reactions for the decay of the bound proteins

A− gB k11−−→ gB

B − gA k12−−→ gA.

Design 4
Here we have the same reactions in design 1 but include two extra reactions for the binding /unbinding of the
proteins A and B

A+B
k11−−→ A−B

A−B k12−−→ A+B.

7.2 Distance

The two component distance metric was defined to be ρ(x,O) = {d1, d2},

d1 =

√∑
t∈α(xt − y)2

nα

d2 =

√∑
t∈β(xt − 0)2

nβ
,

where xt is the number of protein B at time t, y is the target (here fixed at 40), α = {t : 30 < t ≤ 60},
β = {t : 0 < t ≤ 10 and 80 < t ≤ 100}, nα = #α and nβ = #β. The final population was defined to be
ε = {7.0, 0.05}.

7.3 Priors

The priors for production, binding and interaction rates were distributed as U(0, 50) and the priors for the
degradation rates were given U(0, 5) distributions.

8 Robust oscillator design

8.1 Analysis

Biochemical oscillations are increasingly being implemented in various synthetic systems [13, 14, 15, 16]. A
recent study by Tsai et al [17] compared the ability of five small networks to achieve oscillations. The five
designs are shown in Figure 10A where each node represents the active form of a protein, edges represent
enzymatic reactions and thicker edges represent increased feedback strength. We applied our Bayesian design
methodology to the original problem and further investigated the ability of these designs to achieve particular
amplitude-frequency values.

Figure 10B shows the posterior probability for each model to achieve limit cycle behavior induced by a
Hopf bifurcation. The addition of the negative feedback loop in models 4 and 5 does not improve the ability
to achieve oscillations. We find that the addition of a positive feedback loop on species A in models 2 and 3
increases the ability of the system to achieve limit cycle behavior, but no significant increase in the posterior
probability is provided by increasing the feedback strength. This is in conflict with the original study that found
that model 3 outperformed model 2 [17]. Our approach does sample parameter space predominantly in regions
where the desired behavior is more likely, rather than entirely at random as was done in the previous study; on
balance this suggests that the posterior probability for delivering robust oscillations is approximately the same
for models 2 and 3.

More insight can be gained into this discrepancy by specifying a particular frequency and amplitude of
the oscillator as the desired output behavior. Figures 10C and D show the model posterior probability after
requiring an amplitude of 0.1 and a frequency of 1.0 Hz on species A and C respectively. The first thing to

10



note is that the model posterior is significantly different in the two cases. When the constraints are applied to
species A, model 3 is favored with the increase in feedback strength decreasing the ability to reach the specified
behavior. When the conditions are applied to species C (and species B by symmetry) we get a posterior that
more resembles the original findings; that the increase in feedback strength does indeed increase the ability to
reach the specified oscillations. Thus the posterior for the Hopf bifurcation behavior represents a sum over all
possible oscillator characteristics; in a manner that is reminiscent of Bayesian model averaging.

If we examine the posterior distribution and the principal component analysis for model 2 to achieve Hopf
bifurcations (Figures S5 and S6), we can see that the parameters k1 and k3, which are the strengths of the
deactivating reactions on nodes A and B, are constrained to be similar in magnitude to k5. We also see that
within this model the feedback strength, k7, does not affect the dynamics significantly. Here, and elsewhere,
we can use the posterior distributions in order to gain insights into the sensitivity and robustness of the system
to variations in parameters, irrespective of whether the system’s dynamics are deterministic or stochastic: our
ABC SMC framework allows us to extract such information on the fly as part of the sequential design process.

8.2 Models

We used the same models as those used in [17], simulated in the range 0 ≤ t ≤ 10. Again A,B,C denote the
concentrations of the active form of the species and (1−A), (1−B), (1−C) the concentrations of the inactive
form. The feedback is modeled using Michaelis-Menten kinetics but the conversion of inactive form into active
form is assumed to have a constant rate.
Design 1

dA

dt
= k1(1−A)− k2C

n1

Kn1
1 + Cn1

A

dB

dt
= k3(1−B)− k4A

n2

Kn2
2 +An2

B

dC

dt
= k5(1− C)− k6B

n3

Kn3
3 +Bn3

C

Designs 2 and 3

dA

dt
= k1(1−A)− k2C

n1

Kn1
1 + Cn1

A+ k7(1−A)
An4

Kn4
4 +An4

dB

dt
= k3(1−B)− k4A

n2

Kn2
2 +An2

B

dC

dt
= k5(1− C)− k6B

n3

Kn3
3 +Bn3

C

Designs 4 and 5

dA

dt
= k1(1−A)− k2C

n1

Kn1
1 + Cn1

A− k7A
An4

Kn4
4 +An4

dB

dt
= k3(1−B)− k4A

n2

Kn2
2 +An2

B

dC

dt
= k5(1− C)− k6B

n3

Kn3
3 +Bn3

C

8.3 Distance

For the direct Hopf bifurcation detection the distance metric was defined to be

ρ(x,O) =
∏
i Re[λi]∏

i(1− 0.99 exp(−| Im[λi]|))

where λi is the ith complex eigenvalue of the linearized system in the steady state. Here ε = 0 represents the
location in parameter space where a limit cycle emerges through a Hopf bifurcation [18]. The final population
was at ε = 0.001.
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To investigate the ability to achieve particular amplitude-frequency values, the distance was defined as
ρ(x,O) = {d1, d2, d3}, where

d1 =
∑
n

|xt0+nT − xt0+(n−1)T |

d2 = |ft − f |
d3 = |maxxt>t0 −minxt>t0 −At|,

and n is an integer, ft is the target frequency, f is the frequency determined from the largest component of
the Fourier spectrum, At is the target amplitude and t0 is a cut to remove initial transients (= 2s). The final
population was defined to be ε = {0.05, 0.05, 0.05}.

8.4 Priors

The priors were chosen to correspond to parameter ranges used in the original study; k1 ∼ U(0, 10), k2 ∼
U(0, 1000), k3 ∼ U(0, 10), k4 ∼ U(0, 1000), k6 ∼ U(0, 1000), k7 ∼ U(0, 100), kstrong7 ∼ U(500, 600), ni ∼ U(1, 4)
and Ki ∼ U(0, 4) [17].
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Figure 1: Biochemical adaptation: principal component analysis of the posterior distribution for model 11 in
the case of no cooperativity. 14
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Figure 2: Biochemical adaptation: posterior distribution for model 4 in the case when cooperativity is included.
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Figure 3: Biochemical adaptation: principal component analysis of the posterior distribution for model 4 in the
case when cooperativity is included. 16



Figure 4: Two component systems: evolution to the noise reduction behavior.
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Figure 5: Two component systems: posterior distribution for the unorthodox system to achieve the noise
reduction behavior.
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Figure 6: Two component systems: evolution to the signal reproduction behavior.
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Figure 7: Two component systems: posterior distribution for the orthodox system to achieve the signal repro-
duction behavior.
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Figure 8: Stochastic genetic toggle switch: evolution to the desired behavior.
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Figure 9: Stochastic genetic toggle switch: principal component analysis of the posterior distribution for model
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Figure 10: Robust oscillator models. A) 5 oscillator models. Model 1 is a loop of repressive enzymatic reactions.
Models 2 and 3 have an additional positive feedback loop on node A with the feedback strength stronger in
model 3 (represented by the thicker loop). Models 4 and 5 have an additional negative feedback loop on node
A with the feedback strength stronger in model 5. B) Posterior probability for achieving Hopf bifurcation type
limit cycle oscillations. C) Posterior probabilities for species A achieving oscillations with amplitude of 0.1 and
a frequency of 1Hz. D) Posterior probabilities for species C achieving oscillations with amplitude of 0.1 and a
frequency of 1Hz. The error bars in panels B, C and D indicate the variability in the marginal model posteriors
over three separate runs.
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Figure 12: Robust oscillator design: principal component analysis of the posterior distribution for model 2 to
achieve limits cycles via a hopf bifurcation. 25


